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ep learning-guided
pharmacophore modeling for ultra-large-scale
virtual screening†

Seonghwan Seo a and Woo Youn Kim *abc

As ultra-large-scale virtual screening becomes critical for early-stage drug discovery, highly efficient

screening methods are gaining prominence. Deep-learning-based approaches which directly estimate

binding affinities without binding conformation have attracted great attention as an alternative solution

to molecular docking, but the generalization capability of existing methods in vast chemical space

remains uncertain due to restricted training data. Here, we introduce PharmacoNet, the first deep-

learning framework for pharmacophore modeling toward ultra-fast virtual screening. PharmacoNet

offers fully automated protein-based pharmacophore modeling and evaluates the potency of ligands

with a parameterized analytical scoring function, ensuring high generalization ability across unseen

targets and ligands. Our benchmark study shows that PharmacoNet is extremely fast yet reasonably

accurate compared to traditional docking methods and existing deep learning-based scoring models.

We successfully identified selective inhibitors from 187 million compounds against cannabinoid receptors

within 21 hours on a single CPU. This study uncovers the hitherto untapped potential of deep learning in

pharmacophore modeling.
1 Introduction

Discovering new drug candidates oen requires exploring a vast
chemical space that can be accessible through ultra-large
chemical libraries.1–4 The expansion of library sizes from
millions to billions of molecules has signicantly enhanced
a hit rate, suggesting a paradigm shi towards ultra-large-scale
virtual screening as a cornerstone of early drug discovery
efforts.5 However, molecular docking, a fundamental evaluation
strategy in virtual screening, takes seconds to minutes to eval-
uate each molecule.6,7 Consequently, the effective screening of
such large volumes entails practical challenges due to the
intense computational cost of molecular docking.8

This bottleneck has spurred the development of innovative
strategies to streamline the screening process, primarily
focusing on efficient molecule exploration and pre-screening
strategies. The former, including structured library searches,
Bayesian searches, and active learning algorithms, concentrate
on promising chemical subsets to boost screening efficiency.5,9

Meanwhile, the latter involves a tiered approach, whereby the
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whole library is preliminarily evaluated with a rapid assessment
tool to prioritize promising candidates for an accurate and
resource-intensive ne-screening assessment.10,11 This brute-
force approach can uncover challenging inhibitors, such as
selective inhibitors against multiple targets found in extremely
sparse regions of chemical space. However, such pre-screening
with low reliability is likely to overlook promising hits, high-
lighting the need for a method that balances accuracy and
speed.

The pre-screening approach's overarching goal is to
dramatically enhance computational efficiency, for example,
thousands of fold speedups on standard computing setups,
while preserving the accuracy necessary for meaningful virtual
screening. To circumvent the prohibitive computational costs
associated with molecular docking, recent endeavors have
explored docking-free deep learning (DL) techniques that do not
rely on protein–ligand binding conformations.11 These methods
have demonstrated remarkable speed and even surpassed the
performance of structure-based methodologies, which use
binding conformations, in some benchmarking tests.12 Never-
theless, the limited diversity of experimental datasets, such as
the PDBbind13 database comprising only 4200 unique ligand
molecules apart from common biomolecules (e.g., ATP, GTP),
constrains the generalization ability and scalability of these
methods.14 They oen memorize a structural bias in the
training set rather than learn the desirable patterns of protein–
ligand interaction (PLI), which impedes their reliability in
evaluating vast chemical spaces.15,16
Chem. Sci., 2024, 15, 19473–19487 | 19473
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To address these limitations, the PLI prediction can be
reformulated by abstracting the detailed topologies of protein–
ligand binding to a pharmacophore level. By using the
pharmacophore‡ information, one can focus on essential non-
covalent interactions (NCIs) instead of numerous atom-pairwise
interactions.18,19 This pharmacophore-level abstraction allows
for rapid yet reliable evaluations that are difficult to achieve
with traditional atomistic computational methods. However,
traditional pharmacophore modeling methods oen rely on the
binding conformation of active molecules or manual processes
by experts,20 which can be less adaptable to new targets or
protein structures predicted by AlphaFold21 and RoseTTA-
Fold.22,23 As a result, an automated protein-based pharmaco-
phore modeling method that relies solely on protein structures
is needed.

Here we present PharmacoNet, the rst deep-learning
framework for protein-based pharmacophore modeling, as
schematically described in Fig. 1. PharmacoNet introduces
instance segmentation DL modeling to automate the identi-
cation of critical protein functional groups (hotspots) and
optimal locations of corresponding pharmacophore points to
construct a pharmacophore model. PharmacoNet then incor-
porates a parameterized analytic function to evaluate the ligand
by algorithmically calculating the compatibility with the phar-
macophore at the NCI level. Our approach considerably reduces
computational demands while preserving reasonable accuracy
by shiing the focus from atomistic to pharmacophoric inter-
action. Furthermore, this coarse-grained evaluation method
avoids the over-tting inherent in deep learning models with
excessive parameters, ensuring its reliability and generalization
across diverse chemical spaces.

PharmacoNet is extremely fast yet reasonably accurate,
achieving 3000-fold speedups while maintaining competitive
performance against standard docking methods such as
AutoDock Vina24 in virtual screening benchmarks. Further-
more, PharmacoNet evaluated 187 million molecules to
discover the potential cannabinoid (CB) antagonist candidates
Fig. 1 Overview of PharmacoNet. PharmacoNet comprises (1) a fully au
structure and (2) ligand evaluation for virtual screening. Pharmacophore
process.

19474 | Chem. Sci., 2024, 15, 19473–19487
with both potency and CB2/CB1 selectivity within 21 hours
(11 years for AutoDock Vina) on a desktop computer with
a single 32-core CPU. These results demonstrate the feasibility
of PharmacoNet in accelerating drug discovery by enabling the
rapid screening of vast chemical libraries. In addition, Phar-
macoNet provides a comprehensive graphical user interface
(GUI) soware, OpenPharmaco, designed to facilitate the use
of protein-based pharmacophore modeling and high-
throughput virtual screening by a broad range of users,
including those without computational resources and
expertise.

