

Showcasing research from Professor Ok's laboratory, Department of Chemistry, Sogang University, Seoul, Republic of Korea.

Strategically designed metal-free deep-ultraviolet birefringent crystals with superior optical properties

Discovering new birefringent materials with deep-ultraviolet (DUV, $\lambda < 200 \text{ nm}$) transparency is crucial, due to growing application demands. This study presents three guanidinium-based compounds, $C(NH_2)_3CH_3SO_3$, β - $C(NH_2)_3Cl$, and γ - $C(NH_2)_3Cl$, featuring [$C(NH_2)_3\cdotX]_{\infty}$ pseudo layers. Theoretical calculations reveal that these metal-free compounds have broad bandgaps (6.49-6.71 eV) and high birefringence (0.166-0.211@1064 nm). Centimeter-sized $C(NH_2)_3CH_3SO_3$ crystals were grown *via* an aqua-solution method, while β/γ - $C(NH_2)_3Cl$ was optimized, leading to NH_2COF with a wider bandgap (7.87 eV) and giant birefringence (0.241@1064 nm). This work provides insights into the design of DUV birefringent crystals.

See Xinglong Chen, Kang Min Ok *et al., Chem. Sci.,* 2024, **15**, 15145.

rsc.li/chemical-science

