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CoH-catalyzed asymmetric remote hydroalkylation
of heterocyclic alkenes: a rapid approach to chiral
five-membered S- and O-heterocyclest

Lingzi Zhao,} Feipeng Liu,i Yan Zhuang, Mengyang Shen, Jing Xue, Xuchao Wang,
Yuting Zhang and Zi-Qiang Rong (& *

Saturated heterocycles, which incorporate S and O heteroatoms, serve as fundamental frameworks in
a diverse array of natural products, bioactive compounds, and pharmaceuticals. Herein, we describe
a unique cobalt-catalyzed approach integrated with a desymmetrization strategy, facilitating precise and
enantioselective remote hydroalkylation of unactivated heterocyclic alkenes. This method delivers
hydroalkylation products with high yields and excellent stereoselectivity, representing good efficiency in
constructing alkyl chiral centers at remote C3-positions within five-membered S/O-heterocycles.
Notably, the broad scope and good functional group tolerance of this asymmetric C(sp®)-C(sp®)
coupling enhance its applicability.

Introduction

Saturated heterocycles, which incorporate S and O heteroatoms,
stand as ubiquitous structural scaffolds found in natural
products, bioactive molecules, and synthetic intermediates®
(Fig. 1a). These structurally valuable frameworks offer distinct
advantages, including enhanced solubility, improved pharma-
cokinetics, and increased bioavailability,” capturing significant
attention from both industry and academia. Despite their
importance, the aromatic driving force directs the construction
toward five-membered heterocyclic aromatic compounds like
triazole, imidazole, thiazole, thiophene, and furan. Conse-
quently, synthesizing saturated heterocyclic compounds with
diverse structures, especially chiral saturated S- and O-
heterocyclic compounds, remains a challenging frontier in
asymmetric synthesis. Traditional methods for achieving these
compounds typically involve hydrogenation of heteroarenes,?
intramolecular cyclization, and annulation reactions.’®
However, despite significant progress, these approaches
frequently encounter limitations related to the accessibility of
starting materials, substrate scope, or stereoselectivity. In light
of these challenges, there is a significant demand for the
development of more direct and highly stereoselective methods
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to synthesize chiral saturated S- and O-heterocycles from inex-
pensive and abundant heterocyclic substrates.

Recently, the enantioselective hydrofunctionalization of
alkenes catalyzed by transition metals® has emerged as a central
and extensively studied field. This method is particularly valued
for its ability to efficiently construct intricate chiral functional
molecules and heterocycles in organic synthesis. This approach
significantly enhances precision in constructing chiral C-C
bonds, offering a universal method to concurrently generate
chiral carbon centers and regulate stereochemistry. This capa-
bility addresses a fundamental challenge in asymmetric
synthesis, which is essential for shaping the core structures of
a wide range of organic molecules. Recognizing the importance
of chiral saturated heterocycles containing S and O hetero-
atoms, researchers have explored the feasibility of synthesizing
these valuable compounds through a transition metal-catalyzed
hydrofunctionalization of heterocyclic alkenes. In this innova-
tive approach, readily available heterocyclic alkenes serve as
pro-nucleophiles instead of highly active and unstable organo-
metallic reagents” in the hydrofunctionalization process to
establish a new C-C bond, ultimately realizing the construction
of the chiral center on the five-membered saturated S- and O-
heterocycles. However, constructing chiral centers on the
remote C3 position of a five-membered heterocyclic ring poses
a significant challenge. Addressing this challenge, Hayashi et al.
recently presented a solution through their report on the
rhodium-catalyzed asymmetric hydroarylation of 2,5-
dihydrothiophene-1,1-dioxide under neutral conditions
(Fig. 1b).? Despite the considerable advantage demonstrated by
this methodology, existing studies predominantly focus on the
asymmetric hydroarylation of alkenes, leading to the formation
of chiral C3-arylated heterocycles.® In contrast, methods for

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d4sc01149j&domain=pdf&date_stamp=2024-06-08
http://orcid.org/0000-0002-5919-3981
https://doi.org/10.1039/d4sc01149j
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc01149j
https://rsc.66557.net/en/journals/journal/SC
https://rsc.66557.net/en/journals/journal/SC?issueid=SC015023

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 07 May 2024. Downloaded on 7/23/2025 4:58:58 AM.

