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The installation of fluorine and fluorinated functional groups in organic molecules perturbs the
physicochemical properties of those molecules and enables the development of new therapeutics,
agrichemicals, biological probes and materials. However, current synthetic methodologies cannot access
some fluorinated functional groups and fluorinated scaffolds. One such group, the gem-difluorobenzyl
motif, might be convergently synthesized by reacting a nucleophilic aryl precursor and an electrophilic
gem-difluoroalkene. Previous attempts have relied on forming unstable anionic or organometallic
intermediates that rapidly decompose through a B-F elimination process to deliver monofluorovinyl
products. In contrast, we report a fluorine-retentive palladium and copper co-catalyzed chloro-arylation
of gem-difluorostyrenes that takes advantage of a nitrite (NO,™) additive to avoid the favorable B-F
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Introduction

The introduction of fluorine and fluorinated functional groups
into organic molecules is a prominent strategy to perturb
a molecule's physicochemical properties relevant to the devel-
opment of therapeutics, agrichemicals, biological probes, and
materials."” One important functional group, the gem-difluor-
obenzyl motif, is typically used by medicinal chemists to block
metabolically labile benzylic positions on drug candidates from
benzylic oxidation by P450s, to reduce arene epoxidation by
P450s by decreasing the electron density of the aromatic =
system, or as a replacement for a labile oxygen atom.™* Such
gem-difluoromethylene groups are most commonly accessed by
deoxyfluorination reactions of carbonyl-containing molecules®>
(Scheme 1A, Blue) that typically require reagents that can
exhibit poor functional group compatibility (Deoxo-Fluor,
XtalFluor, and Fluolead)*® or that, for many substrates, can
competitively form monofluorovinyl side products (DAST and
Deoxofluor).*” To complement this functional group intercon-
version strategy, alternative approaches to generate gem-
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elimination pathway that forms monofluorinated products, instead delivering difluorinated products.

difluoromethylene-containing compound might enable access
to more elaborate substructures through convergent bond-
forming processes.

As a complementary strategy to access gem-difluorobenzyl
substructures, retrosynthetic disconnection of the CF,-C,y
bond would reveal a nucleophilic aryl species and a gem-
difluoroalkene that bears electrophilic character at the terminal
difluorinated carbon® (Scheme 1A, Red). However, nucleophilic
addition reactions of gem-difluoroalkenes that occur under
basic conditions typically proceed through unstable anionic
intermediates that decompose to form vinyl fluorides via B-F
elimination pathways.®> Though some net nucleophilic
hydrofunctionalization reactions have been developed using
a variety of heteroatom nucleophiles,"*** fluorine-retentive
functionalization reactions of gem-difluorinated alkenes to
generate new C-CF, bonds remains limited."*?*” Instead, reac-
tions of gem-difluoroalkenes with aryl nucleophiles typically
proceed through unstable organometallic intermediates that
also decompose via B-F elimination to form monofluorovinyl
products (Scheme 1B).%**2842

In contrast to these previous two-electron approaches, we
have recently focused on functionalization reactions of gem-
difluoroalkenes that proceed through radical
intermediates,*”***” thus avoiding unstable anionic or organo-
metallic intermediates that undergo B-fluoride
elimination,*~112030-39.41:42484% With respect to C(ary1~CF, bond-
formation, a fluorine-retentive Pd/Cu co-catalyzed arylation of
gem-difluoroalkenes with aryl sulfonyl chlorides proceeded
through Pd-alkyl intermediates bearing B-F atoms, but avoided
B-F elimination by offering the metal a kinetically favorable B-H
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D. Pd/Cu Co-Catalytic Chloro-Arylation of gem-Difluoroalkenes
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Nitrite additive improves reductive elimination process

E. Mechanistic Hypothesis: Facilitate Reductive Elimination
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Scheme 1l Metal catalyzed arylation reactions of gem-difluoroalkenes
typically proceed through organometallic intermediates prone to
undergo B-fluoride elimination, which can be overcome using a nitrite
additive.