2 Results
2.1 PharmacoNet framework

PharmacoNet comprises three stages: (1) DL-based pharmaco-
phore modeling, (2) coarse-grained graph matching, and (3)
distance likelihood-based scoring, as illustrated in Fig. 1. First,
the PharmacoNet constructs the pharmacophore model using
only the structural information of a target protein binding site
by determining the hotspots and optimal locations (pharma-
cophore point) for ligand functional groups to form stable NCIs
with each hotspot. Then, the graph-matching algorithm effec-
tively estimates the spatial relationship between ligands and the
pharmacophore model. This pharmacophore-level prediction
requires signicantly less computation than the corresponding
atomistic prediction. Finally, the scoring function gives the
binding affinity of each pose with reasonable accuracy and high
generalization ability thanks to the pharmacophore-level
abstraction of PLIs.

In PharmacoNet, deep learning is utilized to model the
distribution of NCIs within a given protein binding site
structure. Through instance segmentation modeling, the
neural network rst identies protein interaction sites, known
as protein hotspots. It then returns a spatial density map of
ligand interaction sites corresponding to each identied
protein hotspot. Consequently, our deep neural network
tomated deep learning-based pharmacophore modeling from protein
modeling is performed only once before an actual virtual screening

© 2024 The Author(s). Published by the Royal Society of Chemistry
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constructs a protein-based pharmacophore model from the
data distribution of the crystal structure dataset. In contrast,
other protein-based pharmacophore modeling methods rely
on biased methodologies. For example, Apo2ph4, proposed by
Heider et al.,25 estimates key interactions based on molecular
docking results of fragments rather than the crystal structure
distribution. Similarly, PharmRL26 infers the spatial density
map of ligand interaction sites from data distribution, but its
hotspot detection process is trained using reinforcement
learning to maximize the screening powers for the DUD-E
benchmark.
2.2 Benchmark study for virtual screening

We performed a series of benchmark studies to validate our
framework as an efficient pre-screening tool. We rst adopted
three widely used commercial molecular docking programs
(GOLD,27 LeDock,28 and GLIDE SP29) and two popular open-
source programs (AutoDock Vina24 and Smina30) as baselines
to assess the accuracy and speed of virtual screening. In addi-
tion, we considered a DL-based docking method (KarmaDock6),
sequence-based docking-free DL methods (TransformerCPI,31

PLAPT32) and structure-based docking-free DL methods (Deep-
BindGCN,11 and TANKBind12).

We evaluated the screening power of each method on the
standard virtual screening benchmark: Demanding Evaluation
Kits for Objective In silico Screening 2.0 (DEKOIS2.0)33 We used
the average top a% enrichment factor (EFa%), the average area
under the receiver operating characteristic curve (AUROC),
Boltzmann-enhanced discrimination of the receiver operating
characteristic (BEDROC, a = 80.5), and the area under the
precision–recall curve (PRAUC) as metrics to evaluate the
screening power. For all metrics, higher is better. For the speed
benchmark, we compared the average runtimes of Pharmaco-
Net against those of the docking programs on both the PDBbind
core set34 and the rened set when the initial conformers of
each ligand were provided. For all benchmark tests, we
considered 8 conformers for each ligand for a fair comparison
with AutoDock Vina and Smina, which perform pose searches
with a default exhaustiveness of 8.

However, widely used screening benchmark sets, such as
DUD-E35 or DEKOIS2.0,33 may not reect real-world screening
scenarios since they are derived from decoys rather than
experimentally conrmed inactive molecules. Therefore, we
also employed the unbiased screening benchmark LIT-PCBA36

which mimics the experimental screening by constructing the
true actives and inactives from PubChem bioassays37 and
adjusting the active/inactive ratio. In particular, LIT-PCBA
removes the structural bias of ligand libraries, allowing for
more rigorous evaluation of ML methodologies. In this study,
we included the state-of-the-art DL-based docking method
(KarmaDock) and various conventional docking tools (GLIDE,
Smina, AutoDock Vina). We also compared PharmacoNet to two
automated protein-based pharmacophore modeling
approaches, Apo2ph4-Pharmit§25,38 and PharmRL.26 Since both
Apo2ph4-Pharmit and PharmRL perform classication rather
than quantication, we reported EF instead of EFa%.
© 2024 The Author(s). Published by the Royal Society of Chemistry
As shown in Fig. 2A and B, PharmacoNet was much faster
than the conventional docking programs. Compared to Auto-
Dock Vina, the fastest docking soware in this benchmark
study, PharmacoNet was 3956 and 3483 times faster on the core
set and the rened set, respectively. Against GLIDE SP, the most
accurate docking soware in this benchmark study, Pharma-
coNet was 34 117 and 27 731 times faster for the core set and the
rened set, respectively. PharmacoNet's speed gain becomes
more pronounced for larger molecules with over 60 heavy atoms
in the rened set, where it outperformed AutoDock Vina and
GLIDE SP by 7256 and 35 474 times, respectively. Specically,
PharmacoNet evaluated the large molecules with 70 heavy
atoms in an average of 5.15 (ms), whereas AutoDock Vina took
208 ms even for a simple benzene molecule (PDB ID 4w5z). This
remarkable efficiency arises from PharmacoNet's unique stra-
tegic focus on evaluating NCIs, bypassing computationally
intensive atom-pairwise interactions.

Despite PharmacoNet's ultrafast speed, its screening power
was acceptable for virtual screening, as shown in Fig. 2C, D and
S3.† It outperformed AutoDock Vina and closely competed with
Smina on the DEKOIS2.0 and LIT-PCBA benchmarks. This
desirable balance between accuracy and speed highlights the
utility of PharmacoNet as a pre-screening tool in the high-
throughput virtual screening of ultra-large chemical libraries
to retain promising candidates for additional ne screening.

Notably, PharmacoNet surpassed existing protein-based
pharmacophore modeling methods, Apo2ph4-Pharmit and
PharmRL, on the LIT-PCBA benchmark. Apo2ph4 constructs
pharmacophore models from the docking structures of
numerous fragments instead of the crystal structure, restricting
its performance to docking. PharmRL is trained on the DUD-E
screening benchmark,35 but it is well-known that the inherent
structural biases hinder the generalization.39 In contrast,
PharmacoNet is free from these issues, as it is trained solely on
crystal structures in PDBBind2020.13

Furthermore, PharmacoNet outperformed all the docking-
free DL models including both structure-based and sequence-
based approaches. It also showed better performance than the
DL-based docking KarmaDock on LIT-PCBA which is the
benchmark without the structural biases. It is known that the
DL-based scoring methods show superior performance on PLI
prediction on the PDBbind test set. However, they have been
trained and evaluated only on drug molecules. Thus, they tend
to show highly uncertain predictions for general molecules,
making them vulnerable to the virtual screening of ultra-large
chemical libraries designed to cover a huge chemical space.

