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scovery of antibacterials via
a feature-fusion based machine learning workflow†

Cong Wang,‡ab Yuhui Wu,‡ab Yunfan Xue,‡a Lingyun Zou,a Yue Huang,a

Peng Zhang *abc and Jian Ji *abc

The discovery of new antibacterials within the vast chemical space is crucial in combating drug-resistant

bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). However, the traditional approach

of screening the entire chemical library in an ergodic manner can be laborious and time-consuming.

Machine learning-assisted screening of antibacterials alleviates the exploration effort but suffers from the

lack of reliable and related datasets. To address these challenges, we devised a combinatorial library

comprising over 110 000 candidates based on the Ugi reaction. A focused library was subsequently

generated through uniform sampling of the entire library to narrow down the preliminary screening

scale. A novel feature-fusion architecture called the latent space constraint neural network was

developed which incorporated both fingerprint and physicochemical molecular descriptors to predict

the antibacterial properties. This integration allowed the model to leverage the complementary

information provided by these descriptors and improve the accuracy of predictions. Three lead

compounds that demonstrated excellent efficacy against MRSA while alleviating drug resistance were

identified. This workflow highlights the integration of machine learning with the combinatorial chemical

library to expedite high-quality data collection and extensive data mining for antibacterial screening.
Introduction

Antibacterial discovery continues to pose a dire challenge as
drug-resistant bacteria proliferate globally,1,2 while new anti-
bacterial compounds hide within the vast chemical space. Over
the past few decades, small molecular libraries have been
meticulously designed based on existing antibacterials to
identify novel hit compounds.3–6 However, these methods
substantially rely on empirical knowledge, resulting in
a restricted exploration of the total chemical space with a lack of
structural diversity. Virtual screening approaches thrive as
promising alternatives due to their capability of generating
millions of candidates with diverse motifs in a single trial.7

Nevertheless, the limited accessibility of synthesis routes for
library candidates and the scarcity of rapid evaluation tools for
virtual candidates impede their widespread application.8
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Libraries constructed through combinatorial chemistry such
as multi-component reactions provide a valuable solution for
accessing a broad chemical space with favorable synthesis
accessibility.9 The inherent tolerance of numerous building
blocks10 and high conversion efficiency make combinatorial
chemistry the most acclaimed method for diverse library
constructions.11,12 These libraries enable the exploration of
abundant possibilities within the chemical space and have
found potential in large-scale molecular data storage,13 self-
assembly dipeptide hydrogel generation,14 and protein–
protein interaction inhibitor development.15 The Ugi reaction
(UR) merges equivalent carboxylic acid, amine, aldehyde, and
isonitrile components into a peptoid backbone with pendant
functional groups.16 The bioactivity of Ugi products has been
demonstrated in areas such as antiviral17 and analgesic18

research. However, combinatorial libraries for target screening
are typically limited in size ranging from tens to hundreds of
compounds and tend to follow the pre-existing molecular
scaffolds to raise the hit rate.18,19 The attempt to exponentially
expand the potential chemical space necessitates high-
throughput pipelines to manage the huge pool of candidates
such as DNA-encoded libraries15,20 and micro-dispensers,21

which has arisen concerns regarding cost efficiency. Further-
more, the process of analyzing the collected data and extracting
meaningful insights remains a laborious task.

Machine learning emerges as a promising route to handle
the massive data,22–24 and it has demonstrated success in
© 2024 The Author(s). Published by the Royal Society of Chemistry
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screening antibacterials from candidate libraries.25–27 Its appli-
cation in screening natural product libraries is particularly
relevant,28 as most clinically applied antibiotics are derived
from natural sources such as vancomycin.29 Recently, machine
learning classiers, including random forest, support vector
machine, and logistic regression, have been employed to
predict the antibiotic activity of products from biosynthetic
gene clusters,30 which encode and govern the production of
natural metabolites.31 However, obtaining such products under
standard laboratory conditions can be challenging.32 Moreover,
the exploration of the broader chemical space beyond natural
products using machine learning remains a formidable task
that holds the potential for discovering entirely new chemical
scaffolds. For instance, Collins' group developed a graph neural
network that leverages multiple chemical libraries, leading to
the discovery of several highly effective antibiotics against the
deadly strains of Acinetobacter baumannii.25,33 Nevertheless,
these pipelines heavily rely on commercial and stationary
libraries, which can lead to duplicate discoveries. Another
approach employed by Das' group utilizes guidance from clas-
siers trained on the latent space of generative autoencoders to
screen antimicrobial peptides against diverse pathogens.34 It is
worth noting that all the aforementioned models require
a substantial amount of labeled data to train the models.
Consequently, most studies gather training data from pub-
lished literature or open-source databases. However, for target
compounds such as antimicrobial peptides, obtaining relevant
data directly from the literature can be challenging due to
variations in measurement conditions. This oen leads to out-
of-distribution problems and undesirable generalization errors.
Therefore, the integration of machine learning models with
quantitative data from a combinatorial library offers a compel-
ling approach to unveil novel antibacterials concealed within
the intricate possibilities.
Fig. 1 Overview of the workflow. Commercially available reagents were
potential products. A focused library was generated according to chemica
the obtained data were input into a supervisedmachine learningmodel. T
The products assumed with excellent antibacterial activity were finally s