elimination pathway (Scheme 1C).*® However, substrates lack-
ing B-H atoms, such as gem-difluorostyrenes, readily underwent
B-F elimination. Herein, we report a F-retentive Pd/Cu co-
catalyzed regioselective difunctionalization reaction of gem-
difluoroalkenes, which convergently generates new Cgy,—Cl
and CF,-aryl bonds and increases complexity (Scheme 1D).
Notably, the reaction exploits an uncommon nitrite (NO,")
additive to promote the reductive elimination of a Cgyy1—Cl
bond, thus avoiding the kinetically facile B-F elimination
pathway (Scheme 1E).
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Results and discussion

In early explorations, modification of our previously reported
conditions® delivered mixtures of desired chloro-arylated
product (A), B-F elimination side products (B and C), and
a chloro-sulfonylated product (D) in a substrate-dependent
manner (Table 1). Reactions of electron-deficient gem-difluor-
ostyrenes with electron-deficient aryl sulfonyl chlorides formed
products A and B in equal quantities (entry 1); however, when
the aryl ring of either substrate bore neutral or electron-
donating substituents, side product B or D typically formed in
10-12% yield along with trace quantities of C (entries 2-5). To
avoid competing B-F elimination processes, we initially
explored conditions that facilitate reductive elimination of Pd
complexes to form new C-X bonds by changing the properties of
the ligand,* using weaker coordinating solvents, exploiting
additives that generate high-valent palladium species [Pd(u)/(iv)
cycle] under anaerobic (e.g. PhICl,, PhI(OAc),, Ph,ICl, Ume-
moto’'s reagent)*® or aerobic (e.g. PhICl,, PhI(OAc),, "NOs3,
"NO,)”"** conditions.

Eventually, the reaction of electron-deficient gem-difluor-
oalkene 1a with electron deficient aryl-sulfonyl chloride 2a to
form chloro-arylated product 3aa was facilitated under anaer-
obic conditions in good selectivity in the presence of nitrite
additives (Table 2, entries 1 and 2). With this improvement in
hand, an additive screen demonstrated the unique ability of
“NO, to minimize formation of monofluoroalkene 3aa’. As
a control experiment, the reaction run without any additives
formed chloro-arylated product 3aa in modest yield and poor
selectivity (entry 1). However, addition of 25% sodium nitrite
[NaNO,] dramatically increased selectivity for 3aa over 3aa’
(entry 2), though the addition of sodium nitrate [NaNO;] only

Table 1 Various side products observed during early reaction
development”

5% Pd(OAc), Art

F 10% CuCl F F F
Ar1%( 00k NaCe A B
F
+ 1,4-dioxane [0.2 M] Cl Cl
CIO;S—Ar2  130°C,Nz, 1h S A2 * )YSOZNZ
Ar' Ar!
F F F
(o D
Entry Ar' Ar® Conv.” A B* ¢ D’
1 4-CN-Ph 4-NO,-Ph 60 29 28 — —
2 3,4,5-tri-OMe-Ph ~ 4-NO,-Ph  >95 73 10 4 —
3 4-‘Bu-Ph 4-NO,-Ph 63 13 10 3 —
4 3,5-di-Me-Ph 4-NO,Ph 40 15 12 1 —
5 4-OMe-Ph 4-OMe-Ph 91 17 1 2 11

“ Unless otherwise stated, all reactions were carried out with gem-
difluorostyrene (0.20 mmol), aryl sulfonyl chloride (0.40 mmol), 5%
Pd(OAc),, 10% CuCl,, NaCl (0.20 mmol) and heated for 1 h under an
atmosphere of nitrogen. ? Yields were determined by '°F NMR using
a,a,0-trifluorotoluene as an internal standard.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 NO, additives increase selectivity”
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2.5% Pd(OAC)Z

