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mbedding transferability in data-
driven representations of chemical space†

Tim Gould, a Bun Chan, b Stephen G. Dale ac and Stefan Vuckovic *d

Transferability, especially in the context of model generalization, is a paradigm of all scientific disciplines.

However, the rapid advancement of machine learned model development threatens this paradigm, as it

can be difficult to understand how transferability is embedded (or missed) in complex models developed

using large training data sets. Two related open problems are how to identify, without relying on human

intuition, what makes training data transferable; and how to embed transferability into training data. To

solve both problems for ab initio chemical modelling, an indispensable tool in everyday chemistry

research, we introduce a transferability assessment tool (TAT) and demonstrate it on a controllable data-

driven model for developing density functional approximations (DFAs). We reveal that human intuition in

the curation of training data introduces chemical biases that can hamper the transferability of data-

driven DFAs. We use our TAT to motivate three transferability principles; one of which introduces the key

concept of transferable diversity. Finally, we propose data curation strategies for general-purpose

machine learning models in chemistry that identify and embed the transferability principles.
1. Introduction

For the past half-century, Density Functional Theory (DFT)1,2

has made an unparalleled impact across a range of scientic
and engineering disciplines. Nowadays, this impact is greater
than ever, as evidenced by the large portion of the world's
supercomputing power being consumed by DFT simulations.3,4

In recent years, machine learning (ML) is transforming nearly
all scientic disciplines, and DFT is no exception.5,6 The use of
DFT in tandem with statistical learning is ever growing,7–11 and
recent advancements inML-based DFT12 signal the beginning of
a race to discover the DFT ‘holy grail’ or at least a highly effective
surrogate thereof – holding promise to revolutionize the entire
eld of chemistry.13 Building on this momentum, ML of density
functional approximations (DFAs) is enabling rapid advances in
the predictive quality of quantum chemistry, by enhancing the
practical cost and quality benets of DFT by empirical strategies
based on “big data” training sets.14,15

The assumption that a DFA is transferable is implicit in every
DFA developed for general use, and this culture of universal
entre, Griffith University, Nathan, Qld

University, Bunkyo 1-14, Nagasaki 852-

ls, National University of Singapore, 4

ribourg, Fribourg, Switzerland. E-mail:
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density functionals has been readily adopted by the machine-
learned DFA (ML-DFA) community. While it has long been
understood that DFAs tend to perform better on some chemis-
tries (e.g. ‘typical’ organic bonds), and worse on others (e.g.
transition metal bonds), the very nature of data-driven develop-
ment (e.g. for ML-DFAs or empirical DFAs) more heavily weights
performance on training sets, whereas the traditional strategy
tends to rely more on universal limits like homogeneous electron
gases that are less likely to bias to specic realistic systems. There
is thus an urgent need to understand how transferability is
embedded in training data, so thatML-DFAs developed using the
training data can be relied upon to extrapolate (transfer) to new
systems outside the training data and any initial tests – some-
thing that is demonstrably not guaranteed in ML-DFAs.17

Understanding how to embed transferability rst requires an
understanding of how to identify transferability.

To solve both these problems, this work will introduce
a transferability assessment tool that involves training DFAs on
a test set A, and assessing the performance of that functional on
test set B, abbreviated to B@A (or [test set]@[training set]), more
details given in Section 2. Achieving high performance on A@A
is oen straightforward, as we can always increase model ex-
ibility by adding more parameters. However, the true challenge
lies in ensuring that the (ML-)DFA is transferable to B (i.e. B@A),
meaning it genuinely learns (and may thus extrapolate) rather
than simply memorizes patterns in A. This task prompts a range
of questions.

(1) First, a key and outstanding problem is how do we create
A to embed transferability of our ML-DFA model to a wide range
of chemical physics?
© 2024 The Author(s). Published by the Royal Society of Chemistry
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(2) Is more always more (i.e. does increasing the size of set A
always improve B@A?)

(3) Can we quantify how difficult test set B is for a model
trained on A? (e.g. can we quantify the intuition that training
a model on atomisation energies of alkanes better predicts
atomisation energies of alkenes than transition metal barrier
heights?)

(4) Can we quantify the ‘distance’ or difficulty level between
training set A and test set B?

(5) Does the inclusion of well-known or well-studied chem-
ical structures in A enhance or limit the model's transferability
to unseen chemistry?

Aer all, the ultimate goal of DFT simulations is not just to
conrm and rationalize what we already know from
Fig. 1 (a) Errors for XYG-DFAs with 1–7 parameters applied to subsets co
and dot colour the training set. (b)Optimal values for XYG2 (2-parameter
database16 (full details of the benchmark sets can be found in Section 5.3)
for Reactions (left) and Barriers (right). (c) Transferability matrices betwe
varying parameter number). (d) Boxplots with XYG7 (one with BLYP and ot
GMTKN55 excluding NCI16) with parameters trained on the whole dat
principles). (e) Periodic tables showing the elements (green) included in

© 2024 The Author(s). Published by the Royal Society of Chemistry
experiments but to accurately predict (transfer to) unseen
chemistry and unperformed experiments.13

In using the transferability assessment tool (TAT) to explore
the above questions, we show that simply expanding the number
and/or type of chemical systems in a given training set is insuf-
cient to improve an ML-DFA in general (Section 3). By contrast,
we reveal three transferability principles that do embed trans-
ferability in a benchmark set (benchset for brevity), taken
together, and that may therefore be used in the curation of better
training benchsets. Most importantly, we introduce the concept
of transferable diversity to our training set design – meaning we
aim for our training set to yield good transferability to a diverse
range of chemical behaviours. We use these principles to design
the T100 benchset (nal part of Section 3). Ultimately, this work
vering reaction and barrier chemistry – line colour indicates the test set
double hybrid DFA) for Reactions and Barriers subsets of the GMTKN55
. The contours show the MAD in kcal mol−1 relative to the optimal value
en selected benchsets for XYG1, XYG4 and XYG7 (double hybrids with
her with PBE semilocal parts) errors for a large organic database (Org=

abase and on the T100 benchset (designed from our transferability
GMTKN55 and T100.
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leaves us positioned to recommend a strategy, detailed in the
Conclusions, for the development of new benchsets that are
designed to embed transferability into ML-DFAs.