© 2024 The Author(s). Published by the Royal Society of Chemistry
Herein, we proposed a new workow, which fused the
combinatorial library and machine learning to expedite the
screening of antibacterials. To reduce the scope of preliminary
screening, a uniform manifold approximation and projection
algorithm (UMAP) was employed to uniformly sample the
chemical space. Subsequently, 360 combinations were synthe-
sized and their antibacterial properties were characterized
parallelly. The data were input into the specially designed latent
space constraint neural network (LSCNN) model. The antibac-
terial performance of the whole 111 720 potential products in
the library was predicted and ranked by the LSCNN model. The
top batch of compounds with the best antimicrobial properties
was selected for further validation. Remarkably, three leads
exhibited excellent antibacterial activity against methicillin-
resistant Staphylococcus aureus (MRSA) with reduced drug
resistance development.
Results and discussion

Commercially available carboxylic acids, amines, aldehydes and
isonitriles were collected respectively (Table S1†) to generate
a whole library with 111 720 candidates (Fig. 1 and 2A). In order
to avoid the high cost accompanied with the laborious synthesis
and purication process in pursuit of traversing the entire
compound library, a focused library was created to represent the
whole chemical space. UMAP was applied to reduce high-
dimensional representations of the overall library to two-
dimensional representations. Based on the reduced two-
dimensional distribution map (Fig. S1†), 360 representative
combinations were carefully selected to cover the distribution
as uniformly as possible, thereby reducing the redundancy of
the training dataset and aligning its distribution consistently
with the whole library. The target bacterial strain chosen for
evaluation wasMRSA, given its high frequency and lethal nature
chosen as the Ugi components to establish a library containing 111 720
l diversity. The antibacterial activity of the combinations was tested and
he trainedmodel predicted all the potential products in the large library.
ynthesized and verified.

Chem. Sci., 2024, 15, 6044–6052 | 6045
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Fig. 2 (A) The combinatorial library based on the Ugi reaction. (B) The heatmap for antibacterial activity of the synthesized preliminary library.
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in hospital-acquired infections.35 All individual components
were excluded from exhibiting any antibacterial activity (Fig.
S2†). Subsequently, 360 combinations were synthesized in
parallel and tested against MRSA. The result of the initial test
was summarized as a heatmap in Fig. 2B. Optical density (OD)
values at 595 nm were tagged as antibacterial activities for each
combination. It was observed that combinations with desired
antibacterial effects (depicted by dark red color) were rare
amidst the majority of combinations showing negligible activity
(depicted by pale red color). It could indeed be anticipated as
a laborious endeavor to uncover the few hit compounds within
the vast library.

Machine learning was introduced to analyze the preliminary
data. The extraction of meaningful molecular features played an
6046 | Chem. Sci., 2024, 15, 6044–6052
essential role in developing an accurate machine learning
model for antibacterial property prediction. One widely
accepted molecular feature was the ngerprint descriptor
(FD),36 which utilized binary encoding to indicate the presence
or absence of specic chemical structures. However, it tended to
neglect the physicochemical properties of molecules to some
extent. Conversely, the physicochemical descriptor (PD) focused
primarily on the physicochemical properties of molecules,37

