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Ultra-low dual detection of tetrahydrocannabinol
and cannabidiol in saliva based on
electrochemical sensing and machine learning:
overcoming cross-interferences and saliva-to-
saliva variations†

Greter A. Ortega,‡ Herlys Viltres, ‡ Hoda Mozaffari, Syed Rahin Ahmed,
Seshasai Srinivasan * and Amin Reza Rajabzadeh *

A novel alternative to cope with saliva-to-saliva variations and cross-interference while sensing delta-9-

tetrahydrocannabinol (THC) and cannabidiol (CBD) is reported here using two voltammetric sensors

coupled with machine learning. The screen-printed electrodes modified with the same analyte molecules

(m-Z-THC and m-Z-CBD) were employed for sensing ultra-low concentrations of THC and CBD in the 0

to 5 ng mL−1 range in real human saliva samples. Simultaneous detection of THC and CBD was carried out

using m-Z-THC or m-Z-CBD to study the performance of each modified sensor. Also, CBD and THC have

the same molecular structure; there is only a slight difference in how the atoms are arranged, and

therefore both molecules will have similar electrochemical performance. Consequently, CBD can be a

potential interference while detecting THC and THC can be an interference during CBD detection using

electrochemical sensors. Therefore, machine learning was introduced to analyze the sensor analytical

responses to overcome such issues. The data processing results provide suitable accuracies of 100% for

training in the case of both sensors and 92 and 83% for m-Z-THC and m-Z-CBD, respectively, for dataset

testing THC and CBD in saliva samples. Additionally, the saliva samples containing CBD and THC as cross-

interference were accurately identified and classified.

1. Introduction

Electrochemical detection of coexisting analytes with similar
structure interferents is a significant problem in chemical
sensors. For example, Δ9-tetrahydrocannabinol (THC), which
is the main psychoactive of cannabis, is currently traceable in
saliva samples by using electrochemical sensors.1 However,
cannabis-based medicine can now be prescribed for
medicinal use in many countries, comprising both THC and
the familiar component cannabidiol (CBD).2

The previous work published by the authors of this article
reported an innovative electrochemical-based sensor to detect
ultra-low Δ9-tetrahydrocannabinol (THC) in saliva.3 The
carbon-based working electrode (WE) was modified in the

sensor fabrication by electrodeposition of the same analyte to
be detected later in the sample using square wave
voltammetry (SWV). Nevertheless, while THC presents a
phenol group, oxidizable at potentials near 0.4 V, CBD
arranges two aromatic meta-hydroxyl groups with the same
oxidizable capability at almost the same potential as THC.
Hence, CBD is a substantial interferent during the detection
of THC by electrochemistry.

Nowadays, strategies have been implemented to overcome
interferences during electrochemical testing. Overall, some of
them reported for THC and CBD detection4 are pre-treatment
procedures that encompass solid-phase extraction,5 paper
chromatography,6 or other separation methods;7 molecularly
imprinted nanoparticles (nanoMIPs);8 working electrode
modifications with macrocyclic compounds9 and suitable
(nano)materials.10 In other cases, two different methodologies
have been applied to prevent the interferences because of the
adsorption of oxidation products, such as pH optimization and
the pre-treatment of the electrode through a cathodic potential
step.11 However, all these strategies are ineffective in detecting
an ultra-low concentration of THC in the presence of CBD
under practical sensor conditions and in a short time.
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Furthermore, many challenges have not been fully
addressed in the literature for saliva sensors due to the
complexity of the nature of saliva.12–14 Human saliva is a
complex matrix with a viscosity of approximately 1.30 times
higher than that of water, affecting the analyte's diffusion
and the reaction rates on the electrodes.13,14 In addition,
saliva has various natural or adulterant electroactive
components that may interfere with the electrochemical
performance of the analyte. Furthermore, the pH,
conductivity, and protein–chemical–solid compositions of
saliva, among others, change over time and vary from person
to person. For all the reasons mentioned, obtaining
consistent responses during the electrochemical testing of
chemical sensors is incredibly problematic.