Ar1/§/F 10% Cu powder cl H
XX% Additive
F A2 4 X Ar?
+ 1,4-dioxane [0.2 M] AT1J§< Ar1J\(
ClO,S—Ar2 Ny, 130°C, 3 h F F F
3aa 3aa’
Ar' = 4-CN-Ph, 1a
Ar2 = 4-NO,-Ph, 2a
Entry Additive % Additive Conv.? 3aa’ 3aa’” 3aa/3aa’
1° None 0 >95 32 25 1.3
2 NaNO, 25 >95 56 6 9.3
3 NaNO; 25 >95 41 16 2.5
4 KNO, 25 >95 61 7 8.7
5 KNO; 100 >95 60 17 3.5
6 NaCl, NaBr, Nal 25 40-94 0-26 0-21 0-1.2
7 NaOAc, NaTFA, NaOTf 25 88-98 24-36 16-20 1.5-2
8 NaPF,, NaBF, 25 >95 34 17-19 1.8-2
9 Na,COj3, NaHCO; 25 >95 33-35 18-21 1.6-1.9
10 Na;PO,, Na,HPO, 25 >95 31-35 14-15 2.1-2.5
11°¢ NaNO, 2.5 >95 41 18 2.2
12°¢ NaNO, 5 >95 42 17 2.5
13°¢ NaNO, 10 >95 52 12 4.4
14° NaNO, 20 >95 50 11 4.7
15° NaNO, 50 >95 53 8 6.3
16° NaNoO, 75 >95 51 7 7.7
17¢ NaNO, 100 >95 51 5 11

“ Unless otherwise stated, all reactions were carried out with gem-difluorostyrene 1a (0.20 mmol), aryl sulfonyl chloride 2a (0.40 mmol), 2.5%
Pd(OAc),, 10% Cu powder, XX% additive and heated for 3 h under an atmosphere of nitrogen. ? Yields were determined by 'F NMR using
a0, a-trifluorotoluene as an internal standard. ¢ All reported yields and selectivities represent an average of three independent runs.

provided a more modest improvement in selectivity relative to
NaNO, (entry 3). The increase in selectivity was not dependent
on Na" and instead dependent on ~“NO,, as KNO, and KNO,
provided comparable yield and selectivity to their Na' coun-
terparts (entries 4-5). Additionally, other Na-based additives,
including halogens (entry 6), O-based anions (entry 7), non-
coordinating ions (entry 8), anionic bases (entries 9 and 10)
did not significantly increase selectivity for forming chloro-
arylated product over B-F elimination product (for individual
yields, see ESI Table S1f). In this screen, B-F elimination
product C and chloro-sulfonylated product D were generally
each detected in <2% quantities by '’F NMR of the crude
reaction mixtures. Overall, exhaustive screening demonstrated
the ability of "NO, additives to facilitate formation of the C-Cl
bonds and minimize B-fluoride elimination.

Further studies more rigorously established the ability of
NO, " to control the selectivity for promoting chlorination over
B-F elimination. Specifically, increasing the equivalents of
NaNO, from 0 to 1.0 systematically increased the selectivity
from 1.3:1 to 11:1 (entries 11-17), and 1.0 equiv. NaNO, was
selected for further studies. Similarly, the use of NaNO; fol-
lowed a similar trend, albeit with lower maximum selectivity (up
to 3.9:1, ESI Table S2t). The use of NaNO, also improved the
yield and selectivity for a wide range of Pd-based (ESI Table S3+)
and Cu-based (ESI Table S41) catalyst systems, with the