overlooking the structural information. Considering their
complementary nature, the fusion of PD and FD was a reason-
able approach to enhance the model's accuracy. In addition,
training models on small datasets could be challenging as the
process was inclined to be unstable and different random seeds
usually led to distinct models. Hence, improving the robustness
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The results of supervised machine learning. (A) Predicted vs.measured OD values of different models. The dashed lines represent perfect
predictions. The light gray areas represent predictions within the absolute error of 0.1. (B) The RMSE and R values of the ten independent tests on
testing sets. *p < 0.05, **p < 0.01, ***p < 0.001. (C) OD prediction heatmap of the whole library.
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of the model was also crucial when dealing with small datasets.
Recently, there had been successful attempts which utilized
multi-modal data, such as images, texts and audios38–40 to learn
shared embedding representation spaces. These approaches
leveraged the rich multi-modal information and achieved
impressive zero-shot performance. Motivated by these remark-
able outcomes,40 we proposed a novel feature-fusion architec-
ture for antibacterial property prediction called LSCNN (Fig.
S3†). LSCNN contained two multilayer perceptrons (MLP) with
PD and FD as inputs, respectively. The outputs of both MLPs
were OD values. Importantly, LSCNN imposed constraints on
the hidden layers of the two MLPs as part of the loss function to
learn the shared embedding space and facilitate interactions
between different features. During the testing and prediction
process, the averaged output of the two MLPs was used as the
nal output of LSCNN. We explored different feature fusion
architectures (LSCNNED and LSCNNCL denoted Euclidean
distance loss and contrastive loss, early fusion denoted feature-
level fusion, and late fusion denoted the concatenation of PD
and FD representations at the hidden layer, see ESI† for details).
As demonstrated in Fig. 3A and B, the higher Pearson correla-
tion coefficient (R) and lower root mean square error (RMSE) of
LSCNN on the test set outperformed other commonly used
feature fusion methods. Ablation experiments demonstrated
that imposing constraints in the latent space produced better
results than directly averaging the outputs of two separate MLPs
(Fig. S4†). Moreover, the variance of LSCNN training results was
signicantly smaller than that of other feature fusion methods.
© 2024 The Author(s). Published by the Royal Society of Chemistry
We speculated that enforcing constraints in the hidden layer
could stabilize the training process and reduce the uctuation
caused by the difference in weight initialization on small
datasets. Subsequently, the OD predictions for the entire library
were visualized as a heatmap (Fig. 3C) against the reduced
UMAP distribution, with the top-10 combinations (represented
by red points) clearly separated.

To validate predictions from LSCNN, a set of top-10 combi-
nations was synthesized and subjected to antibacterial tests.
The components were conrmed to have no inherent antibac-
terial activity (Fig. S5†). Remarkably, 6 out of 10 combinations
(60% hit rate) demonstrated effective antibacterial properties
against MRSA (Fig. S6†). In contrast, only 19 out of the initial
360 combinations (5.3% hit rate) showed potential antibacterial
activity when an OD value below 0.1 was set as the cutoff. This
signicant increase in hit rate clearly indicated the crucial
improvement achieved by our LSCNN model. Further purica-
tion was performed and the hit Ugi products (H1–6) were sub-
jected to antibacterial assays (Fig. S7–S19 and Table S2†).
Notably, H4–6 exhibited excellent antibacterial activity with
both minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC) values measured at 12 mM
(Fig. 4). In comparison, benzalkonium chloride (BC), a quater-
nary ammonium which was commonly applied as hospital
biocides against nosocomial pathogens,41 displayed MIC and
MBC values at 6 mM. Two antibiotics with a broad antibacterial
spectrum, ciprooxacin (CF) and bacitracin (BT), presented
MIC at 3 and 12 mM respectively (Fig. 4B). The bacterial
Chem. Sci., 2024, 15, 6044–6052 | 6047
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Fig. 4 (A) Molecular structures of purified Ugi products H4–6. (B) MIC and MBC values of H4-6, CF and BT. (C) MRSA on TSA medium after 6
hours of incubation with H4–6 at 24 mM. (D) Standard plate counting assay of MRSA after 6 hours of incubation with H4–6 at 24 mM, CF and BT at
96 mM. (E) Killing kinetics of H4–6, CF and BT against MRSA.
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population was reduced by three orders of magnitude through
incubation with H4–6 at 2× MIC within a 6 hours incubation
period (Fig. 4C and D). However, CF and BT (96 mM) failed to
effectively kill MRSA at 108 CFU mL−1 within 6 hours. Rapid
killing effect were preferred in clinical, while normal antibiotics
took a longer time to exhibit antibacterial performance.42,43