Machine learning (ML) algorithms offer exceptional
solutions to complex and large-size data systems involving
problems that traditionally require tedious hand-tuning rules
and tasks with fluctuating environments.15 ML refers to
computational techniques that learn from past experiences,
i.e., data, to create logical and precise prediction algorithms.
The data used in these learning algorithms play a crucial role
in the success of ML models; hence, ML is the intersection of
data analysis and statistics with computer programming.16

Some reports have implemented ML algorithms coupled
with different analytical techniques to detect an assortment
of analytes in the past years. Some examples are
fluorescence,17 colorimetry,18 colour-based lateral flow test,19

ion-mobility spectrometry (IMS), and photoionization
detection comprising electrochemical-based sensors
(PIDECS),20 transcriptomics and proteomics data,21 Fourier
transform infrared spectroscopy (FTIR),22,23 and
electrochemical sensors.24 Table S1, provided in the ESI,†
presents a summary of the reports dealing with ML in
electrochemical sensors. In THC detection, few reports deal
with ML during data set analysis; one used a chemiresistor25

and the other used impedance.26 Recently Rao et al.27 studied
the detection of a broad range of dopamine concentrations
(9–200 μM) in the presence of a similar structure molecule
epinephrine (EP) in PBS and blood and urine diluted 100
times in PBS (to eliminate the matrix effect) by implementing
ML techniques sequentially. They used dual-modal sensors
and selective features to feed the proposed ML algorithm.
The focus of this work, however, is to detect ultra-low
concentrations of cannabis in real samples (real saliva) in the
presence of similar structures via feeding different ML
algorithms separately with the entire voltammetry signals.
Given the similar molecular structures of CBD and THC,
which lead to comparable electrochemical performance and
potential cross-interference, the novelty of this work lies in
the dual detection of THC and CBD, differentiating their
concentrations and addressing their cross-interferences while
mitigating saliva-to-saliva variations. Table S2 is provided in
the ESI† for details.

This paper reports on the development of two sensors to
detect THC and CBD in real saliva. This work also introduces
ML to analyze the data sets obtained from the

electrochemical THC and CBD sensors to overcome the
person-to-person variation setbacks and the cross-
interference problems in complex saliva samples.

2. Materials and methods

For the purposes of this research, saliva samples from
healthy humans in the lab, the authors, were used in this
study. The screen-printed electrodes (SPE), TE100, employed
in this study were obtained from Zensor R&D and comprise
working (3 mm/0.071 cm2) and counter carbon electrodes
and a silver reference electrode (TE100). From now on,
Zensor will be used to refer to SPEs. The reagents (−)-trans-Δ9-
tetrahydrocannabinol (THC) and cannabidiol (CBD) were
obtained from Cerilliant-Sigma-Aldrich as standard solutions
in methanol (ampule of 1 mg mL−1) with the appropriate
certification for laboratory uses. An ELISA THC Oral Fluid Kit
Product (no. 120519) was acquired from Neogen Corporation.

Electrochemical analyses were carried out using a mono-
potentiostat PalmSens4 with the PSTrace 5-Palm-Sens
software. Samples were analyzed by performing Fourier
transform infrared (FTIR) spectroscopy using a micro-
attenuated total reflectance (micro-ATR) accessory equipped
with a germanium crystal under a Hyperion 2000 microscope
incorporated into a Bruker Tensor II spectrometer. XPS
analyses were performed using a Kratos AXIS Supra X-ray
photoelectron spectrometer with a monochromatic Al
K(alpha) source (15 mA, 15 kV). The work function of the
spectrometer was calibrated to the Au 4f7/2 line for metallic
gold with a binding energy (BE) of 83.96 eV, and the
dispersion of the equipment was regulated to the Cu 2p3/2
line of metallic copper with a BE of 932.62 eV. An analysis
area of 300 × 700 microns and a pass energy of 160 eV were
the conditions used to collect the survey scans. High-
resolution analyses were performed using an analysis area of
300 × 700 microns and a pass energy of 20 eV. The spectra
were charged and corrected to the C–C, C–H line of the
carbon 1 s spectrum (aliphatic carbon) set to 285.00 eV and
analyzed using the CasaXPS software (version 2.3.14).

2.1. Electrochemical sensors

In the THC-based sensor, the working electrode was modified
with THC molecules (m-Z-THC), and in the case of the CBD-
based sensor, with CBD molecules (m-Z-CBD).