(cc)

Edge Article

View Article Online

Chemical Science

a. Selective examples of chiral S and O heterocyclic compounds in natural products and pharmaceuticals

hepatitis C Virus NS3/4A protease inhibitor

HN._~

anti-glaucoma drug

B-lactamase inhibitor

COOH

CF;

tazobactam
r-secretase inhibitor

HaN
="\-0
or

OMe

) 0]
0]
(0)
HO (0) OH
dorzolamide

MeO Agastinol

Isodideoxynucleosides

b. The synthesis of chiral S and O heterocyclic compounds

\\m
N

Hayashi *
(OH Rhodium Catalysis X
RO/ — C3-hydroarylation _
H alkyl  enantioselective [ enantioselective enantiopure
- X - heterocyclic
alkyl C2-hydroalkylation C3-hydrocarbonation
(OH Lu,FuandLiu X=85,0 m
RO™ N readily available ~ L.______ unknown ___ - m
H heterocyclic alkenes C3-hydroalkylation [ X >
X=8§,0

c. This work: CoH-catalyzed asymmetric remote hydroalkylation of five-membered heterocyclic alkenes

Q9
O\\S,/O @ \\X//

Desymmetrization Strategy

R Asymmetric

e alkyl-alkyl bond formation e high enantioselectivity

o excellent regioselectivity

Fig. 1 Background for the development of the current work.

asymmetric hydroalkylation reactions, offering a promising
pathway to generate diversified chiral alkylated heterocycles by
introducing a chiral alkyl center at the remote C3 position after
the association with the transition metal. Moreover, the rarity
can be ascribed to the inherent challenges linked with estab-
lishing chiral C(sp*)-C(sp®) bonds in these reactions.' To this
end, CoH-catalyzed enantioselective reductive hydro-
carbonation of alkenes' has proven to be a feasible and
promising method for enantioselective C-C bond formation
compared to other transition metals, despite the remaining
challenges in the enantioselectivity control. In 2021, Lu and Fu's

© 2024 The Author(s). Published by the Royal Society of Chemistry
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research group achieved a significant breakthrough in the field
of cobalt-catalyzed hydroalkylation reactions, enabling the
highly efficient synthesis of chiral alkylated fluoroalkanes.™
Inspired by this work and based on our previous research," we
wondered if asymmetric hydroalkylation catalyzed by cobalt
could be used in the rapid construction of chiral five-membered
O/S-heterocyclic rings. Although very recently, Lu, Fu, Liu and
coworkers developed the CoH-catalyzed stereoselective reduc-
tive hydroalkylation reaction of five-membered glycals for the
synthesis of biologically important ribofuranosyl 2-deoxy-C-
glycosides constructed alkyl chiral centers at the C2 position
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(Fig. 1b),*** the asymmetric remote C3-hydroalkylation of five-
membered O/S-heterocyclic alkenes still remains a challenge.
Herein, we describe the development of new catalytic systems
for the regio- and enantioselective hydroalkylation of O/S-
endocyclic olefins to synthesize 3-alkylated heterocycles by
a cobalt catalyst. The use of Co-H in the presence of different
bisoxazoline (BOX) anchoring ligands enables precise stereo-
selectivity of hydroalkylation, allowing enantioselective access
to different saturated heterocycles incorporating S and O
heteroatoms. This approach offers precise control over regio-
and enantioselectivity under mild reaction conditions (Fig. 1c).

Results and discussion

In our initial investigation, we employed 1-(2-iodoethyl)naph-
thalene 2a as the alkylation reagent to explore the asymmetric
remote hydroalkylation of 2,5-dihydrothiophene-1,1-dioxide 1.
Ligand screening experiments highlighted the crucial role of
ligands in influencing the activity and stereoselectivity of the
reaction (Table 1). The use of the chiral BOX ligand L1 resulted
in the desired product in a trace yield. Interestingly, the
isopropyl-substituted chiral IndaBox ligand L2 demonstrated
promising results, providing the desired product in a 39% yield
with 83% ee. However, further screening of modified chiral
IndaBox ligands (L3-L6) resulted in significantly reduced yields
and enantioselectivities. Similarly, the utilization of chiral Bn-
Box ligand L7, chiral Ph-Box ligand L8, and ligand L9 yielded
inferior outcomes in terms of both yield and enantioselectivity.
To explore the influence of additional reaction parameters on
both coupling efficiency and stereoselectivity, various silanes
were then investigated, and the results indicated that (MeO),-
MeSiH still provided the best outcomes (Table 1, entries 1-3).
Evaluation of bases revealed that other bases such as KF, K3PO,,
K3PO,-H,0, and Cs,CO; were less effective than CsF (entries 4—
7). The use of alternative cobalt precursors, including CoBr,-
-glyme, CoCl,, CoCl,(PPh;),, and Col,, instead of CoBr,,
resulted in a substantial reduction in reactivity and enantiose-
lectivity (entries 8-11). Solvent assessment showed that other
ether solvents, such as isopropyl ether and cyclopentyl methyl
ether, are unsuitable for this asymmetric hydroalkylation reac-
tion (entries 12 and 13). Interestingly, 1,4-dioxane also yielded
comparable results to dimethoxyethane (DME) (entry 14).
Considering the importance of reaction temperature, we then
explored the effect of different reaction temperatures. The
reaction achieved a satisfying level of yield (73%) and enantio-
selectivity (94%) when conducted at —20 °C (entry 16). Subse-
quent attempts to refine the experimental conditions did not
lead to noteworthy enhancements (further details can be found
in the ESIY).