The following sections will delve into specic details. For
now, it suffices to mention that we use a double-hybrid func-
tional form,18,19 dened by one18 to seven20 parameters to con-
trollably train our DFAs. In this way, we generate thousands of
data-driven DFAs, to effectively illustrate the utility and analytic
power of our TAT. Some key ndings of our study are presented
in Fig. 1. Fig. 1(a) focuses on our model's efficacy in predicting
reaction energies and barrier heights – crucial for calculating
thermodynamics and kinetics, respectively.16 We train our DFAs
on reaction energies and test on barrier heights (Barriers@-
Reactions), and then reverse the sets (Reactions@Barriers, full
details of the benchmark sets can be found in Section 5.3). From
Fig. 1(a) it is clear that our model excels in transferring from
reaction energies to barrier heights (thermodynamic to kinetic
parameters), but not the other way around. The reason for this
asymmetry becomes apparent when we look at the shapes of the
cost functions for our two-parameter model and compare the
values at their respective minima to those at each other's
minima, as shown in Fig. 1(b).

Fig. 1(c) introduces the transferability matrix TB@A, a unitless
measure precisely dened as how well a given model trained on
arbitrary A performs for arbitrary B (B@A) relative to the accuracy
limit of that model for A@A. Unlike in Fig. 1(a), which focuses
solely on the transferability between reaction energies and
barrier heights, Fig. 1(c) includes multiple classes of organic
chemical processes.16 The matrix provides insights into: (i)
transferability for each TB@A pair; (ii) asymmetry in trans-
ferabilities, as shown by differences in TB@A and TA@B values; (iii)
the rate at which transferability decreases with the increasing
number of parameters for different B@A pairs; (iv) the chemical
classes most transferable to and most transferable from. Trans-
ferability matrices are thus a key foundation of our TAT.

Fig. 1(d) demonstrates that two different avours of our
seven-parameter model,20 trained on the T100 benchset (of 100
processes carefully curated around transferability principles of
reaction, elemental and transferable diversity), perform as well
as their accuracy limits when tested on the extensive 910
process Org set, which is the “general-main group thermo-
chemistry, kinetics and noncovalent interactions” (GMTKN55)
set of 1505 processes, but excluding the 595 non-covalent
interactions (NCI) to avoid the need for a dispersion correc-
tion. ESI Table S1† shows transferabilities between Org and
GMTKN55. This conrms that transferability principles effec-
tively enhance the model's applicability to larger datasets.
Fig. 1(e) further highlights the greater elemental diversity in our
small T100 compared to large GMTKN55, as it covers a far
broader range of groups in the periodic table, despite being
een times smaller.
2. Transferability assessment tool

To measure transferability from A to B, we introduce a two-set
error MADB@A, which is the mean absolute deviation (MAD)
11124 | Chem. Sci., 2024, 15, 11122–11133
on test set B for a DFA trained on A. We then formulate a unit-
less transferability matrix:

TB@A ¼ MADB@A þ h

MADB@B þ h
$ 1: (1)

h = 0.01 kcal mol−1 regularizes results for small energies. By
denition, TB@B = TA@A = 1 (the case of perfect transferability)
and minimization principles dictate that TB@A $ 1, with larger
values indicating poorer transferability. Because it involves
a ratio, the transferability matrix ensures that errors are
normalized by both difficulty, and system size, averaged across
the benchset. It thereby complements traditional metrics
like MADs.

TB@A quanties the performance of amodel (DFA) trained on
A when applied to B, normalized by the model's inherent
accuracy limit for B. Because different kinds of chemistry are
sensitive to different kinds of model ingredients, the trans-
ferability matrix therefore encodes similarities and differences
in the chemistry contained within sets, in a way that is directly
relevant to modelling. For example, TA@B > TA@C indicates that
C is ‘closer’ (in terms of chemistry modelled) to A than B is to A.
TB@A > TA@B indicates that B is more sensitive to errors than A,
and thus A is likely to contain a broader range of chemistry.
Finally, TB@A > TC@A indicates the chemistry contained in A is
more useful for C than B, but not that it is closer.

To use our TAT, we also need to pick a DFA form that can
help us to elucidate properties of benchsets. To that end, we use
a double hybrid (DH) family of parametrised DFAs, called
XYGp

20 (named aer the original authors21), that were designed
to systematically switch off empiricism as the number of
parameters is decreased, without losing key underlying physics.
Here, p is the number of empirical parameters varying from
one22 to seven20 (see Methods for the functional forms). We
focus on results for one- (XYG1), four- (XYG4) and seven-
parameter (XYG7) models to represent minimal, middle and
maximal levels of empiricism, but sometimes we explore other
numbers of parameters when it is sensible. Along this way we
generate hundreds of DFAs for the purpose of analyzing
benchsets' transferability.