2.1.1. Manufacturing of the THC and CBD-modified
Zensor electrodes. Before THC or CBD deposition, Zensor
electrodes were cleaned using Milli-Q lab water and dried
with a brief flow of hot air. After that, stock solutions of THC
or CBD (50–150 μg mL−1) were prepared by adding THC or
CBD solution (1 mg mL−1 in methanol) to a mix of methanol/
water. Subsequently, 1 μL of the stock solution was dropped
onto the WE surface of the Zensor electrodes and allowed to
dry at ambient temperature and in a warm air flow for 30
seconds and 5 seconds, respectively. The resultant modified
electrodes comprised an initial THC (m-Z-THC) or CBD (m-Z-
CBD) deposition of 130 and 100 ng, respectively. The
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modified electrodes were then subjected to pre-treatment
before their final application employing an electrochemistry
method, square wave voltammetry (SWV), using 0.01 M PBS
solution. The following conditions were employed to record
the electrochemical measurement: 0.05 V and 0 s as the
precondition potential, 3 s for the equilibration time, 0–0.8 V
range for the voltammetric potential scan with a frequency of
15 Hz, 25 mV of amplitude, and 5 mV for the step potential.
The SWV signals were recorded for all Zensor electrodes
under study, and THCi or CBDi will be used to refer to these
electrodes. Subsequently, the modified electrodes, m-Z THC
and m-Z CBD, were carefully washed using Milli-Q lab water
and kept at 4 °C with nitrogen gas.

2.1.2. Collection and treatment of the saliva samples. The
saliva of the lab members was collected using 15–50 mL
polypropylene tubes, which were sealed with parafilm. The
saliva samples were then dispensed into 1.5 mL Eppendorf
vials. The samples were spiked with an adequate amount of
THC in 0.01 mL of methanol to obtain final concentrations
of 0, 2, and 5 ng mL−1. An absorbent material swab was
introduced inside the vial to collect the sample. The swabs
with the absorbed saliva were introduced within a device that
contained an appropriate filter and then squeezed with a
plunger. The filtered saliva samples were collected in another
vial to be prepared for the testing. Table S3, provided in the
ESI,† summarizes different swab providers and tested filters.

2.1.3. THC sensor performance. 50 μL of the THC samples
previously spiked with methanol in a 9 : 1 ratio were added
onto the m-Z-THC electrodes and immediately subjected to
SWV using the subsequent conditions: 0.05 V for 30 s as a
precondition potential, 3 s as the equilibration time, 0–0.8 V
range for the voltammetric potential scan from and a
frequency of 15 Hz, 25 mV as the amplitude, and 5 mV as the
step potential. For traditional analysis, the current values
corresponding to each concentration result from subtracting
the intensity of the peaks for the samples recovered with m-
Z-THC (sensing electrode) minus the signal obtained with the
pristine electrode (pristine Zensor, p-Z).

2.1.4. CBD sensor performance. CBD in low concentration
levels in methanol (0, 2, and 5 ng mL−1) were spiked into the
saliva samples. The saliva samples were collected and
prepared following the protocol described in sections 2.1.2
and 2.1.3. Then, 50 μL of the CBD-spiked samples were
dropped onto m-Z-CBD electrodes. Then, a SWV analysis is
performed using the subsequent parameters: 0.05 V for 30 s
as a precondition potential, 3 s as the equilibration time, 0–
0.8 V for the voltammetric potential scan and a frequency of
15 Hz, 25 mV as the amplitude, and 5 mV as the step
potential. After that, another 50 μL from the same CBD
spiked sample was incorporated on the pristine Zensor and
analyzed under the same electrochemical conditions
employed for the m-Z-CBD measurement. The subtracting
methodology was then employed.

2.1.5. Interference studies. The performance of the m-Z-
THC sensor to detect THC in the presence of CBD was
evaluated. Also, the ability of CBD detection by the m-Z-CBD

sensor in the presence of THC was studied. The response for
both sensors was recorded before and after adding increasing
amounts of each compound to a solution comprising 0, 2,
and 5 ng mL−1 THC or CBD using SWV employing the same
working conditions outlined in section 2.1.3. Diverse
experiments were carried out to evaluate the influence of
CBD or THC on the electrochemical performance of the
modified electrodes (m-Z-THC and m-Z-CBD) during the THC
or CBD detection. Table S4, provided in the ESI,† describes
the experiment in detail.

2.2. Machine learning algorithms

Principal component analysis and several ML techniques like
random forest, artificial neural network, and support vector
machine for dimensionality reduction were used to classify
THC and CBD saliva samples with concentrations of 0, 2, and
5 ng mL−1. The training dataset was divided into subspaces
based on an attribute that offers maximum information gain.
In all cases, the ratio of training to testing dataset was 4. In
this study, the optimal number of random trees was 200. An
artificial neural network (ANN) was also used in this study
for the purposes of classification. The dense network
structure used in this study consisted of three hidden layers
with 32, 64, and 128 nodes, respectively. The rectified linear
unit function was used for the activation of the hidden layers,
and softmax for the output layer was implemented.
Additionally, regularization techniques, as well as dropout,
were executed. This study also used the support vector
machine (SVM) as another alternative for classification and
regression. In this case, a radial basis function kernel for
classification and a moderate regularization parameter for
regression were included.