PharmacoNet adopts a signicantly different approach to
evaluating binding affinities than existing DL methods. It esti-
mates the binding affinities via an algorithmic process based on
a pharmacophore-level scoring function. The scoring function
contains only 7 parameters assigned to each pharmacophoric
feature type, unlike DL-based scoring functions, which typically
rely on millions of learnable parameters, which can cause
overtting unless a sufficient amount of data is provided. The
following two factors explain why PharmacoNet was able to
achieve such remarkable accuracy with the simple scoring
function. First, our DL model enables us to construct accurate
Chem. Sci., 2024, 15, 19473–19487 | 19475
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Fig. 2 The speed and screening power of PharmacoNet and baseline models. (A) Average runtime of various ligand evaluation software on the
PDBbind core set and the PDBbind 2020 refined set. The runtime of PharmacoNet, AutoDock Vina, and Smina is measured on a single 32-core
Intel Xeon Gold 6326 CPU@ 2.90 GHz, that of GOLD, LeDock, and Glide SP is measured on a single 48-core Intel Xeon Gold 6240R CPUs @ 2.40
GHz, and that of KarmaDock is measured on a NVIDIA A4000. The runtime of KarmaDock is the sum of the data processing and GPU model
runtimes. (B) Average runtime according to the number of heavy atoms on the PDBbind 2020 refined set. (C and D) Average screening powers
(EF1%) for conventional docking softwares (blue), docking-free DL scoring methods (light orange), DL-based docking method (deep orange),
pharmacophore modeling-based methods (light green), and PharmacoNet (deep green). (E) Screening powers on out-of-distribution targets in
DEKOIS2.0. (F) Average screening powers on out-of-distribution ligands in LIT-PCBA.
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pharmacophore models for a given binding pocket. Second, the
scoring function is designed to empirically evaluate the
contribution of each NCI in the pharmacophore-level graph
matching between target proteins and ligands. Consequently,
PharmacoNet uses DL exclusively for protein-based pharmaco-
phore modeling rather than for direct scoring. Compared to DL-
based scoring, which is highly parameterized and the evalua-
tion process is a black box, our analytical scoring is transparent
and interpretable, reducing overtting and improving
19476 | Chem. Sci., 2024, 15, 19473–19487
generalization within the scope of the equation. This avoids
overtting problems even with a small training dataset and
performs robustly across various chemicals and proteins,
highlighting its effectiveness in ultra-large-scale virtual
screening tasks.

To demonstrate the generalization ability of PharmacoNet,
we evaluated its screening power in out-of-distribution settings.
Specically, we compared PharmacoNet with KarmaDock,
a state-of-the-art deep learning-based docking tool, using the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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same train/test split. To assess generalization to unseen
proteins, we measured the screening power on all out-of-
distribution DEKOIS2.0 targets with sequence similarity below
0.5 to all training proteins.{ For generalization to unseen
ligands, we ltered out active and inactive molecules from LIT-
PCBA with a Tanimoto similarity exceeding 0.7 to any training
ligand.k As shown in Fig. 2E and F, KarmaDock showed
a signicant degradation in screening power for unseen targets,
whereas PharmacoNet maintained its performance. Similarly,
for unseen ligands, PharmacoNet showed consistent perfor-
mance (3.11 vs. 3.16), while KarmaDock's performance declined
(2.94 vs. 2.32). These results suggest that focusing on coarse-
grained NCIs provides better generalization in small drug
datasets than detailed atom-wise interaction modeling. The
similarity distributions of proteins and ligands between the
training set and the test sets are illustrated in Fig. S4 and S5,†
respectively.
2.3 Impact of the number of initial conformers

In the context of virtual screening, the utilization of a multi-
conformer database is of paramount importance for he accu-
rate modeling of protein–ligand interaction, given the pivotal
role of ligand exibility.1,5 PharmacoNet effectively addresses
this necessity by providing the capacity to accommodate
multiple conformers per ligand, analogous to exhaustive rigid-
Fig. 3 (A) Screening power EF1% and EF5% according to the number of
RDKit ETKDG conformers. (B) Average runtime using up to 128
conformers for the PDBbind core set according to the number of
RDKit ETKDG conformers. Wemeasured the runtime 10 times for each
number of conformers. All measurements were performed on a 32-
core Intel Xeon Gold 6326 CPU @ 2.90 GHz.

© 2024 The Author(s). Published by the Royal Society of Chemistry
body docking methods.40 Fig. 3A shows that increasing the
number of initial conformers from 1 to 16 enhances the
enrichment factor (EF1%) on the DEKOIS2.0 benchmark from
3.951 to 4.459.

However, this accuracy improvement can come with a trade-
off in computational speed due to the multiple-conformer
calculation. Assessing up to 128 conformers using the
PDBbind core set revealed minimal runtime increases: 0.39 ms
for a single conformer versus 2.60 ms for 128 conformers
(Fig. 3B). This efficiency surpasses standard docking programs
such as AutoDock Vina or Smina, which show a linear runtime
increase due to independent evaluations of each conformer.
PharmacoNet uses internal coordinate systems of ligands to
bypass the need to optimize absolute positions and orienta-
tions. Moreover, it rst evaluates the core structure of the ligand
conformer ensemble and then considers the remaining func-
tional groups, enhancing computational efficiency. These
ndings highlight the high efficiency of PharmacoNet in inte-
grating with multi-conformer databases in the virtual screening
pipeline.
2.4 Performance as a pre-screening tool

The primary objective of pre-screening is to prioritize highly
probable molecules that will be subjected to a ne-screening
process to identify hit candidates. To assess the efficacy of
pre-screening, we evaluated 1.6 million bioactive molecules
sampled from the ChEMBL database.41 For the assessment, we
selected two druggable targets not included in DEKOIS2.0 and
LIT-PCBA: dihydrofolate reductase (DHFR, PDB ID 1dis) and
epidermal growth factor receptor (EGFR) G719S/T790M double
mutant (PDB ID 3ug2). In the pre-screening process, Pharma-
coNet utilized eight ETKDG conformers per molecule. For the
ne-screening process, we used PIGNet2,42 a state-of-the-art
structure-based scoring method in the virtual screening task.