The DH form is chosen for its generality, as it sits at the top
of the current DFA Jacob's ladder (a hierarchy of DFAs based on
their mathematical complexity).23,24 This allows our DH forms to
reduce to functional forms from lower rungs of the ladder
during parameter optimization. We use Hartree–Fock (HF)
orbitals to calculate all energy terms, to prevent uncontrolled
error cancellation of functional- and density-driven errors when
building data-driven DFAs.22,25

By varying the level of empiricism, we are able to emulate
varying degrees of “machine learning”, without running into
issues of genuine machine learning. A typical machine-learned
DFA (ML-DFA) may be thought of as an empirical DFA with
a very exible functional form and a very large number of
empirical parameters, that are determined by optimising to
a training benchset. This exibility comes at a cost, however, as
one (typically) needs to choose:12,26,27 (i) the input features, (ii)
a neural network (NN) architecture, (iii) a map from NN output
to a corresponding DFA, and (iv) benchsets for training,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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validation and testing. These variables make direct and repro-
ducible tests of transferability tedious and difficult to control.
But, by keeping (i–iii) xed in our case (i.e. emulated by a chosen
XYGp form), and varying (iv) we can focus on the effect of
training data in a controlled way. By also varying the number of
parameters, p, we are able to focus on properties of the
benchsets, and not the specic DFA employed, and thus expect
any understanding or improvements to benchsets to carry over
to ML-DFAs. That is, for present state-of-art deep learned
functionals, the XYGp model provides a controllable framework
that can be used to understand and improve benchsets for
uncontrolled ts.

Before concluding this section, we also stress that the
transferability matrix concept is not restricted to the MAD, but
may be dened for any true metric. For example, Goerigk and
Grimme argue28 that their WTMAD-2 metric (a weighted average
that seeks to equalise weak and strong interactions) is better
than MAD for assessing DFAs. By simply replacing MAD by
WTMAD-2 in eqn (1) we are able dene a TAT for WTMAD-2 that
is directly comparable to its MAD counterpart, due to normal-
isation. Alternately, one might use errors in, e.g., dipole
moment in place of relative energies or some other true metric
instead of MAD or WTMAD-2. We can even dene a trans-
ferability matrix between MAD and WTMAD-2 (or any pair of
metrics), by evaluating the ratio of WTMAD-2@MAD and
WTMAD-2@WTMAD-2 (and vice versa), where the “@”’ indi-
cates we optimized XYGp using MAD or WTMAD-2. Testing
these cross-transferabilities on GMTKN55 reveals that TWTMAD-

2@MAD and TMAD@WTMAD-2 never exceed 1.01 within XYGp, so
MAD and WTMAD-2 are nearly perfectly transferable. We thus
consider only MAD for the remainder of this work.

We are now ready to apply the TAT to real data, for the
purpose of revealing limitations of existing protocols, and
uncovering key principles that enhance transferability and
performance across diverse systems.
3. Results

Before beginning a detailed analysis of transferability, consider
a “minimally-empirical” approach in which a DFA is designed
around several fundamental constraints, and then optimised
over a small number of processes to determine any remaining
parameters. Following Becke's29 lead and original XYGp,21 we
settle on 3 parameters. The 3-parameter XYG form (i.e. XYG3)
approximately satises various constraints by construction.21

Training on the 21 ionisation potentials in the benchset G21IP30

lls in the missing gaps.
At rst sight, this seems like an effective strategy: it yields

MADGMTKN55@G21IP = 1.91 kcal mol−1 across the entire
GMTKN55 organic benchset, not far from the optimal
MADGMTKN55@GMTKN55 = 1.84 kcal mol−1 achieved by full opti-
mization of the three XYG3 parameters over GMTKN55. Using
eqn (1), we nd a transferability matrix element of

TGMTKN55@G21IP ¼ 1:91þ 0:01
1:84þ 0:01

¼ 1:04, indicating G21IP's high

transferability to GMTKN55.
© 2024 The Author(s). Published by the Royal Society of Chemistry
We shall see in the following sections that the construction
of G21IP that makes it appear as a good candidate for training
can be quantied. Deeper analysis, enabled by our TAT, reveals
that its success here is an artifact of our choice to use XYG3; and
that G21IP is not a good training set in general. We will show
that the TAT enables us to identify and quantify nuances of
transferability (or its lack) in different benchsets; and thereby
lets us propose three principles that help to embed trans-
ferability in training sets. Ultimately, a benchset optimized for
transferability will be proposed.
3.1 Identifying transferability: concepts learned from
organic chemistry

Our goal is motivate transferability principles that can be
applied more broadly. As a rst step, let us use the key concepts
introduced in Section 2 to delve into the details of Fig. 1(a–c),
focusing on identifying and understanding transferability
within the large GMTKN55 organic chemistry database.

Fig. 1(a) shows that training barrier heights (194 processes16)
on reaction energies (243 processes16) performs nearly as well as
training on barriers themselves. However, reaction energies
perform poorly when trained on barriers, suggesting either
barriers are easier to learn or that reactions are better for
training. Fig. 1(b) explains this result and lets us pick the right
conclusion for the case of a two-parameter XYG2 (the parame-
ters being exact exchange fraction and MP2 correlation frac-
tions). Errors in Barriers are rather insensitive to changes in
parameters, meaning that picking sub-optimal paramet ers
does not lead to major additional errors. Not so for errors in
Reactions, where curvature is much sharper and, consequently,
changing parameters rapidly worsens results. Therefore
Barriers are easier to learn than Reactions.

The TB@A transferability matrices in Fig. 1(c) for XYG1, XYG4,
and XYG7 show how transferability rapidly worsens as the
number of model parameters increases, characteristic of over-
tting. In the 1-parameter case, many TB@A values are close to
1.0, indicating high transferability. Conversely, in the 7-
parameter model, numerous entries exceed 3, implying
performance three times worse than optimal. The upper 4 × 4
block highlights transferabilities among four test subsets:
Reactions, Barriers, NCI, and Basic16 (everything else, such as
atomization energies, ionization potentials, proton/electron
affinities, etc.). The block reveals that Reactions is the most
transferable training set, indicated by the smallest values in its
column. Conversely, Basic appears to be themost challenging to
transfer to, as evidenced by the largest values in its row. In the
ESI,† we show TB@A by further breaking down GMTKN55's
subsets (ESI Fig. S7–S9†). Interestingly, within XYG1, reaction
sets are more transferable to barriers than different barrier sets
are to each other (ESI Fig. S7†).