A logistic regression classifier for binary classification of
the interaction between THC and CBD was also evaluated.
Lastly, this work used principal component analysis (PCA) for
dimensionality reduction and different preprocessing
techniques, including standard scaler and non-linear power
transformer for feature scaling. In all cases, the cumulative
explained variance of the transformed dataset covered 98% of
the original datasets. A detailed explanation of each
algorithm is described in the ESI† S2.2.

3. Results and discussion
3.1. Characterization of m-Z-THC and m-Z-CBD

Both sensors, the m-Z-THC and the m-Z-CBD developed in
this study, were designed based on the hydroxyl group
oxidation present in THC and CBD molecules during the
application of a potential to create CO moieties followed by
the formation of quinones, adducts, or more complex
structures (Fig. 1a).28 The presence of THC or CBD species in
the sensors (m-Z-THC and m-Z-CBD) enhanced further
physical and chemical interactions of the working electrodes
with the THC or CBD molecules present in the sample, hence
the oxidation process. To determine the electrochemical
behaviour of bare Zensor and modified Zensor electrodes,

Sensors & DiagnosticsPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 5

/5
/2

02
5 

2:
42

:4
9 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sd00102h


Sens. Diagn., 2024, 3, 1298–1309 | 1301© 2024 The Author(s). Published by the Royal Society of Chemistry

SWV was performed in PBS solution. After modifying the
pristine Zensor electrodes, an oxidation peak between 0.4
and 0.7 V appears in the m-Z-THC and the m-Z-CBD sensors
(Fig. 1b). The peak related to m-Z-CBD appeared at slightly
higher potentials compared to m-Z-THC.

On the other hand, FTIR and XPS characterization
techniques were employed to study the pristine and modified
electrode samples to get a deeper understanding of the surface
of the electrode. In the FTIR spectrum (Fig. S1a†), the weak
peaks in the 3000–2800 cm−1 region are correlated with the
stretching vibration of C–H bonds for pristine and modified
electrodes. The characteristic peak for the stretching of the
OC bond appears at approximately 1746 cm−1 in all samples
(Fig. S1b,† zoom of the region 2000–1000 cm−1). The signal at
1580 cm−1 can be assigned to the CC bonds in aromatic ring
structures, and the band at 1441 cm−1 was associated with the
C–H bending mode. However, significant changes after pristine
electrode modification were not possible to distinguish in the
FTIR spectrum due to this technique's ability to sense the bulk
material, not the surface. In this case, all chemical processes for
Zensor electrode modification occur on the surface of the
working electrode; therefore, the XPS technique was used to
gain a clearer vision.

The XPS spectrum for the WE surface of pristine Zensor
electrodes (p-Z) was obtained after dispensing THC or CBD (m-
Z-THC0 and m-Z-CBD0) and SWV electrodeposition in PBS was
the final manufacturing step. The survey spectra confirmed the
existence of only C, O, N, Cl, S, and Si for all five samples and P
in four of the samples (Table S5†). After pristine Zensor
modification, the C and O atomic percent increased for both
m-Z-THC and m-Z-CBD electrodes (Fig. 3a). In the case of the
electrodes after dispensing m-Z-THC0 and m-Z-CBD0, the
amount of C was observed to be slightly lower than that after
the final electrodeposition step; meanwhile, the percent of O
was found to be lower for the final sensors (m-Z-THC and m-Z-
CBD). These changes in the sample's composition could be
related to the interaction of the organic molecules with the
working electrode surface and the formation of complex
structures between the modifier molecules (Fig. 1a).

The C 1s high-resolution signal of the pristine sample was
deconvoluted into four contributions at 284.4, 285.0, 286.5,

and 289.0 eV (Fig. 2b, Table S6†). The first contribution is
related to aromatic CC from graphitic carbon and ink
employed for the working electrode preparation.29 The signal
at 285.0 eV was associated with C–C/C–H. The contributions at
higher binding energies, 286.5 and 289.0 eV, were related to C–
OH/C–O–C/C–Cl and O–CO, respectively.30,31 After pristine
electrode modification with THC or CBD, no substantial
variations were evidenced in the high-resolution C 1s signals
for the other four samples (Fig. 2b and c and S2, Table S6†).