As illustrated in Fig. 4A, PharmacoNet was able to process
the entire library in less than 10 minutes on a desktop with
a single 32-core CPU, showing a notable reduction in time
compared to the 35 days that would be required using tradi-
tional docking methods like AutoDock Vina or Smina. Fig. 4B
shows that the average docking score of the remaining mole-
cules increases as the ltration rate increases, indicating that
PharmacoNet effectively screened out the low-potent molecules.
Furthermore, PharmacoNet retained 40% and 70% of the top-10
hit candidates at a 95% ltration rate for DHFR and EGFR
mutant, respectively (Fig. 4C). This result demonstrates that
PharmacoNet is capable of achieving ultra-fast screening and
maintaining sufficient accuracy as a pre-screening tool.

Fig. 5A displays the generated pharmacophore model for the
DHFR, and 5B shows its alignment with the X-ray crystal
structure of brodimoprim-4,6-dicarboxylate, a known active
ligand of DHFR. Notably, the PIGNet2 binding poses of
CHEMBL1967896 (Fig. 5C) and CHEMBL3260001 (Fig. 5D),
which received the highest scores from PharmacoNet,
conrmed that the triuoromethyl groups were aligned with the
halogen pharmacophore points (yellow spheres) in our model.
Intriguingly, these NCIs were absent in the complex structures
Chem. Sci., 2024, 15, 19473–19487 | 19477
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Fig. 4 The speed and accuracy of pre-screening by PharmacoNet. (A)
Total runtime to evaluate 1.6 million ChEMBL molecules for each
target protein whose PDB ID is given on the y-axis. (B) Average docking
score according to the filtration rate of pre-screening with Pharma-
coNet for each target protein whose PDB ID is given on the y-axis. (C)
Retention rates of top N hit candidates according to the filtration rates
for each target protein.
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of the active ligand, manifesting PharmacoNet's capability to
identify novel pharmacophore points that may be overlooked by
traditional complex-based pharmacophore modeling with
known actives.
2.5 Screening for potent and selective cannabinoid
antagonists from an ultra-large chemical library

Developing potent and selective inhibitors poses signicant
challenges, particularly for targets with high structural simi-
larity but distinct biological functions. In this scenario,
employing a pharmacophore-focused scoring approach
provides substantial benets. Subtle differences at the binding
site such as point mutations can alter specic NCIs, resulting in
considerable changes to the pharmacophore model. These
differences are pivotal for designing selective drugs as they
allow the discrimination between closely related targets by
emphasizing unique interaction opportunities. To demonstrate
PharmacoNet's practicality in identifying potent and selective
19478 | Chem. Sci., 2024, 15, 19473–19487
hit candidates, we performed an ultra-large-scale virtual
screening targeting cannabinoid receptors (Fig. 6A).

Cannabinoid receptors (CB), including CB1 and CB2, are
components of the G protein-coupled receptor (GPCR) family,
the key target of drug discovery. The high similarity between the
binding sites of CB1 and CB2 complicates the development of
potent and selective antagonists. As illustrated in Fig. 6B, the
binding sites of CB1 (PDB ID 6kqi, blue) and CB2 (PDB ID 5zty,
red) are nearly identical with subtle differences such as the
placement of tryptophan and phenylalanine. These slight
differences are clearly captured in the pharmacophore models
(Fig. 6C). Since no hydrogen bonds or salt bridges were detec-
ted, only the p–p stacking was visualized for clarity. The
alignment of pharmacophore points corresponding to over-
lapping residues appears similar (c, d), while those for non-
overlapping residues are distinct (a, b), providing a key
approach to achieving high selectivity.

Using these differential pharmacophore models, Pharma-
coNet can identify molecules whose aromatic groups are opti-
mally positioned to form additional NCIs solely with a main
target protein. For example, in the binding pose of
ZINC100000809, the compound with the highest PharmacoNet
score difference in screening, the benzotriazole group (black
circle) formed three additional p–p stackings with CB2, which
are absent in CB1 as shown in Fig. 6D and E. This selective
interaction substantially inuences the relative stability of the
molecule for each target, yielding an energy difference of
7.50 kcal mol−1.

The high efficiency of our approach was veried with the
computational time required for the virtual screening with
selectivity, as summarized in Fig. 6A. Within about 20.1 hours,
PharmacoNet completed the screening of 187 million ZINC20
(ref. 43) molecules against CB2 on a single 32-core Intel Xeon
Gold 6326 CPU at 2.90 GHz. Then, the top 1% molecules were
re-assessed against CB1 using PharmacoNet with an additional
43 minutes. The 10 000 molecules with the largest score
differences between CB2 and CB1 were selected for ne-
screening with PIGNet2. The ne-screening rst identied
potent molecules against CB2 and then evaluated them against
CB1 to estimate target selectivity. This two-step process took
14.5 hours.

Fig. 6F and G demonstrated that PharmacoNet efficiently
identied molecules with both high potency and selectivity,
respectively. A total of 1153 molecules among 10 000 pre-
screened molecules achieved a top 1% ranking in the entire
library, and the average affinity difference against CB1 and CB2

of those potent molecules was 2.70 kcal mol−1. Ultimately, this
screening process identied 434 molecules with over 100-fold
selectivity and 278 molecules with over 1000-fold selectivity,
outperforming the random selection by 65 and 67 times,
respectively. These compelling results underscore Pharmaco-
Net's ability to identify subtle yet critical differences between
highly similar protein binding sites, enhancing selectivity in the
screening process. In particular, its extremely high efficiency
shows its potential as a transformative tool for navigating vast
chemical spaces effectively in a time-sensitive and resource-
constrained environment.
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc04854g


Fig. 5 Pharmacophore model and binders for the DHFR. Each color of the pharmacophore and protein hotspot indicates the following: orange
for hydrophobic carbons, purple for aromatic rings, cyan for H-bond donors, and yellow for halogen atoms. (A) The generated pharmacophore
model for the given binding site. (B) The crystal structure of the known active ligand (PDB ID BDM). (C and D) The PIGNet2 binding poses of
CHEMBL1967896 (C) and CHEMBL3260001 (D), which are the ligands with the highest PharmacoNet score from the pre-screening. The circles
denote the NCIs absent in the complex structure of the active ligand.
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2.6 OpenPharmaco: graphical user interface soware for
PharmacoNet

OpenPharmaco promotes the accessibility of PharmacoNet with
a user-friendly GUI for protein-based pharmacophore modeling
and high-throughput virtual screening. This tool is particularly
valuable for users without computational expertise, as illus-
trated in Fig. 7. OpenPharmaco allows for the import of
common chemical le formats such as PDB, SDF, and MOL2,
thus enabling to integrate it smoothly with various chemical
informatics tools and workows. The interface consists of
modules dedicated to specic functions in PharmacoNet and
the visualization with Open-Source PyMOL.44