Furthermore, Fig. 1(c), with TB@A for multiples sets (see ESI
Fig. S12† for the corresponding MADB@A gures), already
challenges the obvious, and so far dominant in data-driven DFA
development, strategy of increasing the size of datasets. Diet100
(with 100 processes) does a much better job as a training set
than any of the larger (∼250 processes) ‘chemistry’ subsets; and
Chem. Sci., 2024, 15, 11122–11133 | 11125
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performs nearly as well as GMTKN55 at predicting Reactions,
Barriers and Basic. Unfortunately, the way Diet100 was con-
structed offers no useful insights for improving transferability
principles, although it does convincingly conrm that quality is
more important than quantity.

Fortunately, GMTKN55 comprises 55 subsets (34 of which
are in Org), each representing (more-or-less) different types of
chemistry and enabling numerous transferability analyses. e.g.,
we observe strong transferability of reaction energies between
smaller and larger molecules (see ESI Fig. S11†), and we can
measure the transferability between relative energies of charged
versus neutral species (see ESI Fig. S10†). Furthermore, we can
leverage GMTKN55's diversity to develop a better understanding
of transferability and use it to create the T100 set, explicitly
engineered for high transferability, as hinted at in Fig. 1(d) and
(e). We will revisit the last two panels of Fig. 1 aer elaborating
on the essential principles that inform this set's design.

3.2 Transferability principle 1: reduce human bias in the
training set to embed genuine reaction diversity

Consider a hypothetical experiment involving two distinct
groups: chemistry students and art students. Given a molecular
editor and specic drawing rules (e.g., use no more than 16
spheres in total and stick to the colors white, gray, blue, etc.),
the optimized structures and benchmarked energies from their
drawings would form the basis for two different empirical
density functionals (‘Art’ and ‘Chemistry’ functionals). We will
Fig. 2 (a) Mean absolute deviation (MAD, log scale) for GMTKN55@subs
and absolute difference between XYG3 and XYG7. (b) Errors for DFAs w
construction of benchmark set. Some example mindless and mindful m

11126 | Chem. Sci., 2024, 15, 11122–11133
show that functionals trained on the art students' molecules
would easily outperform those based on the chemistry students'
designs. The latter group's chemical intuition is to blame, as it
introduces unexpected biases in the data.

To begin, let us play a game where we optimize our DFA
models for each of the 55 subsets within GMTKN55 and then
assess how well each of the 55 resulting DFAs transfers to the
full GMTKN55 database. Fig. 2(a) shows the key results from
this game, displaying MADs for GMTKN55@subset from each
of the 55 subsets, using 3- and 7-parameter models, XYG3 (as
employed in our example using G21IP) and XYG7 (the most
empirical DFA in the XYG family). In most cases, MAD for XYG3

and XYG7 are vastly different, and even when they are not, MAD
are very large. These indicators of poor transferability reect the
fact that different subsets capture different chemistry and do
not represent the whole GMTKN55 in this specic trans-
ferability context.

Returning to our opening example, we see that G21IP
performs well with XYG3 but poorly with XYG7 – its trans-
ferability is strongly inuenced by the number of free parame-
ters (ESI Fig. S2† further highlights this point when both XYG3

and XYG7 are applied to non-covalent interactions). In the case
of XYG3, G21IP was able to discriminate a good functional space
from a bad (i.e. poorly transferable) one, but that was not the
case when the number of parameters increased to 7. Indeed,
G21IP is not unique in that regard – transferability for XYG7 is
almost always worse than XYG3. Increasing parameters elevates
et, where subset is a subset of GMTKN55. The order reflects the MAD
ith 1–7 parameters applied to subsets covering mindless and mindful
olecules are shown at right.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the risk of overtting challenging us to identify datasets whose
transferability remains robust despite additional parameters.
While regularization strategies applied to a DFA form (through
e.g., physical constraints) can enhance its transferability,31,32 our
TAT has a different focus that complements this regularization
strategy. Namely, eqn (1) allows us to see how transferability
varies with different training sets for any optimizeable DFA
form, enabling us to identify general principles for the design of
training sets with improved transferability.

Transferability principle 1 is revealed by the standout
performer in Fig. 2(a): MB16-43,33 which yields low errors with
just 43 data points (W4-11 has 140). What is special about
MB16-43? It is the only subset in GMTKN55 that is not biased
toward chemical intuition or the limited chemical space it
spans. Simply put, unlike the remaining 54 subsets, its struc-
tures have not been manually drawn by humans before under-
going geometry optimizations. Rather, MB16-43 avoids
unnoticed human bias via “mindless” (more accurately, a clever
random strategy) construction of molecules – we shall hence-
forth denote it as Mindless to stress this feature.

Fig. 2(b) shows that DFAs trained onMindless (43 processes)
predict good energies for a similarly-sized moreMindful (DARC
+ ISO34 with 48 processes covering Diels–Alder and isomer-
isation reaction energies16) selection of data. But, the reverse is
not true – Mindless@Mindful has up to six-fold increases in
errors compared to Mindless@Mindless. Our results thus
conrm that mindless benchmarking achieves its goal of
“[making] use of random elements constrained by systematic
and controllable specications to avoid unsystematic and
uncontrolled criteria”.33 The small size of Mindless again
stresses the importance of quality over quantity.