© 2024 The Author(s). Published by the Royal Society of Chemistry

combination of Pd(OAc), and Cu powder performing best.
Interestingly, on 1.0 and 5.0 mmol scales, the loading of NaNO,
could be lowered to 25% with no reduction in selectivity or
yield; at these scales, the use of stoichiometric NaNO, did not
provide additional benefits to yield or selectivity. For this reac-
tion, routine evaluation of solvent, temperature, and time
indicated 130 °C/1,4-dioxane/3 h as optimal conditions (ESI
Tables S5-S71). In general, lower temperatures and shorter
reaction times delivered less product, while hotter or longer
reaction times provided no benefit (ESI Tables S6 and S77).
The optimized conditions enabled coupling of a wide range
of gem-difluorostyrenes with aryl sulfonyl chlorides to deliver
chloro-difluorinated products (Fig. 1). Reactions of electron-
rich gem-difluorostyrenes containing ethers and alkyl groups
afforded products in moderate yields (3ba-3fa). Electron-
deficient gem-difluorostyrenes containing O-benzyl, phenyl
ester, trifluoromethyl, nitrile, tosylate and methyl ester groups
(3aa, 3ga-3ka), and gem-difluorostyrenes bearing halogen
atoms (3la-3na) also reacted efficiently to deliver the chloro-
arylated products in moderate yields. Substrates containing
heterocyclic moieties including N-benzenesulfonyl indole and
benzofuran moieties were also compatible in this system (3oa-
3pa). However, non-styrenyl gem-difluoroalkenes and gem-
difluoroalkenes containing N-H and thioethers were not toler-
ated. Importantly, the selectivity for chloro-arylated products

Chem. Sci., 2024, 15,17571-17578 | 17573
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F 1,4-dioxane [0.2 M]
130 °C, Ny, 3h F F

Ar2
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ol NOz2  R2- 34 5.4ri-OMe; 3ba, 54%

2-(4-'BuPh); 3ca, 42%
. 3,5-di-OMe; 3da, 48%
3,5-di-Me; 3ea, 49%
4-'Bu; 3fa, 45%
4-OBn; 3ga, 53%
3-OC(O)Ph; 3ha, 44%
3-CF3; 3ia, 40%
4-CN; 3aa, 55%
4-OTs; 3ja, 51%
4-CO,Me; 3ka, 48%
3,5-di-Cl; 3la, 43%°
4-F; 3ma, 48%
4-Br; 3na, 39%

/
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cl O 2

~
O o

30a, 44%
F F f

3pa, 44%

cl Ar2 = 4-NO,-Ph; 4qa, 61%
4-CF4-Ph; 4qb, 56%
4-C(O)Me-Ph; 4qc, 53%
4-F-Ph; 4qd, 51%
4-Br-Ph; 4qe, 63%
4-1-Ph; 4qf, 50%

Ph; 4qg, 53%
2-naphthyl; 4qh, 50%
4-Me-Ph; 4qi, 52%
2-OMe-5-Br-Ph; 4qj, 52%

4qk, 50%

Fig. 1 Scope of gem-difluorostyrenes and aryl sulfonyl chlorides.
@Unless otherwise stated, all reactions were carried out with gem-
difluorostyrene (1.0 mmol), aryl sulfonyl chloride (2.0 mmol), 2.5%
Pd(OAc),, 10% Cu powder, 25% NaNO,, 1,4-dioxane (5.0 mL) and
heated at 130 °C for 3 h under an atmosphere of nitrogen. °5% mmol
Pd(OAc),. All reported yields and selectivities represent an average of
two independent runs.

was not influenced by the electronic character of either aryl ring,
with selectivities >9: 1[A: (B + C + D) as determined by '°F NMR
of the crude reaction mixture], except for one outlier (entry 7, 5 :
1, ESI Table S8t). Moreover, the NaNO, additive suppressed B-F
elimination, with yields of B averaging at or below 4% (as
determined by '’F NMR of the crude reaction mixture), except
for one outlier with 6% (entry 7, ESI Table S87).