In OpenPharmaco, users can easily specify a target protein's
binding site by importing it directly from the Research Collab-
oratory for Structural Bioinformatics (RCSB) with the corre-
sponding PDB ID or loading a customized le. Once the binding
site information is provided, PharmacoNet performs pharma-
cophore modeling based on it. Then, users need to import
a chemical library for virtual screening onmultiple CPU cores. If
necessary, they can adjust the pre-optimized parameters in
PharmacoNet's scoring function.
3 Methods

In the following sections, we describe the detailed framework of
PharmacoNet, as illustrated in Fig. 8. Section 3.1 introduces the
deep learning model for pharmacophore modeling (Fig. 8A).
© 2024 The Author(s). Published by the Royal Society of Chemistry
Section 3.2 explains the algorithm of the coarse-grained graph-
matching process for protein–ligand spatial correlation esti-
mation (Fig. 8B). Section 3.3 describes the parameterized
analytical scoring function and its parameters (Fig. 8C).
3.1 Deep learning-guided pharmacophore modeling

3.1.1 Instance segmentation for automated protein-based
pharmacophore modeling. Pharmacophore modeling can be
categorized into the following three types: (i) the ligand-based,45

which utilizes the 2D molecular graphs of active ligands, (ii) the
complex-based,46 which utilizes the 3D structures of protein–
ligand binding complexes, and (iii) the protein-based,47–49 which
uses the 3D structures of proteins. Our focus is on the protein-
based approach that carries out pharmacophore modeling
using only the structure of protein binding sites without ligand
information. The main advantage of this approach is that it can
be applied to any protein with fewer constraints than the ligand-
based or complex-based methods that require active ligand
information. In particular, the protein-based methods can be
employed for the protein structures predicted by computational
tools.21–23 However, conventional protein-based methods have
the following issues:

(1) They tend to identify excessive pharmacophoric features,
making it difficult to nd selective interaction patterns optimal
to a specic ligand.50 Therefore, it is necessary to prioritize
protein functional groups (FGs) for the selection of protein
hotspots.
Chem. Sci., 2024, 15, 19473–19487 | 19479
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Fig. 6 Virtual screening against cannabinoid receptors. (A) Virtual screening process with PharmacoNet on a desktop with a single 32-core CPU.
(B) The aligned binding pocket structures of CB1 (blue) and CB2 (red). The unaligned residues are highlighted. (C) The pharmacophore models of
CB1 and CB2. Only the pharmacophore points for thep–p stacking are visualized. (C) and (D) are overlapped, while (A) and (B) are not overlapped.
(D and E) The PIGNet2 binding poses of ZINC100000809 against CB1 (D) and CB2 (E). (F) The distribution of docking scores against CB2 from the
pre-screening result. The dashed line denotes −10.49 kcal mol−1 (top 1% affinity). (G) The distribution of docking score differences against CB1

and CB2 for potent molecules. The dashed lines represent 0 kcal mol−1 and −2.73 kcal mol−1 (100-fold selectivity), respectively.
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(2) Determining pharmacophore points is important for
nding spatial information to ensure that a particular ligand
forms optimal interactions with a given protein hotspot, but
this is difficult to determine without protein–ligand binding
information.

Due to these issues, protein-based methods heavily rely on
expert-based manual processing and oen require resource-
intensive procedures like molecular dynamics, docking, or
fragment crystallography.20 While a few automated protein-
based approaches have been proposed,48,49 they are very slow
due to energy-based optimization and thus used for ne-
screening rather than pre-screening. As a result, there is no
fully automated protein-based approach for pre-screening.
19480 | Chem. Sci., 2024, 15, 19473–19487
For the purpose of pharmacophore modeling, it is crucial to
ascertain the nature of each pharmacophore point, including its
coordinates, counterpart protein FGs, and an appropriate type
of NCIs.17 To identify individual pharmacophore points and
their natures, we frame pharmacophore modeling as an image
instance segmentation problem, as illustrated in Fig. 8A. Image
segmentation is the process of dividing an image into segments
based on either categories or instance-level criteria.51,52

Semantic segmentation classies pixels into categories,
grouping different objects into a single segment. In contrast,
instance segmentation achieves the recognition of both the
segment and the category for each object by following a set of
procedures: (1) detecting an object, (2) delineating the object's
bounding box, (3) classifying its category, and (4) predicting
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 OpenPharmaco workflow (A) the initial session of OpenPharmaco. (B) The structure of the KRAS-G12C mutant (PDB ID 6oim) imported
from RCSB. (C) The protein-based pharmacophore modeling is performed automatically. (D) The generated pharmacophore model for KRAS-
G12C mutant. (E) The comprehensive workspace for virtual screening. (F) The virtual screening result for example library.
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a binary mask (segment). In the context of tailoring to the
pharmacophore modeling, the key differences are:

(1) Instead of object detection in images, our deep learning
model determines hotspots (instances) among protein FGs
(tokens) in a given binding site. When a single FG can form
multiple types of NCIs, it is treated as multiple tokens.

(2) Each instance already contains an NCI type (class).
Moreover, a region (bounding box) to form a pharmacophore
point can be obtained from prior knowledge of the maximum
length of the given NCI type. Consequently, a deep learning
model does not need to predict its class and bounding box.

(3) A single voxel may belong to multiple instances.
(4) The deep learning model also addresses an image

inpainting problem, given that the space in the binding site is
empty. Therefore, there is no denitive answer for the
segmentation.

Similar to our approach, Skalic et al.53 developed LigVoxel,
a 3D CNN-based deep learning model for inpainting the
chemical functionality map from a binding pocket image.
However, LigVoxel generates only one map for each of the three
FG types (aromatic, H-bond donor, and H-bond acceptor), so it
does not recognize individual pharmacophoric points or ensure
NCIs with the binding site.

3.1.2 Protein feature extraction. To represent protein
binding sites for the instance segmentation modeling, we
developed the open-source voxelization tool, MolVoxel (Section
3.7). Specically, a binding site is represented in a voxel grid
with a resolution of 0.5 Å, creating an image size of 64 × 64 ×

64. The side length (32 Å) is longer than the recommended
maximum search box of AutoDock Vina24 of 30 Å. Each atom in
the binding site is characterized by its residue type, atom type,
and functional group type (hydrophobic carbon, H-bond donor
© 2024 The Author(s). Published by the Royal Society of Chemistry
& acceptor, halogen bond acceptor, aromatic ring, cation, and
anion). All water molecules and metal ions are omitted.