Furthermore, the transferability captured by Mindless is
independent of both theMindful dataset (ESI Fig. S15†) and the
semilocal part of our functional (ESI Fig. S16†). We therefore see
that Mindless captures genuine diversity of chemical interac-
tions – i.e., it achieves transferability principle 1. In simpler
terms, Mindless (art students) molecules yield far better func-
tionals here than Mindful (chemistry students) ones.
Fig. 3 Optimal values for the two-parameter model (markers) for
organic (Org) and transition metal (TM = TMC151 (ref. 34)) processes,
and subsets thereof (e.g., TMOR = metal–organic reactions34,35). Also
shows the MAD (contours) of organic processes as a function of the
two parameters, zeroed at the minimum. Inset: XYG6 transferability
matrix for selected Org and TM sets.
3.3 Transferability principle 2: span the periodic table to
embed elemental diversity

Modern technologies rely on most of (stable) elements in the
periodic table.36 By contrast, two thirds of processes in
GMTKN55 contain only C, H, N, O or F. This highlights a second
limitation of the training data we have considered so far – a lack
of elemental diversity. Improving elemental diversity is the
most intuitive of the transferability principles, yet we shall see it
still throws up some surprises.

Before beginning our analysis, it is worth highlighting some
recent work17 that shows how vitally important diversity in
training benchsets can be. Zhao et al.17 revealed that DM21
(trained on organic chemistry sets and some exact limits)
cannot even converge to a self-consistent solution in multiple
transition metal systems, including atoms. The difficulty of
extrapolating from organic chemistry to TMs is intuitive to
anyone familiar with DFA development, although such
© 2024 The Author(s). Published by the Royal Society of Chemistry
a dramatic failure of DM21 is still surprising. On the other
hand, our TAT matrices show that transferability rapidly
decreases with the number of parameters, making the cata-
strophically poor extrapolation of DM21, with its roughly half
a million parameters, more foreseeable. Nevertheless, the
question remains: how can we avoid such catastrophes?

GMTKN55 completely excludes transition metals [Fig. 1(e)
shows the elements of the periodic table that GMTKN55 covers],
so we turn to TMC151,34 a 151-process benchset based around
transition metal (TM) chemistry, to introduce some inorganic
chemistry into our game and supplement the results of
GMTKN55. Despite the sparsity of TM benchmarking (151
versus 1505 processes) we are nonetheless able to develop an
understanding of transferability between main group and TM
chemistry by using the TAT to explore relationships between
(subsets of) TMC151 and GMTKN55.

Fig. 3 reveals that training on main group elements is not
a good strategy for predicting transition metal chemistry, or vice
versa, even in the simple XYG2 model (chosen because it can be
visualised). The optimal parameters for TM sets live in
a different region of the parameter space compared to those for
the main group sets. Transferability from TMC151 (denoted TM
to stress its focus on transition metals) to Org (i.e. GMTKN55
excluding NCIs) is very poor, as can be seen from the contour
plots (for XYG2) and inset transferability matrix (for XYG7).
Simply adding the two sets (TM + Org) improves results in
general, but still has transferability issues for both Org Barriers
and TM Barriers (see inset). Note, while the optimal parameter
space in Fig. 3 may seem surprising at rst, the differences
between the optimal spaces of standard double hybrids and
those applied to Hartree–Fock orbitals, which we use here, are
oen notable.22 Having the MP2 correlation fraction over 1 in
Chem. Sci., 2024, 15, 11122–11133 | 11127
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Fig. 4 Transferability energy (log scale – note, some outliers are
below the plot) of the 34 subsets ofOrg trained on different benchsets,
for a 7-parameter XYG-DFA. Beeswarm plots37 show the 34 benchsets,
horizontal lines and numbers indicate the median, boxes indicate the
1st–3rd quartiles.
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Fig. 3 is neither unexpected nor an issue, given that MP2 is
generally not exact and that its errors can cancel that of DFA.

In view of the extremely poor transferability of DFAs trained
on TMs to Org, adding elemental diversity (e.g., molecules with
3d elements) to a main-group training set could ruin the good
accuracy of DFAs for Org (further highlighted in ESI Fig. S23†).
However, as we shall soon see, this risk is completely elimi-
nated once the training set is diversied in a manner that
explicitly favors transferability. Thus, what we seek in
a training set is not just elemental diversity, as this can come
with drawbacks. Instead, what we want in the training set and
what we advocate for is a balance between genuine reaction
diversity, elemental diversity and transferable (chemical)
diversity – to be dened soon. Mindless gave us our rst hint
that human intuition may be counterproductive to such a goal.
We will now proceed to show how it can be achieved more
systematically.
3.4 Transferability principle 3: embed transferable diversity
to maximize transferability

Aer adding some TM into the game, we are ready to return to
the last two panels of Fig. 1, where we showed some results for
our new benchset, T100. The most important feature of T100 is
that it is explicitly designed around three transferability prin-
ciples: (1) it randomly selects chemical processes from
TMC151+GMTKN55 to yield genuine reaction diversity; (2) it
includes a bias in construction toward genuine elemental
diversity; (3) it is optimized to improve average transferability in
the XYG1, XYG4 and XYG7 functional forms, giving us a nal ML-
DFA that is explicitly designed to give good transferability. The
principles behind the rst two have already been discussed. Full
details are in Methods and ESI Sec. S2.†

Importantly, the third design feature for T100 provides an
implicit denition of transferable diversity: a benchset has
transferable diversity if an approach trained on it is transferable
to (i.e. performs well on) other benchsets. Despite being (or
because it is!) the least intuitive of the three transferability
principles, transferable diversity is the most important prin-
ciple. It tells us that simply increasing the number of processes
or elements in a benchset is not enough to improve its useful-
ness as a training set. We need to make sure that what we add
will improve training. Put more explicitly, transferable diversity
is the property that “chemistries” are appropriately weighted or
proportioned in the benchset, so as to improve predictions
without accidental bias. For example, Mindless clearly has good
transferable diversity, despite having signicantly less
elemental diversity than T100.