With the established optimized reaction conditions, we
systematically explored the universality of the reaction, inves-
tigating the versatility of alkyl halides as depicted in Scheme 1.
Terminal-substituted alkyl halides, featuring electron-rich and
electron-withdrawing groups at the ortho-, meta-, and para-
positions of the benzene ring, exhibited competency in this
enantioselective reductive C(sp*)-C(sp®) bond formation reac-
tion. This led to the synthesis of the corresponding chiral C3-
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Table 1 Variation of reaction parameters®
CoBr; (10 mol%)
O\\s,p ‘ ligand (12 mol%) o%\S
( ) . O (MeO),MeSiH (3.0 equiv.)
= 1 CsF (3.0 equiv.) O
DME, rt., 24 h
1 2a 3a
R R

L2, R = 'Pr, 39% yield, 83% ee

L3, R = 4-'BuCgH,, trace

L4, R = 4-FCgHs, 12% yield, 50% ee
L5, R = 4-BrCgHy, 13% yield, 11% ee

Phin. 1
N
Ph Ph

L8 L9
trace 7% yield, 52% ee

«/\
e trace SR) %

21% yleld 69% ee 28% yleld 72% ee

Entry’ Variation from standard conditions Yield [%] ee [%]
1 (EtO),MeSiH instead of (MeO),MeSiH 34 80
2 (MeO);SiH instead of (MeO),MeSiH 23 81
3 (EtO);SiH instead of (MeO),MeSiH Trace —
4 KF instead of CsF 32 66
5 K;PO, instead of CsF 19 38
6 K3;PO,-H,O0 instead of CsF 19 38
7 Cs,COj; instead of CsF 28 69
8 CoBr, - glyme instead of CoBr, 27 56
9 CoCl, instead of CoBr, 19 27
10 CoCl,(PPh;), instead of CoBr, 7 17
11 Col, instead of CoBr, 33 65
12 Isopropyl ether instead of DME Trace —
13 Cyclopentyl methyl ether instead of DME  Trace —
14 1,4-Dioxane instead of DME 33 80
15 0 °C instead of r.t. 32 91
16 —20 °C instead of r.t. 73 96
17 —40 °C instead of r.t. 49 90

¢ Summary of selected optimization of reaction conditions: conditions:
1 (0.1 mmol, 1.0 equiv.), 2a (0.2 mmol, 2.0 equiv.), catalyst (10 mol%),
ligand (12 mol%), DMMS (0.3 mmol, 3.0 equiv.), CsF (0.3 mmol, 3.0
equiv.), DME (2.0 mL, 0.05 M), 24 h, isolated yields. ” L2 as the
ligand. The enantiomeric ratio was determlned by HPLC analysis
using a chiral stationary phase. Abbreviations: DME, 1,2-
dimethoxyethane. DMMS, dimethoxymethylsilane.

alkylated sulfolanes 3a-3t, yielding consistently excellent
enantiomeric excess values (89-99%) with yields ranging from
46% to 96%. The mild reaction conditions facilitated the
incorporation of various synthetically valuable functional
groups, including ether (3d), aryl fluoride (3f), and aryl chloride
(3g)- In addition to the previously mentioned alkyl iodides,
a series of longer alkyl chain substituted alkyl iodides (3n-3s)
were found to be suitable for this transformation, producing
moderate to good yields with high enantioselectivity in the
cobalt catalytic system. The relative and absolute configuration
of 3p was unequivocally determined through single crystal X-ray
analysis, while those of other products were assigned by
analogy. Remarkably, the hydroalkylation process accommo-
dated heterocyclic compounds, such as indole-substituted alkyl
iodide, leading to smooth reactions with good yields and
excellent enantioselectivity (3t).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Reaction scope. Standard conditions: 1 or 4 (0.2 mmol, 1.0 equiv.), 2 (0.4 mmol, 2.0 equiv.), L2 (12 mol%), DMMS (0.6 mmol, 3.0
equiv.), CsF (0.6 mmol, 3.0 equiv.), DME (2.0 mL, 0.1 M), isolated yields. Conditions a: phenethyl bromide (2.0 equiv.) and sodium iodide (2.0
equiv.). Conditions b: Alkene (3.0 equiv.) and alkyl halide (1.0 equiv.). The enantiomeric ratio was determined by HPLC analysis using a chiral
stationary phase. The dr and rr value was determined by NMR spectroscopy of the crude reaction mixture and GC analysis. DME = 1,2-dime-