For the given protein binding site, the coordinates and
atomic features of atoms are denoted as xi˛ℝ3 and hi˛ℝC,
respectively. Then, the 3D input image I˛ℝD�H�W�C is repre-
sented as follows:

Id;h;w;: ¼
XNb

i

KðkTð½d; h;w�Þ � xikÞ � hi (1)

KðrÞ ¼
8<
:

e�2r
2

if r# 1:5
�
Å
�

0 else
(2)

where K is a kernel function, Nb is the number of atoms in the
binding site, (D,H,W) is the spatial dimension, and C is the
number of atomic features. T : ℤ3/ℝ3 is the coordinate
mapping function between the voxel indices and the real-world
coordinates.

To extract features from the voxel image of a given protein
binding site, our deep learning model (f) uses the Feature
Pyramid Network54 with a 3D extension of the Swin Transformer
V2 encoder,55 which is typically used in object detection tasks.
The feature pyramid network fbackbone obtains multi-scale 3D
feature maps:

F ¼ �
Fð1Þ; Fð1=2Þ;.

� ¼ fbackboneðIÞ (3)

where FðsÞ˛ℝsD�sH�sW�Cs represents the feature map for each
scale s with its corresponding hidden dimension Cs.

3.1.3 Hotspot detection. A typical distance range of NCIs is
less than 6.0 Å, so it is unnecessary to consider regions far from
the pocket cavity. Therefore, the model predicts the two cavity
regions, Clong for long-range NCIs (salt bridge, p–p stacking,
Chem. Sci., 2024, 15, 19473–19487 | 19481
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Fig. 8 Detailed architecture of PharmacoNet. (A) The architecture of deep learning model for fully automated protein-based pharmacophore
modeling. For visualization, 3D feature maps are represented as 2D maps. For model training, the complex-based pharmacophore model is
constructed from the crystal structure of the protein–ligand binding complex. (B) The graph-matching algorithm aligns the ligand and the
pharmacophore model. All numbers in the figure are arbitrary values. (C) The distance likelihood-based scoring. For scoring, we use 7 phar-
macophoric feature types: hydrophobic, aromatic ring, anion, cation, halogen, hydrogen bond (H-bond) acceptor, and donor. We use a set of
weights F½t� according to the pharmacophoric feature types as parameters for the scoring function.
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cation–p interaction) and Cshort for short-range NCIs (hydro-
phobic interaction, H-bond, halogen bond):

Clong = sigmoid(fcavity
long (F(1))) (4)
19482 | Chem. Sci., 2024, 15, 19473–19487
Cshort = sigmoid(fcavity
short (F

(1))) (5)

where Clong ˛ {0,1}D×H×W and Cshort ˛ {0,1}D×H×W represent
binarized outputs with a threshold of 0.5.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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In the cavity regions, PharmacoNet prioritizes the protein
FGs to identify the protein hotspots. Each protein FG (token)
contains grid indices [d,h,w] and its NCI type (class) ci. Some
FGs can form multiple NCIs, so our deep learning model
distinguishes them according to the NCI types. The model then
calculates a sigmoid score for each token to determine whether
it is a hotspot as follows:

zi = ftoken(F(1)
d,h,w,:,ci) (6)

yi = sigmoid(fscore(zi)) (7)

To determine the score threshold for each NCI type, we
utilize the score distribution of the tokens in the validation set.
The score distribution and threshold for each NCI type are
presented in Fig. S1.†

Aer the protein hotspots are determined, our model predicts
the optimal spatial locations of the pharmacophore points for each
protein hotspot in the instance segmentation manner:

D ¼ sigmoid
�
fmaskðF; ½d; h;w�; ziÞ

�� Cshort (8)

where D ˛ [0,1]D×H×W is the density map andM ˛ [0,1]D×H×W is
the binary mask of D with a threshold of 0.5. To reduce the
noise in the model output, we perform Gaussian smoothing
with a kernel size of 5 and a sigma of 0.5. Then, the voxels
within 1 Å from protein atoms are masked, since the typical
distances of NCIs are longer than 1.0 Å. The radius of the
bounding box for each NCI type is as follows: 4.5 Å for hydro-
phobic interaction, halogen bond, and H-bond 6.0 Å for p–p

stacking and salt bridge, and 6.5 Å for cation–p interaction.
Each radius is longer than the maximum distance used in
Mol*56 and PLIP.57

The spatial probability density of the pharmacophore points
for each protein hotspot can be represented as the segments in
the corresponding binary mask. When there are multiple
segments in a single binary mask, each segment is considered
a distinct pharmacophore point. Since the segment denotes the
group of voxels, the center ˛ℝ3; and the radius ˛ℝ of the cor-
responding pharmacophore point are obtained from the
density map D and the binary mask M as follows:

Center ¼ 1

jMj
X

½d;h;w�˛M
Dd;h;wTð½d; h;w�Þ (9)

Radius ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMj=ð4p=3Þ3

p
� resolution (10)

where Dd,h,w is the density at grid indices [d,h,w].
3.2 Coarse-grained graph matching

To predict the spatial relation between a target protein and
a given ligand, PharmacoNet aligns the ligand to the pharma-
cophore model by a graph-matching algorithm. Both the
pharmacophore model and the ligand FG arrangement can be
represented as individual 3D complete graphs.

The complete graph of the pharmacophore model GP =

(VP,EP) uses pharmacophore points as nodes. Each node vps ˛ GP

has a center position xps and a radius rps obtained from eqn (9)
© 2024 The Author(s). Published by the Royal Society of Chemistry
and (10) with a pharmacophoric feature type tps . For each edge
epst ˛ Ep, the mean and standard deviation of its length are given
by m(epst) = ‖xps − xpt ‖and s(epst) = (rps + rpt )/2, respectively.

The complete graph of the ligand FG arrangement is denoted
as GL= (VL,EL), where each node vla ˛ VL represents a specic FG
and contains a set of its possible pharmacophoric feature types
Tl
a. The edge is denoted as elab ˛ EL. For a ligand conformer C ;

the position of the node vla is xlaðC Þ; and the length of the edge
elab is given by dl

abðC Þ ¼ kxlaðC Þ � xlbðC Þk:
The FGs of ligand molecules oen comprise numerous

pharmacophoric features. For example, benzene contains 1
aromatic ring and 6 hydrophobic carbons. To improve the
efficiency of the graph-matching process, we perform clustering
for the same FGs. ℂL denotes a set of clusters, where each
cluster Cl

i˛ℂ
L is a set of vl. In addition, since one ligand FG can

form interactions with multiple protein hotspots, i.e., a single vl

can be matched with multiple vp, we perform clustering for the
pharmacophore model. ℂP denotes a set of resulting clusters,
where each cluster Cp

j ˛ℂ
P is a set of vp. Thanks to the clustering,

the graph matching process can be done on a per-cluster basis,
not a per-node basis, which helps accelerate the entire process.