The boxplots in Fig. 1(d) indicate that XYG7 trained solely on
the 100 chemical processes in T100 performs nearly as well as
when trained on all 910 Org processes. This holds for both the
BLYP-based XYG7 model used in T100 creation; and a PBE-
based XYG7 variant that has not been seen during the
construction of T100. The differences between the two are
described in Methods. Fig. 1(e) shows that T100 covers a far
broader range of periodic table groups than GMTKN55, despite
the two containing similar numbers of elements. Fig. 1(d and e)
11128 | Chem. Sci., 2024, 15, 11122–11133
thus reveal the effectiveness of embedding transferability
principles into data curation.

The results shown in Fig. 4 highlight that the T100 optimi-
sation strategy has very useful consequences for the trans-
ferability energy cost,

DMADB@A = MADB@A − MADB@B $ 0. (2)

DMADB@A yields the difference in energy between actual and
optimal performance when a DFA is transferred from a training
set to a test set and thus supplements TB@A by quantifying the
energy cost of using the ‘wrong’ instead of optimal parameters.
In Fig. 4, B is any of the 34 subsets of Org while A (listed below
each gure) is the training benchset, used to optimise XYG7. We
see that both BH76 and our old friend G21IP provide poor
training data, leading to excess errors of over 1 kcal mol−1 in
75% of subsets. Thus, the poor results of Fig. 2(a) are not caused
by a small number of outliers, but are systematic.

By contrast, T100 actually outperforms GMTKN55 when
applied to diverse organic chemistry, albeit as a consequence of
our choice to sample by set. This is despite being optimized to
balance transferability between main group and TM chemistry
[remember the periodic tables for the two sets shown in
Fig. 1(e)]. Indeed, 70% of benchsets are predicted to within
2 kcal mol−1 of their optimal (self-trained) values. Nonetheless,
T100, as a sample of GMTKN55 and TMC151 designed for
enhancing transferability in training, cannot be compared to
the extensive GMTKN55 database for method testing.

Table 1 reports results for 7-parameter DFAs tested on
a diverse list of example benchsets; and reveals that,
XYG7ð@T100Þ ¼ 0:853EHF

x � 0:024ELDA
x þ 0:161EB88

x � 0:036ELDA
c

þ0:490ELYP
c þ 0:461EMP2ss

c þ 0:749EMP2os
c , introduces only modest

errors compared to a very high target – the best possible result for
each set (@Self, that is MADB@B). Interestingly, this DFA has
more exact exchange and MP2 correlation than other double
hybrids,18,21,38 in part because we use HF orbitals as inputs.22

High amounts of exact exchange andMP2 correlation also enable
XYG@T100 to give high accuracy for self-interaction-error (SIE)
related problems which are typically challenging even for double
hybrids22 (see Fig. S24 and S25† for further examples for the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 MAD (kcal mol−1) for different datasets (rows) of the XYG7

functional trained on the datasets given in columns. Results shown for
BLYP- and r2SCAN-based XYG7

Set @Self @T100 @Mindless @Mindful

BLYP
S66 0.18 0.34 0.33 0.32
W4-11 2.58 4.58 6.85 57.38
Water27 0.08 0.82 4.82 6.08
BH76 1.41 3.70 3.11 4.96
OrgDiff 5.41 7.59 8.87 37.24
ISOL24 0.36 1.36 1.65 0.86
TMB 1.21 4.83 5.75 4.37

r2SCAN
S66 0.21 0.41 0.36 0.71
W4-11 2.41 3.46 4.43 32.25
Water27 0.06 1.36 0.98 5.35
BH76 1.77 3.13 3.10 4.77
OrgDiff 6.11 7.89 7.70 18.06
ISOL24 0.51 2.17 1.52 0.94
TMB 1.85 5.06 5.50 5.65
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related SIE4 × 4 set). However, XYG7@T100 is less accurate for
transition metal barriers (TMB), yielding four times larger MAD
than XYG7@TMB. Going back to Fig. 4, training on mindless
benchmarks (@Mindless) is a little worse on average, but still
better than using@Mindfulmolecules. Results for r2SCAN (with
different optimal parameters) follow a similar trend.
3.5 The accuracy limit and focus on difficult cases

Finally, the TAT also lets us evaluate the accuracy limit of
double hybrids – that is the A@A case, which is the best possible
results for a specic kind of problem given the double hybrid
functional form. We remind the reader that XYG7(A) is opti-
mized over all seven parameters, so represents the best possible
pure (i.e. not range-separated) double hybrid for a given
benchset A. Therefore, MADA@A indicates the smallest possible
error from our XYG7 double hybrid family and dictates its
accuracy limit.

Fig. 5 explores the accuracy limits of double hybrid func-
tional forms by showing the distribution of absolute errors for
various benchsets, with a focus on difficult cases.34,39 It reports
Fig. 5 Fraction of processes with good (<1 kcal mol−1), ok (1–7 kcal mol−

= A) and suboptimal (B s A) combinations. Some example difficult mol

© 2024 The Author(s). Published by the Royal Society of Chemistry
a selection of optimal (self-optimized A@A cases) and non-
optimal (A@B cases) DFAs, to reveal that the overwhelming
majority of organic processes can be predicted with good
(<1 kcal mol−1; chemical) or ok (1–7 kcal mol−1; useful) accu-
racy, so long as they are trained on a good reference benchset
(here, Org or T100).