On the other hand, two contributions were observed in
the O 1s spectra of all the samples. In the case of pristine
modification, the first contribution at 532.5 eV was assigned
to CO.30 The second peak was observed at higher binding
energy, recorded at 533.5 eV for aromatic O*–(CO)–C/C–O
(Fig. 2e, Table S7†).29 The O 1s for modified sensors showed
a small shift (0.2–0.3 eV) to lower binding energy for the first
contribution (Fig. 2f and g and S2; Table S7†). This might
suggest slight changes in the O environment after pristine
modification.

For the specific case of electrode modification with THC, a
decrease and an increase of atomic percent for the first and
second contributions, respectively, were observed in the O 1s
fit when the modifier molecule was deposited onto the surface
of the electrode (m-Z-THC0) (Fig. 2h). After SWV analysis of m-
Z-THC0, the atomic percent of the CO contribution
increased; meanwhile, a decrease for O*–(CO)–C/C–O was
evidenced. These changes are related to the oxidation of the
OH group to the quinones in the THC structure, which appears
at 532.2 eV (CO, first contribution).

A similar behaviour was evidenced for m-Z-CBD, where
the atomic percent for the first peak of the O 1s fit in m-Z-
CBD was found to be lower than in m-Z-THC and higher for
the second peak. Additionally, the difference between both
contributions in the m-Z-CBD sensor was significantly
smaller than in the case of m-Z-THC because the CBD
molecule has two OH groups present in the structure.
However, one of these OH groups does not participate in the
oxidation process. The XPS results corroborated that the
element oxygen plays a substantial role in the
electrochemical oxidation of THC and CBD molecules on the
surface of the working electrode. Furthermore, the oxidation

Fig. 1 a) Schematic representation of the oxidation of THC and CBD molecules. b) SWV response of THC-based (m-Z-THC, 130 ng) and CBD-
based (m-Z-CBD, 100 ng) sensors in PBS.
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of OH groups in the modifier molecules to quinones after
SWV of deposited electrodes with possible dimer and
polymer formation was also confirmed.

3.2. Traditional analysis of the sensor performance

3.2.1. THC sensor performance with THC saliva samples.
Saliva-to-saliva variations. As was explained earlier, the THC
molecules (THCi) were first electrodeposited on the working
electrode through SWV (Fig. 3a). Such molecules assisted the
analyte–WE interaction and amplified the final SWV signal
regarding the oxidation of the THC contained in the sample
(Fig. 3b). Lastly, the values of the currents corresponding to
each concentration result from subtracting the signals for the

samples recovered from the m-Zensor (sensing electrode)
minus the signal obtained from the pristine Zensor (Fig. 3c). In
traditional analysis, the intensity I regarding the baseline is
directly correlated with the THC concentration present in the
sample. In this sense, the biomolecule-free electrochemical
approach helped to detect THC in PBS (1.1 ng mL−1), simulated
saliva (1.6 ng mL−1), and real saliva (1.6 ng mL−1).3 Many
experimental conditions were studied during the
manufacturing, sample preparation, and sensor performance.
During the THC detection in real saliva, the validation and
recovery of this molecule were tested with suitable results for
four real saliva samples using THC concentrations of 0, 2, and
5 ng mL−1. Finally, the next step to evaluate the electrochemical
approach proposed was testing with saliva samples from

Fig. 2 a) Element quantification from survey spectra; b)–d) C1s and e)–g) O1s high-resolution spectra before and after Zensor working electrode
modification. h) The ratio of the important functional groups from the high-resolution XPS spectra of O 1s of pristine and modified electrodes.
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various individuals since saliva has different properties and
compositions.

Considering previous studies, saliva viscosity and natural
conformation disturbed the electrode performance controlled
by adsorption processes. In this sense, electroactive molecules,
proteins such as mucin, or supernatant solids should be
eliminated to decrease the variability among the results. It is
important to mention that the THC concentration must be
invariant in all processes. For this reason, an optimization of
the saliva collection and filtration process was required. Table 1
summarizes the values of THC recoveries in saliva samples after
being collected or filtered and quantified using the ELISA THC
Oral Fluid Kit Product from Neogen Corporation.

Some collection or filtration systems provided high values
of recoveries; however, they also presented some
disadvantages. For example, the wwPTFE filter (0.2 μm) and
POREX OFCD-201-SRF (with filter) helped clean the saliva but
showed low volume recoveries. SalivaBio and POREX OFCD-
100 were unsuccessful in cleaning, providing almost raw
saliva. In contrast, the PureSal product was successful in
cleaning the saliva; however, it resulted in a loss of THC in
the swab. The SalivaBio Swab + PureSal filter interacted with
the samples, leading to electrochemical interferences and a
strong signal around 0.4 V, like THC. Lastly, the POREX
OFCD-100 + glass wool successfully cleaned the saliva but
was difficult to squeeze, compromising the volume recovery.