Moreover, bacterial killing kinetic assays revealed that all three
hit compounds exhibited a rapid bactericidal capacity, effec-
tively eliminating 99% of MRSA within just 10 minutes, which
prevailed over CF and BT (Fig. 4E). A live/dead bacterial kit was
employed to stain MRSA cells incubated with the hit
compounds. Propidium iodide (PI) could penetrate impaired
bacterial membranes and integrate with DNA to emit red uo-
rescence. All stained samples except control presented prom-
inent red uorescence, which presented excellent antibacterial
activity of H4–6 (Fig. 5A). In addition, the molecular structures
of H4–6 showed signicant differences from the preliminary
dataset (Fig. S20†), which demonstrated the successful gener-
alization of the workow.

The antibacterial mechanism of the hit compounds was
further investigated. Transmission electron microscopy (TEM)
images of MRSA cells revealed severe membrane damage, which
6048 | Chem. Sci., 2024, 15, 6044–6052
implied the membrane-associated bactericidal mechanism of
our products (Fig. 5B). This evidence was further supported by
the dying experiment with DiSC3(5), which was a membrane
potential sensitive probe.44 Triton X-100 (TX-100) was set as the
positive control. DiSC3(5) uorescence rapidly quenched in
intact membranes due to the high concentration and exhibited
enhanced uorescence upon release in cell membranes with an
imbalance inmembrane potential. Intensemembrane potential
depolarization was observed in assays treated with the hit
compounds, exhibiting a similar terminus to benzalkonium
chloride. In contrast, another widely applied antibiotic cipro-
oxacin failed to induce membrane potential depolarization
(Fig. 5C), which typically inhibited DNA synthesis and replica-
tion to exert antibacterial effect. In light of the growing drug
resistance among bacteria in clinical cases, the resistance
development of MRSA against H4–6 was further evaluated.
Within 100 generations, no drug resistance was observed for
H4–6, whereas the MIC of ciprooxacin increased 16 times
(Fig. 5D). These ndings underscored the ability of our hit
compounds to effectively combat drug-resistant bacterial
strains and address the urgent need for new antibacterial
agents.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (A) Live/dead bacteria stain assay of MRSA incubated with H4–6. (B) TEM characterization of H4–6 treated MRSA cells. Scale bar: 500 nm.
(C) H4–6 induced cytoplasmic membrane depolarization. (D) Bacterial resistance development of H4–6 against MRSA.
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Conclusions

In summary, our study involved the construction of an unbiased
combinatorial library with broad chemical space through the
Ugi reaction. We employed the UMAP algorithm to visualize the
high-dimensional distribution of the candidate pool in a two-
dimensional map. The exhaustive synthesis and evaluation of
the entire library chemical space were spared by uniform map
sampling. The preliminary library was synthesized and
screened against MRSA with the OD values tagged for each
combination. To accurately predict the antibacterial activity of
© 2024 The Author(s). Published by the Royal Society of Chemistry
the entire library, a special LSCNN model was developed which
incorporated both FD and PD of the molecules. Aer training
the model with the quantitative data collected from a relatively
focused library, the model was capable of ranking the antibac-
terial activity of the whole library. The validation experiments
conrmed the activity of 6 hit combinations against MRSA,
demonstrating the efficiency of our approach compared to the
blind screening of the entire library. Additionally, three puried
compounds exhibited rapid killing kinetics against MRSA and
interfered intensely with the membrane potential, leading to
signicant membrane damage. This bactericidal mechanism
Chem. Sci., 2024, 15, 6044–6052 | 6049
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might effectively suppress the emergence of antibacterial
resistance commonly developed in clinical occasions. Our
workow integrated the massive data from the combinatorial
library and the powerful generalization capability of the feature-
fusing LSCNN model, which presented a promising paradigm
for the discovery of new antibacterials.