thoxyethane, DMMS = dimethoxymethylsilane.
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Efforts to obtain another enantioenriched class of important
chiral organic skeletons, specifically C3-alkylated tetrahydrofu-
rans, led us to explore the CoH-catalyzed asymmetric remote
hydroalkylation of 2,5-dihydrofuran, with results summarized in
Scheme 1. Encouragingly, using the established optimized reac-
tion conditions, we successfully generated the desired hydro-
alkylation products in good yields with excellent enantiomeric
excesses (ee). In the exploration of terminal-substituted alkyl
halides, different substituents with varied electron properties at
the ortho, meta, and para positions of the benzene ring were well-
tolerated. This resulted in the formation of the desired chiral
C3-alkylated tetrahydrofuran (5a-5f) with yields ranging from
60% to 82% and enantiomeric excess (ee) values between 96%
and 99%. Notably, even reactions involving heterocycle-
substituted alkyl halides proceeded efficiently, delivering the
desired products 5g with high efficiency. Furthermore, we
extended the applicability of aryl ethyl iodines to longer chain
aryl propyl iodines, yielding the corresponding chiral
C3-alkylated tetrahydrofurans 5h-5j with uniformly good yield
and excellent stereoselectivity (57-69% yield, 96-99% ee).
Notably, the cobalt-catalyzed hydroalkylation of racemic internal
alkene 4b has also demonstrated the ability to furnish C(sp®)-
C(sp®) coupling product 5k featuring 1,3-diastereocenters with
remarkable levels of regio-, enantio-, and diastereoselectivity.

To showcase the synthetic utility of the reaction, several
transformations were then conducted (Scheme 2). Firstly, this
method proved valuable for accessing C3-alkylated sulfolane/
tetrahydrofurans of drug molecules and natural products with
high efficiency, such as acemetacin (product 3u and 5I) and
estrone (product 5m). Additionally, the obtained chiral C3-
alkylated sulfolane product 3b could be easily reduced to yield
the chiral C3-alkylated tetrahydrothiophene 6b which is diffi-
cult to synthesize by traditional methods.

To gain insight into the reaction mechanism, we conducted
a series of preliminary experiments. In Scheme 3a, alkene 2,5-
dihydrothiophene-1,1-dioxide 1, in the presence of 2.0 equiva-
lent of the “radical-clock” (iodomethyl)cyclopropane 2v, was
subjected to the standard reaction conditions, yielding the ring-
opening product 3v in 17% yield. This result suggests that the
C—I bond cleavage involves a radical pathway. Additionally,
introducing a stoichiometric amount of the radical inhibitor
2,2,6,6-tetramethylpiperidinooxy (TEMPO) into the asymmetric

derived from

o oot
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3u, 72% yield, 92% ee
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from Estrone
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Scheme 2 Synthetic applications.
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Scheme 3 Mechanistic investigations and proposed mechanism.

hydroalkylation reaction of 1 with 2a significantly inhibited the
reaction, strongly indicating the participation of a radical
pathway in the reaction process. To delve deeper into the
mechanism, we conducted isotopic labeling experiments using
deuterated silane (PhSiD,) as the hydride source, as depicted in
Scheme 3b. These experiments revealed deuterium incorpora-
tion at the C4-position of 3a-d, with 99% D, indicating that the
migration insertion of Co-H with 1 might be irreversible.

Based on the conducted experiments and insights from
previous literature reports,' we present the proposed catalytic
cycles in Scheme 3c. The catalytic cycle begins with the ligated
Co'X precursor A, which can generate the cobalt hydride species
Co'H (B) in the presence of silane and base. The intermediate B
then undergoes alkene hydrometallation with substrate 1 to
generate the intermediate C. Subsequently, C participates in
halogen-atom abstraction and radical addition processes,
producing alkylcobalt(n) (D) and dialkylcobalt(m) (E). Finally,
reductive elimination of E releases the desired C3-selective
hydroalkylation product and regenerates A.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Conclusions

In conclusion, we have described a highly efficient cobalt-
catalyzed regio- and enantioselective hydroalkylation of unac-
tivated O/S-heterocyclic alkenes. This method provides a prac-
tical approach to generating alkyl chiral centers at remote
positions within five-membered O/S-heterocycles, achieving
excellent regio- and enantioselectivity through a desymmetriza-
tion strategy. Notably, the broad scope and excellent functional
group tolerance of this asymmetric C(sp*)-C(sp®) coupling
enhance its applicability. Ongoing efforts in our laboratory are
dedicated to exploring further applications and gaining
a deeper understanding of the underlying mechanisms of this
strategy.
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