The best collection/filtration solution was the combination
of the swab of the collector OFCD-100 and post-filtration using
glass wool (Pyrex 9350). In this case, such a combination cleans
the saliva samples, presents suitable volume recovery, and has
no electrochemical interference. From this point, all
experiments were performed using this strategy.

However, even after cleaning the saliva, there were
inconsistencies in the results when comparing the current
values of the same concentration but in different individual
samples. For example, in Fig. 3d, the results show
inconsistencies and unclear tendencies while testing different
concentrations of THC.

3.2.2. CBD sensor performance with CBD saliva samples.
Analogous to the THC sensor using m-Z-THC to detect THC
saliva samples, modified electrodes with CBD (m-Z-CBD)
were investigated with different saliva samples spiked with 0,
2, and 5 ng mL−1 CBD. The results were almost identical to
THC (Fig. 4a), with slight variation in the features of the
signals and an uncertain tendency of the current intensities
to the CBD concentrations (Fig. 4b).

3.3. CBD and THC as interferences of the THC and CBD
electrochemical sensors

The selectivity of the designed sensors was evaluated through
the effect of CBD (THC) molecules in the determination of

Fig. 3 a) SWV signals during the THC deposition of different modified electrodes (m-Z-THC). b) Raw data of 3 m-Z-THC and one pristine (p-Z)
per THC concentration 0, 2, and 5 ng mL−1. c) An example of the subtraction of signals for the samples (0, 2, and 5 ng mL−1 THC) recovered with
m-Z-THC minus signals obtained with pristine Zensor. d) Sensor electrochemical performance using 130 ng of THCi and testing synthetic saliva
(SS) and five real saliva samples (S1–S5) with 0, 2, and 5 ng mL−1 THC collected and filtered with OFCD-100 swab/glass wool.
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THC (CBD). The impact of CBD on THC detection was studied
employing the m-Z-THC sensor, and the effect of THC using
the m-Z-CBD sensor when CBD was detected. Fig. 5a illustrates
an example of the raw data in detecting THC (2 ng mL−1) in the
presence of different amounts of CBD (0, 10, and 50 ng mL−1)
using the m-Z-THC sensor. After the analyses, three well-
defined peaks appeared between 0.4 and 0.6 V. Furthermore, a
shift to higher potential values was observed when 50 ng mL−1

CBD was employed as an interferent.
As shown in Fig. 1, the peak for CBD appears at higher

potential values compared to THC signals when the
electrochemical oxidation of these molecules is carried out;
therefore, the presence of CBD in the sample can provoke the
change observed in the THC signal potential. Similar signals
are observed when THC is present during CBD detection using
m-Z-CBD (Fig. 5b). In this case, the three peaks evidenced after
analyses appear between 0.4 and 0.6 V. However, the peaks
observed when THC was employed as an interferent were
broader, and a shift in the potential was observed for both
interfering concentrations (10 and 50 ng mL−1). This shift was
more significant when 50 ng mL−1 THC was employed.

In this research, six samples from different healthy co-
workers were employed in the experiments. Fig. 5c shows the
results of THC detection in the presence of CBD using the m-
Z-THC sensor. However, as can be seen, the signals cannot
be differentiated when the sample is analyzed with a
different amount of the target analyte and interfering
molecule. A similar behaviour is observed when the m-Z-CBD
sensor is employed for CBD detection in the presence of THC
concentrations (Fig. 5d). The similarities in the chemical
structures of THC and CBD and the saliva-to-saliva variation
(person-to-person variation) are the two principal factors that
lead to the inability to differentiate between the signals
obtained from the different performed experiments.
However, the influence of these two factors on the final
results can be corrected using machine learning.