To formulate the graph-matching process, we dene amatrix
for a possible graph match (PGM), M : f0; 1gjℂLj�jℂPj; where M ij

indicates the matching status between the ligand cluster Cl
i and

pharmacophore model cluster Cp
j . The constraints of our

matching process are as follows: (1) a single pharmacophore
model cluster Cp

j can be matched to multiple ligand clusters
Cl
i, which is expressed as SiM ij $ 0 for all j (2) a single ligand

cluster Cl
i can bematched with up to one pharmacophore model

cluster Cp
j , which is expressed as SjM ij # 1 for all i (3) only

clusters with the same pharmacophoric feature type can be
matched. The time complexity of the graph matching is
OððjℂPj þ 1ÞjℂLjÞ; and the computational requirements increase
exponentially with the complexity of the ligand or pharmaco-
phoremodel. Therefore, the efficient graph-matching algorithm
is mandatory.

We note that most PGMs are physically infeasible. For
example, it is not feasible for two ligand FGs with about 1 Å
distance to match with two pharmacophore points separated by
about 10 Å. To account for this, we use the following distance
constraint between cluster pairs in for the conformer C :

m
�
epst
�� 2s

�
epst
�
\d l

abðC Þ\m
�
epst
�þ 2s

�
epst
�

(11)

Furthermore, an ensemble of ligand conformers shares
a common core structure. Across various conformers, the
feasible PGM patterns of the same core structure within the
distance constraints show substantial similarities. As a result,
the graph matching for numerous conformers can be per-
formed simultaneously by identifying a unique PGM pattern for
their core structure and then performing graph matching for
the remaining part in a manner of depth-rst search algorithm.

Finally, the graph-matching process can be formulated in
terms of optimizing a scoring function. It is conceptually the
same as the principle of conventional molecular docking, as
illustrated in Fig. S3.† More details are in the ESI Section S5.†
Chem. Sci., 2024, 15, 19473–19487 | 19483

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc04854g


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
N

ov
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 7

/2
4/

20
25

 9
:4

6:
57

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
3.3 Distance likelihood-based scoring function

Recently, Shen et al.58,59 reported the state-of-the-art scoring
model based on the pairwise atom distance likelihood between
proteins and ligands instead of scoring in the unit of energy. This
has the advantage of allowing relative comparisons between
ligands without additional efforts to map the structural infor-
mation to binding affinities.16 Likewise, we introduce a distance
likelihood-based scoring function to score and rank the PGMs.

The Gaussian mixture model is used to express the proba-
bility density function FM from the 3D arrangement of phar-
macophore points GP. We dene a scoring matrix,
SM ;C˛ℝjGL j�jGLj; where SM ;C

ab is the distance likelihood score
vla and vlbwith probability density function FM

ab obtained from GP.
When vla ˛ Cl

a0 and vlb ˛ Cl
b0 are matched to Cp

A and Cp
B in M ; the

Gaussian mixture model FM
abðdÞ and the distance likelihood

score SM ;C
ab are follows:

IMa ¼ �
vps˛C

p
A

		tps˛Tl
a

�
(12)

IMb ¼ �
vpt˛C

p
B

		tpt˛Tl
b

�
(13)

FM
abðdÞ ¼ A

X
v
p
s˛IMa

X
v
p
t ˛I

M
b

p
�
epst
�
N
�
d;m

�
epst
�
; s
�
epst
�2�

(14)

SM ;C
ab ¼ wabF

M
ab

�
d l
abðC Þ� (15)

where N ð$;m; sÞ is the Gaussian function, A is the normalizing
constant, and the coefficient of each Gaussian function is
pðepstÞ ¼ F½tps �F½tpt �: We introduce the weight for each ligand
node pair as wM

ab ¼
P

vs˛IMa F½t
p
s �=

		IMa
		�P

vt˛IMb
F½tpt �=

		IMb
		; where

F½t� is the weights for each pharmacophoric feature type. We
note that the distance likelihood score corresponding to the
ligand node without anymatched pharmacophoremodel points
is 0.

Finally, the score of PGM M for ligand conformer C can be
represented as the sum of the scoring matrix:

ScoreðM ;C Þ ¼
XjGLj

a¼1

XjGLj

b. a

SM ;C
ab (16)

Our scoring function uses a set of weights, F; assigned to each
pharmacophoric feature type as parameters. In this study, these
weights were determined based on prior knowledge of the rela-
tive contribution of NCIs to protein–ligand binding affinities. For
example, hydrogen and halogen bonds were considered compa-
rable in terms of their characteristics and strengths, with both
signicantly outweighing the inuence of hydrophobic interac-
tions. Salt bridges were considered stronger than both hydrogen
and halogen bonds. On the other hand, p–p stacking was
recognized as a predominant driving force contributing to
complex stability, particularly in terms of entropy. Guided by this
prior knowledge, we assigned 7 parameters as follows:

� 1.0 for hydrophobic carbon.
� 4.0 for H-bond donor, H-bond acceptor, halogen atom,

aromatic ring.
� 8.0 for cation, anion.
19484 | Chem. Sci., 2024, 15, 19473–19487
3.4 Training details for deep learning model

To train the deep learning model, we used the PDBbind v2020
dataset,13 a collection of high-resolution crystal structures, and
measured binding affinities for 19 443 protein–ligand complexes
deposited in the Protein Data Bank (PDB).60 Following Shen
et al.,58,59we partitioned the dataset into 17 658 training complexes
and 1500 validation complexes, excluding 285 CASF-2016 (ref. 34)
test complexes. We omitted 8 complexes with multiple ligands
detected from the training set. The center ofmass of active ligands
was taken as the center of the binding site, and random trans-
lations and rotations were applied to augment the data.