But, Fig. 5 also reveals that difficult cases, particularly in
transition metals, remain elusive. A quarter (24%) of difficult
organic (OrgDiff)39 and half (53%) of difficult transition metal
(TMDiff)34 processes exceed acceptable error margins, even with
the optimal DFAs. Supp. Fig. S26† reveals that errors cannot be
explained by spin-contamination or low-quality benchmarks.
Despite generally excellent performance on main group chem-
istry, current DFA strategies are simply not ready to address true
chemical diversity (mechanism and elements) with standard
functional types even when using ingredients from all rungs of
Jacob's ladder.23,24

Moreover, DFAs trained on these difficult cases perform
poorly on the full Org, especially compared to the almost “best
case scenario” of T100 as a training set. Furthermore, this poor
performance is reciprocal – using T100 as a training set for
OrgDiff or TMDiff also signicantly worsens prediction.

There is a plus side, however, as difficult cases for DFAs are
oen also difficult cases for the (very expensive) creation of
benchmarking data. The accuracy limit suggests that bench-
mark quality (and thus cost) may therefore carefully be relaxed
in some difficult cases.

4. Discussion and conclusions

This work provides an alternative conceptual framework for
identifying and understanding chemical diversity, as it pertains
to model transferability. Central to our results is the trans-
ferability assessment tool (TAT), and the scenario where one
dataset serves as a training set and another as a test set, and
then their roles are reversed. This (indeed simple) consider-
ation, encoded in the TAT matrix, uncovers critical insights into
the suitability of various training sets, shiing the paradigm
from intuition-based to rigorously evidence-based methodology
in empirical electronic structure method development. The
TAT, in tandem with the XYGp protocol, provides a wealth of
analytic information about the training and testing of data-
driven DFAs. We can use it to identify what chemistry is hard
1) and bad (>7 kcal mol−1) errors, MADB@A. Includes selected optimal (B
ecules are illustrated to the left (Org) and right (TM).
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to learn, what kinds of processes are useful to train on, and to
answer many of the questions posed in the introduction.

The main conclusion from our work is that following
transferability principles to embed transferability in data cura-
tion is crucial for the construction of general-purpose models in
chemistry. By following these principles, a training benchset
should embed genuine chemical and elemental diversity; in
such proportions within the benchset that they improve trans-
ferability (i.e. with good transferable diversity). The evidence
presented here therefore suggests the following strategy for
better construction, optimization and renement of benchsets
that can be used to train complex, data-driven DFAs:

(1) Human input/bias should be reduced in the creation of
training (and test) sets, in favour of randomness in chemical
construction;

(2) Elemental diversity of training sets should be improved,
possibly via lower quality benchmarks;

(3) Training sets and DFAs should be optimized and rened
with an explicit bias toward improving transferability, by testing
transferability matrices during their construction.

Our work has revealed that both Mindless (=MB16-43, Fig. 2
and 4) and T100 (Fig. 1, 3–5) make large steps in the right
direction: Mindless eschews pre-determined chemistry and T100
embeds diversity and transferability, both by design. The mind-
less strategy can be (i) adapted to other cases (e.g., mindless
ionization potential or barrier height benchsets); (ii) further
extended by introducing randomness in the selection of mind-
less potential energy surface points, which are not conned to
local minima; (iii) biased toward elemental and transferable
diversity [as done for T100, eqn (5) below] to construct entirely
new benchsets. Furthermore, we envision that using TAT within
active learning frameworks can aid in directing learning towards
the most signicant regions of chemical space for use in
training. In practice, this could be achieved by using the TAT to
choose which datapoints go into the training – an active learning
extension to the creation of our T100.

The catastrophic failure of DM21 for some TMs17 clearly
highlights why embedding transferability at the training
benchset stage is vitally important. By contrast, the success of
Mindless and T100 as training sets for diverse chemistry high-
lights how we can potentially do much better with more careful
selection of training data. Embedding transferable diversity by
using the transferability principles therefore becomes impera-
tive for machine-learned DFAs. Otherwise, better interpolation
on chemistry seen in training risks poorer extrapolation to
(prediction of) chemistry unseen in training.

It is also worth stressing that the TAT may be applied to
embed transferability into any empirical model, and especially
those for which the level of empiricism can be controlled. This
includes models based on wave function theories (at one
extreme) and machine learning of ‘classical’ energies from
molecular geometries (at the other extreme). Work along these
lines should be pursued.

Finally, it is important to note that transferability principles
are important to consider even for models that explicitly target
a specic type of chemistry problem (e.g. DFAs optimized for
organic barriers or materials chemistry). Despite their narrower
11130 | Chem. Sci., 2024, 15, 11122–11133
goals, such approaches implicitly assume that the training
benchset contains sufficient diversity to enable predictions of
similar problems; and that the diversity is appropriately weighted.
The low transferability between subsets of Barriers reveals that
these assumptions are not guaranteed. Embedding transferable
diversity into training benchsets, even for narrowly-focussed
problems, enables higher condence in their predictive reliability.

5. Methods
5.1 XYG DFAs

All XYGp functionals considered in this work have the same
fundamental functional form,

Exc ¼ a1E
HF
x þ a2E

LDA
x þ a3E

ðmÞGGA
x þ a4E

LDA
c

þa5E
ðmÞGGA
c þ a6E

MP2ss
x þ a7E

MP2os
x ;

(3)

where Ex(c) indicate exchange (correlation) energy approxima-
tions, EHF

x is the exact HF exchange energy and E
MP2ssðosÞ
c indicate

the same-spin and opposite-spin parts of the MP2 energy. E(m)

GGA
x and E(m)GGA

c denote GGA or meta-GGA exchange and
correlation.