3.4. Machine learning algorithms

3.4.1. ML as a new tool for analyzing the THC and CBD
sensor performances. Random forest (RF), support vector
machine (SVM), and artificial neural network (ANN) are the

Table 1 Results of the THC recoveries in saliva samples with 5 ng mL−1 THC after collection or filtration

Filtersa Collectors

Type–diameter–pore size THC recovery (%) Type THC recovery (%)

PTFE–25 mm–0.2 μm 0 PureSal/filtration (swab + squeeze) 7 (±13)
PES–25 mm–0.2 μm 0 NeoSal (swab + buffer) 1 : 4 16 (±5)
PVDF–25 mm–0.2 μm 0 SalivaBio swab (swab + squeeze) 84 (±24)
Nylon–25 mm–0.2 μm 0 SalivaBio swab + pure Sal filter 72 (±20)
Nylon–25 mm–0.45 μm 0 POREX OFCD-100 (no filter) 94 (±3)
Nylon–13 mm–0.45 um 7 (±7) POREX OFCD-201-SRF (with filter) 64 (±3)
wwPTFE NanoSEP–0.2 μm 9 (±16) POREX OFCD-100 + glass wool 75 (±5)
wwPTFE NanoSEP–0.45 μm 0 POREX OFCD-100 swab + glass wool 75 (±5)
wwPTFE-13 mm–0.45 μm 0 Centrifuged 91 (±19)
wwPTFE–13 mm–0.2 μm 76 (±20) N/A N/A
wwPTFE–25 mm–0.2 um 64 (±7) N/A N/A
Glass wool (Pyrex 3950) 76 (±5) N/A N/A

a PTFE – polytetrafluoroethylene, PES – polyethersulfone, PVDF – polyvinylidene, wwPTFE – water wettable polytetrafluoroethylene.

Fig. 4 a) Subtraction signals for the samples (0, 2, and 5 ng mL−1 CBD) recovered with m-Z-CBD minus signals obtained with pristine Zensor. b)
Sensor electrochemical performance using 100 ng of CBDi and testing synthetic six real saliva samples (S6–S11) with 0, 2, and 5 ng mL−1 CBD
collected and filtered with OFCD-100 swab/glass wool.
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three versatile machine learning algorithms that were
employed for the classification task. The RF was chosen
because a decision tree ensemble algorithm is less prone to
overfitting and more explainable due to its rule-based
characteristics. Also, RF is less sensitive to feature scaling.
SVM was chosen because of the small size of the dataset and
the high-dimensionality of the dataset. Finally, ANN was
selected because of its ability to handle complex datasets.
These methods were applied to datasets with 122 and 181
instances associated with saliva samples comprised of 0, 2,
and 5 ng mL−1 THC in the first dataset or CBD in the second
one. The raw data analyzed using ML resulted in the
complete signals obtained after performing the subtraction
of the peaks for the samples recovered, i.e., subtracting the
signal of the pristine electrode (p-Z) from the signals of the

m-Z-THC or m-Z-CBD electrodes (Fig. 4a). Additional
conditions include using the m-Z-THC electrodes with 130 ng
of THCi and m-Z-CBD with 100 ng of CBDi and collecting
different saliva samples via the help of the POREX OFCD-100
+ glass wool.

Moreover, proper selection of signal features can play a
critical role in the success of a ML model. As a result, ML
techniques were trained with only statistical features of
signals, including the maximum, minimum, distance
between the maximum and the minimum, mean, variance,
skewness, and kurtosis or the entire signal (Fig. 3c). Different
dimensionality reduction techniques were used on the whole
signal. Furthermore, the effect of feature scaling on ML
techniques was studied. The datasets for all techniques were
split into training and testing.

Fig. 5 Square wave voltammetric response of a) m-Z-THC and b) m-Z-CBD sensors for 0, 2, and 5 ng mL−1 THC and CBD detection in the
presence of interferences (0, 10, and 50 ng mL−1 THC or CBD) in human saliva. Subtraction Im-Z-THC − Ip-Z for c) m-Z THC and d) m-Z-
CBD sensors.
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The best scenario using statistical features resulted in an
accuracy of 100% in training and a poor accuracy of 60% in
testing. The norm in most literature studies using training
ML techniques only on statistical features is deemed
unsuccessful. For this reason, instead of using statistical
features, the mentioned RF, SVM, and ANN techniques were
applied to the entire signal (Table 2).

The results demonstrate significant improvements in the
accuracy of ML techniques with dimensionality reduction
and preprocessing. A complex dataset with many features is
often susceptible to overfitting and sparsity, where training
instances are not distributed uniformly across all
dimensions. This indicates that the dataset can be
transferred to a lower-dimension space with minimal
information leakage (less than 2%). A scatter plot visualizes
the relationship of the first two principal components for the
multi-classification of CBD for a sample dataset (Fig. 6).

Dimensionality reduction techniques scale down the
impact of noise and redundant features, consequently
increasing the accuracy. SVM and ANN methods are

sensitive to the scale of features and distances between
instances. As a result, feature rescaling can improve the
performance of the models.