Data availability

The computational method and additional experimental data
are available in the ESI.†
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S. Chiurchiù, F. Chowdhury, R. Clotaire Donatien,
A. J. Cook, B. Cooper, T. R. Cressey, E. Criollo-Mora,
M. Cunningham, S. Darboe, N. P. J. Day, M. De Luca,
K. Dokova, A. Dramowski, S. J. Dunachie, T. Duong Bich,
T. Eckmanns, D. Eibach, A. Emami, N. Feasey, N. Fisher-
Pearson, K. Forrest, C. Garcia, D. Garrett, P. Gastmeier,
A. Z. Giref, R. C. Greer, V. Gupta, S. Haller, A. Haselbeck,
S. I. Hay, M. Holm, S. Hopkins, Y. Hsia, K. C. Iregbu,
J. Jacobs, D. Jarovsky, F. Javanmardi, A. W. J. Jenney,
M. Khorana, S. Khusuwan, N. Kissoon, E. Kobeissi,
T. Kostyanev, F. Krapp, R. Krumkamp, A. Kumar,
6050 | Chem. Sci., 2024, 15, 6044–6052
H. H. Kyu, C. Lim, K. Lim, D. Limmathurotsakul,
M. J. Lous, M. Lunn, J. Ma, A. Manoharan, F. Marks,
J. May, M. Mayxay, N. Mturi, T. Munera-Huertas,
P. Musicha, L. A. Musila, M. M. Mussi-Pinhata,
R. N. Naidu, T. Nakamura, R. Nanavati, S. Nangia,
P. Newton, C. Ngoun, A. Novotney, D. Nwakanma,
C. W. Obiero, T. J. Ochoa, A. Olivas-Martinez, P. Olliaro,
E. Ooko, E. Ortiz-Brizuela, P. Ounchanum, G. D. Pak,
J. L. Paredes, A. Y. Peleg, C. Perrone, T. Phe,
K. Phommasone, N. Plakkal, A. Ponce-de-Leon, M. Raad,
T. Ramdin, S. Rattanavong, A. Riddell, T. Roberts,
J. V. Robotham, A. Roca, V. D. Rosenthal, K. E. Rudd,
N. Russell, H. S. Sader, W. Saengchan, J. Schnall,
J. A. G. Scott, S. Seekaew, M. Sharland, M. Shivamallappa,
J. Sifuentes-Osornio, A. J. Simpson, N. Steenkeste,
A. J. Stewardson, T. Stoeva, N. Tasak, A. Thaiprakong,
G. Thwaites, C. Tigoi, C. Turner, P. Turner, H. R. van
Doorn, S. Velaphi, A. Vongpradith, M. Vongsouvath, H. Vu,
T. Walsh, J. L. Walson, S. Waner, T. Wangrangsimakul,
P. Wannapinij, T. Wozniak, T. E. M. W. Young Sharma,
K. C. Yu, P. Zheng, B. Sartorius, A. D. Lopez, A. Stergachis,
C. Moore, C. Dolecek and M. Naghavi, Global burden of
bacterial antimicrobial resistance in 2019: a systematic
analysis, Lancet, 2022, 399, 629–655.

2 Z. Shang, S. Y. Chan, Q. Song, P. Li and W. Huang, The
Strategies of Pathogen-Oriented Therapy on Circumventing
Antimicrobial Resistance, Research, 2020, 2020, 2016201.

3 X.-Q. Kong, B.-Y. Wei, C.-X. Yu, X.-N. Guan, W.-P. Ma, G. Liu,
C.-G. Yang and F.-J. Nan, Design, Synthesis and Biological
Evaluation of Bengamide Analogues as ClpP Activators,
Chin. J. Chem., 2020, 38, 1111–1115.

4 L. Ferrazzano, A. Viola, E. Lonati, A. Bulbarelli, R. Musumeci,
C. Cocuzza, M. Lombardo and A. Tolomelli, New
isoxazolidinone and 3,4-dehydro-b-proline derivatives as
antibacterial agents and MAO-inhibitors: A complex
balance between two activities, Eur. J. Med. Chem., 2016,
124, 906–919.

5 J. Liu, C. Du, H. T. Beaman and M. B. B. Monroe,
Characterization of Phenolic Acid Antimicrobial and
Antioxidant Structure–Property Relationships,
Pharmaceutics, 2020, 12, 419.

6 I. B. Seiple, Z. Zhang, P. Jakubec, A. Langlois-Mercier,
P. M. Wright, D. T. Hog, K. Yabu, S. R. Allu, T. Fukuzaki,
P. N. Carlsen, Y. Kitamura, X. Zhou, M. L. Condakes,
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