The DFA of eqn (3) is thus dened by a seven-component
vector, ~a. XYG7 allows exible choice of all seven components.
For XYGp<7, the components of the vector are determined by the
following rules:

p = 1: choose exact exchange fraction, a, and set a1: = a,
a2: = a4: = 0, a3: = 1 − a, a5: = 1 − a2, a6: = a7: = a2

p = 2: choose exact exchange fraction, a, and MP2 fraction,
b, and set a1: = a, a2: = a4: = 0, a3: = 1 − a, a5: = 1 − b, a6: =
a7: = b;

p= 3: choose free a1, a3 and a6, and set a2:= a4:= 0, a5:= 1−
a6, a7: = a6;

p = 4: choose free a1, a2, a3 and a6, and set a4: = 0, a5: = 1 −
a6, a7: = a6;

p = 5: choose all except a4: = 0 and a7: = a6;
p = 6: choose all except a7: = a6.
Unless otherwise specied, throughout this work we use

Becke's (B88)40 exchange GGA and Lee, Yang and Parr's (LYP)41

correlation GGA for E(m)GGA
x and E(m)GGA

c , respectively (BLYP).
The optimal DFA for set A is then dened via,

XTGpðAÞ ¼ argmin
XYGp

MAD
�
XYGp on A

�
(4)

where XYGp indicates all possible variants of eqn (3) consistent
with the number, p, of parameters (using BLYP as GGAs); and
MAD(DFA on set) indicates the mean absolute deviation of
energies computed using DFA, averaged across all processes in
set. We thereby obtain, MADB@A: = MAD(XYGp(A) on B).

The results for two other combinations—PBE exchange +
PBE correlation;42 and r2SCAN exchange + r2SCAN correla-
tion43—are given in the ESI.† The main conclusions of our work
do not change once we replace the BLYP-based GGAs with their
PBE-/r2SCAN-based counterparts in eqn (3).

5.2 Computational details

All HF and DFT calculations were conducted with Orca 5.0.0.44

We used def2-QZVPPD for GMTKN55 and def2-QZVP for
© 2024 The Author(s). Published by the Royal Society of Chemistry
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TMC151. For costly cases, def2-QZVP(P) or def2-TZVP(P) were
used. Further details, including the description of our robust
minimizer for obtaining the XYGp parameters, are in Sec. S1 of
the ESI.† Orbitals were computed using unrestricted Hartree–
Fock (UHF) theory in all cases.
5.3 Special benchmark sets

Mostly we use the categories from GMTKN55 and TMC151 or
preexisting subsets (e.g. Diet100 (ref. 45)). We also have some
special benchset (and aliases to stress important features):

Mindless is an alias for MB16-43,16,33 to stress its most
important feature;

Mindful combines DARC and ISO34 sets;16 chosen to repre-
sent chemical intuition-based counterpart of Mindless;

Org indicates GMTKN55 with the non-covalent interaction
(NCI) subsets excluded, to focus on typical organic chemistry;

Org difficult = OrgDiff is the P30-5 ‘poison’ subset of
GMTKN55, from ref. 39;

Org X indicates a subset from GMTKN55;
TM is an alias for TMC151, to stress its focus on transition

metal chemistry;
TM difficult = TMDiff is a subset of TMC151 composed of

TMD + twoMOR41 reactions + six TMB barriers, all identied as
difficult in ref. 34;

TM X indicates a subset from TMC151;
TM + Org is the combination of Org and TMC151;
T100 is a subset of TMC151 + GMKTN55 designed to embed

transferable diversity principles.
Interestingly, there is a perfect transferability between Org.

and the NCI subset of GMTKN55 - TB@A for this pair never
exceeds 1.01 for the used XYG models. For further descriptions
of the used (sub)sets, please see Table S2† in the ESI.†

5.3.1 T100 construction. To construct T100 we rst
‘mindlessly’ breed twenty “pretty transferable” (denoted
PT1.20) subsets of the combined GMTKN55 and TMC151 (TM +
Org) benchset, each with 100 processes. Survival is dictated by
a genetic approach similar to that used to construct Diet sets,
with breeding success based on transferability of XYG7.45 Full
details are in Section S2 of the ESI.† Then, we obtain T100 by
selecting the best one, using:

T100 ¼ argmin
PTk

"
1

3

X
p˛1;4;7

TpðPTkÞ � 0:03NelðPTkÞ
#
: (5)

Here, TpðPTkÞ ¼ 1
58

X
B˛TMþOrg

TB@PTk;XYGp is the average trans-

ferability from PTk to all 58 subsets of GMTKN55 and TMC151,
using XYGp. Averaging over p ˛ 1, 4, 7 helps to avoid ‘accidental’
transferability for any specic number of parameters. Biasing to
a larger number, Nel(PTk), of unique elements in PTk helps to
avoid over-representation of main group chemistry, which is 10
times more common than TM chemistry in TM + Org.

We use BLYP (Becke exchange40 and Lee–Yang–Parr corre-
lation41) in eqn (3) for both the breeding and optimisation
stages, which means the transferable diversity of T100 is biased
toward BLYP. In principle, other functional choices might lead
to other sets. Nevertheless, ESI Fig. S27† reveal that training
© 2024 The Author(s). Published by the Royal Society of Chemistry
PBE- and r2SCAN-based XYGp on BLYP's T100 gives them
transferability similar to DFAs trained on the full GMTKN55
benchset. T100 also works for a different functional form – that
of B3LYP,29 which excludes MP2 contributions entirely (see ESI
Fig. S28†). It follows that transferable diversity features of T100
are largely independent of functional form choice.
Code availability

The code is provided on the GitHub repository https://
github.com/vuckovic-lab/transferability for this work (see
“read.ipynb” notebook for explanations on how to generate
the data from the code).
Data availability

ESI† supporting this article is available. Additional data can be
generated using the code described in the code availability
statement.
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