Overall, the RF model with dimensionality reduction
outperforms SVM and ANN. This result can be explained
based on the nature of the RF technique as an ensemble
machine-learning technique. It combines various rule-based
decision trees on a random subset of the entire data, where
each tree is trained on a random set of features. This
randomness curbs the overfitting problem of the decision
tree. Moreover, RF is a rule-based technique and is less
sensitive to feature scaling. It should be noted that variations
in signal shapes represent mainly saliva variation.

3.4.2. ML as a new tool for analyzing the THC and CBD
sensor performances in the presence of CBD or THC as an
interference. SVM, decision tree, and logistic regression were
used to classify signals during THC detection with m-Z-THC
without and in the presence of different concentrations of
CBD as an interferent. However, considering both THC and
CBD resulted in similar SWV responses, implying that the
models failed to differentiate the signals. For this reason,
and analogously to the experiment described above, CBD
detection with m-Z-CBD was performed considering THC as
an interference.

Table 3 summarizes the accuracy of each model in
training and testing THC and CBD samples interrogated with
m-Z-THC and m-Z-CBD and in the presence of cross-
interference CBD and THC, respectively. The ML techniques
were used to identify signals with interference (class 1) versus
signals without interference (class 2). The results
demonstrate the superiority of the SVM method over other
classification techniques. The entire signal features were
used for training and preprocessing, including applying
dimensionality reduction on datasets before training for all
methods except the decision tree.

Fig. 6 Distribution of the first and second principal components for a
ternary classification of CBD.

Table 2 Accuracies of ML techniques trained with the entire signal for m-Z-THC and m-Z-CBD sensors

Model Preprocessing

Number of principal
components Train Test

THC CBD m-Z-THC m-Z-CBD m-Z-THC m-Z-CBD

RF — — — 100 100 76 65
RF — 12 7 100 100 92 84
SVM StandardScaler — — 78 75 56 62
SVM — 18 7 83 78 76 62
SVM PowerTransformer 8 5 99 92 84 78
ANN — — — 82 88 68 68
ANN StandardScaler — — 93 94 83.5 70

Table 3 Results of ML techniques for binary identification of the CBD interferent during testing THC samples with m-Z-THC and the THC interferent
during testing CBD samples with m-Z-CBD

Technique

m-Z-THC m-Z-CBD

Training (%) Testing (%) Training (%) Testing (%)

Logistic regression 70 70 68 70
Decision tree 70 72 66 63
Support vector machine 95 90 96 93
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The SVM model was used to classify the concentration
class of the target sensor in the presence of THC/CBD.
Table 4 summarizes the accuracy of results for training and
testing datasets for both sensors. The results prove the

capability of the SVM method to identify the class in the
presence of an interferent.

Finally, an SVM regression model was deployed to predict
the exact concentration of THC in the presence of CBD. Fig. 7
shows a histogram of predicted results per class for training
and testing sets. The result is auspicious despite being trained
by discrete values and not continuous concentration values.
However, since regression does not meet the high standard for
accuracies in real THC testing (higher than 90%), it was
discarded as a viable option for CBD, and instead, only the
SVM classification method was pursued. Although this article

Fig. 7 Histogram of a)–c) training and e)–g) testing results of saliva samples containing THC (0, 2, and 5 ng mL−1) in the presence of CBD and m-
Z-THC sensor. Summary of the results of predicted THC concentration vs. actual 0, 2, and 5 ng mL−1 for d) training and h) testing (R2 = 0.7).

Table 4 Results of ML techniques for multi-classification

Sensor Training (%) Testing (%)

m-Z-THC 96 77
m-Z-CBD 96 72
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presents robust classification results, further work is needed to
develop a reliable regression model.

4. Conclusions

This work presented electrochemical-based sensors coupled
with machine learning analysis for the ultra-low detection of
THC or CBD in real saliva samples in the absence or presence
of CBD or THC as an interferent. Due to variations in person-
to-person saliva and potential CBD/THC interferences, the
traditional analysis of calibration curves by plotting analyte
concentrations versus response current values led to
unacceptable results. Therefore, ML algorithms were
introduced to analyze the datasets to overcome these
setbacks. Overall, the classification of THC (CBD) samples
with 0, 2, and 5 ng mL−1 presented the best performance,
with accuracies approaching 92% and 83% for testing when
using RF. In addition, the results proved the capability of ML
techniques for identifying the presence of the CBD or THC
interference with accuracies of 90–93% and multi-
classification with accuracies of 72–77% using SVM.
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