A series of aryl sulfonyl chlorides bearing a range of elec-
tronic characters were coupled with gem-difluorostyrene 1q to
deliver chloro-arylated products (Fig. 1). Aryl sulfonyl chlorides
containing strong electron-withdrawing nitro, trifluoromethyl
and ketone groups reacted smoothly to deliver chloro-arylated
products in fair to good yields (4qa-4qb). Notably, an aryl
sulfonyl chloride containing a ketone group successfully deliv-
ered the chloro-arylated product, which contrasts with deoxy-
fluorinating reagents that react preferentially with carbonyls
(4qc). Additionally, aryl sulfonyl chlorides bearing halogens

17574 | Chem. Sci., 2024, 15, 17571-17578
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A. B-F Elimination Pathway
Cl\ H
Pd. B-F Elimination )
S Art X Ar
Al ~CIPdF '
F o Ar? B "
5
B. Nitrite Supresses B-F Elimination
Cl cl -
_NO Cl
Pd\ -NO, \Pd 2 CuCl,
OF = 1 Ar
Ar! F Ar
Art cucl FF
F Ar? EF A
5 6 A
Fig. 2 Proposed mechanisms by which "NO, prevents B-F

elimination.

provided the corresponding chloro-arylated products in
moderate to good yields (4qd-4qf). Moreover, such examples
that tolerate aryl iodides and bromides suggest that the catalytic
cycle does not involve Pd(0) intermediates. Aryl sulfonyl chlo-
rides bearing electronically neutral phenyl and naphthyl groups
(4q9g-4qh) as well as electron-donating alkyl and ether groups
also provided chloro-arylated products in moderate yields (4qi-
4qj). Finally, a coumarin-derived aryl sulfonyl chloride reacted
smoothly to deliver the chloro-arylated product in moderate
yield (4qk). For this series, reactions of electronically neutral or
rich aryl sulfonyl chloride proceeded in slightly lower selectivity
5and 6:1[A:(B+C+D)as determined by '°F NMR of the crude
reaction mixture], solely due to an increase of product D, which
likely derives from slow desulfination, not from an increase in
B-F elimination (entries 24, 26 and 27, ESI Table S87). Finally,
aryl sulfonyl bromides were not compatible with this system,
instead delivering aryl bromides as the predominant side
product (detected via GC-MS).

“NO, additives have served unique and modestly understood
roles in many Pd-catalyzed processes,*”*>%>"% though the ability
of the additives to influence B-elimination vs. reductive elimi-
nation processes show no precedent.®® With respect to the
immediate reaction, the ability of "NO, to influence the selec-
tivity for difluorobenzyl vs. monofluorovinyl products (A vs. B)
could result from multiple different phenomena. First, coordi-
nation of "NO, to the putative Pd(Cl)(alkyl) intermediate 5
might block the binding site typically populated by the vicinal F
atom, thus precluding the B-F elimination process (Fig. 2A).
Second, binding of "NO, might accelerate the reductive elimi-
nation process to form the C-Cl bond via intermediate 6, as the
m-back bonding interaction between Pd(n) and “NO, pulls
electron density away from the metal,”” thus destabilizing the
higher oxidation state form and reducing the energy barrier for
reductive elimination (Fig. 2B), as has been demonstrated for
reductive elimination of C-F bonds from Pd(iv) complexes.®® In
contrast, other anions tested (e.g. halogens, ~OTf, ~OAc,
~0,CCF3, BF,4, PF¢) do not engage in strong m-back bonding
interactions that might help avoid B-F elimination. For
a proposed mechanism and mechanistic studies, see the ESI
(Fig. S1, Tables S9 and S107.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Conclusion

In conclusion, a palladium and copper co-catalyzed reaction
utilizes aryl sulfonyl chlorides to add both aryl and chlorine
groups across gem-difluoroalkenes in a regioselective difunc-
tionalization reaction. Notably, this reaction exploited NaNO,
as a critical additive that enabled formation of the Cgyy1—Cl
bond and reduced the common B-F elimination pathway, thus
improving selectivity for generating difluorobenzyl products
over monofluorovinyl products, and we speculate that such
additives might prove more generally useful at perturbing rates
of reductive elimination and/or B-F elimination processes.
Ongoing investigation to further understand the unique role of
nitrite in this reaction will be reported in due time.
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