To establish the ground truth for the protein-based phar-
macophore modeling, we used the complex-based pharmaco-
phore model obtained from the crystal structures in the
PDBbind v2020 dataset. We considered the protein and ligand
FG pairs that form NCIs as the pairs of protein hotspots and
pharmacophore points. We rst identied NCIs using the
Protein–Ligand Interaction Proler (PLIP)57 and then deter-
mined the protein hotspots and pharmacophore points from
each NCI. For pharmacophore modeling, we used the following
6 NCI types: hydrophobic interaction, H-bond, halogen bond,
p–p stacking, cation–p interaction, and salt bridge. Further-
more, we delineated two cavity regions based on the range of
each interaction: one with 5.0 Å from the ligand atoms in
a given crystal structure for short-range interactions (hydro-
phobic interaction, H-bond, and halogen bond) and another
with 7.0 Å for long-range interactions (p–p stacking, cation–p
interaction, and salt bridge).

As the ground truth, we used the hotspots in the complex-
based pharmacophore model and the 3D binary mask with
the dimension of (D,H,W) within 1.0 Å from each pharmaco-
phore point. The cavities are also voxelized to 3D binary masks.
For the instance segmentation modeling, we utilize two loss
terms, which are pixel-wise binary mask loss and binary clas-
sication loss. Both loss terms employ the binary cross entropy
loss function between the ground truth and deep learning
model prediction obtained from eqn (4), (5), (7) and (8). More
details are in the ESI Section S3.†
3.5 Benchmark test details

For commercial docking programs (GLIDE,29 GOLD27 and
LeDock27), we reused the values reported by Zhang et al.,6 which
were measured on 48-core Intel Xeon Gold 6240R CPUs @ 2.40
GHz. PharmacoNet and open-source docking programs (Auto-
Dock Vina (version 1.2.5)24 and Smina30) were evaluated with
a 32-core Intel Xeon Gold 6326 CPU @ 2.90 GHz. We used the
default setting for AutoDock Vina with the search box size of (30
Å, 30 Å, 30 Å). For Smina, we also used the default setting with
the auto box ligand conguration. To ensure the reproducibility
of docking results, all data processing and docking protocols
are explained in detail in ESI Section S4.†
3.6 Virtual screening details

We used the ChEMBL library (version 33)41 and the ZINC20
library43 to demonstrate the applicability of PharmacoNet on
© 2024 The Author(s). Published by the Royal Society of Chemistry
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diverse chemical libraries. We ltered the ChEMBL molecules
with unidentied SMILES consisting of more than two
molecules/ions, more than 40 heavy atoms, or failed ones with
ETKDG,61,62 resulting in 1.64 million molecules out of 1.92
million molecules. For ZINC20, we randomly selected 10% (187
million) molecules from the whole library (1.87 billion).
3.7 MolVoxel: molecular voxelization tool

We developed a new voxelization tool, MolVoxel, designed to
enable on-the-y voxelization in various machine-learning
applications. Current voxelization tools oen conict with
other ML packages. MolVoxel is implemented in Python with
minimal dependencies (NumPy, SciPy), rendering it highly
versatile and stable for various applications. Currently, it
supports NumPy, Numba, and PyTorch (with CUDA support).
4 Conclusions

In drug discovery, previous works on ultra-large-scale virtual
screening have shown that expanding the search space signi-
cantly enhances the chances of identifying potent new mole-
cules. However, it requires enormous computing resources due
to the computational cost of molecular docking when dealing
with billions of compounds. Our study addresses this problem
by accelerating molecular docking through deep learning-based
pharmacophore modeling.

We developed PharmacoNet, the rst deep-learning frame-
work for pharmacophore modeling. It tackles key challenges in
both pharmacophore modeling and large-scale virtual
screening. A deep learning model trained on experimental
binding structures performs automated pharmacophore
modeling using only protein structures in a data-driven
manner. By abstracting protein–ligand interactions to the
pharmacophore level with an algorithmic scoring function,
PharmacoNet alleviates generalization issues of deep learning
approaches in a vast chemical space and simultaneously
accelerates the computational speed of molecular docking. This
allows for rapid and reliable scoring compared to conventional
docking soware. This result facilitates ultra-large-scale virtual
screening with affordable costs, as demonstrated by success-
fully identifying potent and selective cannabinoid receptor
antagonists from a library of 187 million molecules within 21
hours on a single CPU. Furthermore, we provide a user-friendly
graphical user interface (GUI) for large-scale virtual screening,
even on a desktop computer.

PharmacoNet's scoring function has only seven parameters,
unlike deep learning-based scoring methods, which have
numerous parameters. For instance, docking-free deep learning
models rapidly predict binding affinities without resorting to
the information of protein–ligand binding structures. However,
limited training data oen causes undesired biases in the
models because molecules in ultra-large-scale chemical
libraries will likely be out-of-distribution.x On the other hand,
our framework can achieve high generalization ability in
scoring by using a coarse-grained graph-matching algorithm
with seven parameters.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Despite these advancements, there are areas for further
enhancement. PharmacoNet relies on a scoring and graph-
matching algorithm at the pharmacophore level, which
provides rapid and reliable predictions. However, such
pharmacophore-level abstraction comes with a trade-off. For
example, since it does not capture atom-level features, it cannot
discriminate variations in the strength of the same salt bridge,
which is attributed to slight differences in charge and atom
type. In addition, it cannot account for intramolecular energy
changes. In this regard, the present approach is more suitable
for pre-screening, followed by more accurate post-scoring. To
overcome these limitations, atomistic features should be
incorporated into the scoring function while maintaining
a high generalization ability.

Consequently, PharmacoNet offers a new direction of deep
learning approaches toward rapid and reliable ultra-large-scale
virtual screening in drug discovery. We believe this approach
will facilitate the practicalization of ultra-large-scale virtual
screening in real-world applications.

Code availability

All the programs developed in this work are open-source. The
source code, trained models, and GUI soware are available at
GitHub (https://github.com/SeonghwanSeo/PharmacoNet and
https://github.com/SeonghwanSeo/OpenPharmaco) and
Zenodo.63,64 The developed voxelization tool is available at
PyPi https://pypi.org/project/molvoxel/.

Data availability

The training data is from PDBbind v2020 and can be found at
https://www.pdbbind.org.cn. The benchmark test sets are
available at https://www.pharmchem.uni-tuebingen.de/dekois/
, https://drugdesign.unistra.fr/LIT-PCBA/and https://
www.pdbbind.org.cn/casf.php. The compound libraries for
virtual screening are available at https://zinc20.docking.org
and https://www.ebi.ac.uk/chembl/. The proteins for virtual
screening are available at https://rcsb.org.
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