
Soft Matter

 PAPER 
 T. Franke  et al . 

 Classification of chemically modified red blood cells in 

microflow using machine learning video analysis 

ISSN 1744-6848

rsc.li/soft-matter-journal

Volume 20

Number 5

7 February 2024

Pages 943–1154



952 |  Soft Matter, 2024, 20, 952–958 This journal is © The Royal Society of Chemistry 2024

Cite this: Soft Matter, 2024,

20, 952

Classification of chemically modified red blood
cells in microflow using machine learning video
analysis†

R. K. Rajaram Baskaran, A. Link, B. Porr and T. Franke *

We classify native and chemically modified red blood cells with an AI based video classifier. Using

TensorFlow video analysis enables us to capture not only the morphology of the cell but also the

trajectories of motion of individual red blood cells and their dynamics. We chemically modify cells in

three different ways to model different pathological conditions and obtain classification accuracies for

all three classification tasks of more than 90% between native and modified cells. Unlike standard

cytometers that are based on immunophenotyping our microfluidic cytometer allows to rapidly

categorize cells without any fluorescence labels simply by analysing the shape and flow of red

blood cells.

Introduction

Screening blood samples in flow cytometers is a powerful tool
in diagnostics and yields a statistically meaningful analysis of
the blood composition broken down to a single cell level count.
Cytometry1,2 is routinely used to detect widespread blood
diseases such as in haemolytic anaemias, malaria, or functional
disorders in erythropoiesis.3 In the clinical context, it is used to
monitor the course of a disease or the success of a therapeutic
treatment. Classification of blood cells it typically achieved by
cluster of differentiation protocols and immunophenotyping of
cells in which biomarkers are applied to indicate cell surface
molecules. In many cases several fluorescent labels are
employed that bind to receptors and ligands on the cell surface
and the multicolour readout of the cytometer is used to classify
the cell suspension. Yet, haematological disease and many
disorders generating secondary haematological changes give
rise to an abnormal morphology of red blood cells impairing
cell function that cannot be revealed by this surface marker
approach.

Microfluidics4 and optical cytometry have opened the field5,6

to a label free morphological characterization of red blood cell
suspensions in flow providing a cell shape7 and contour
analysis.8–10 Yet, the complex interplay of soft boundary condi-
tion with an external shear flow field introduces a challenging
problem11 to identify the features which can reliably be used for

diagnosis. In fact, ubiquitous stationary i.e. time-independent
shapes and non-stationary shapes for example a tumbling red
blood cell have been observed in experiments12,13 as well as in
theoretical analysis14,15 and simulations.16,17 A potpourri of cell
shapes has been reported including symmetric discocytes,
parachutes, stomatocytes, elliptocytes and asymmetric slipper-
shaped RBCs.12 Matching the experimentally found cell mor-
phology with detailed theoretical models employing specific
values for the mechanical moduli, has revealed essential
aspects of the dynamics and shapes,18 however, a full under-
standing of the underlying complex physical details is often not
required for diagnosis. Moreover, high throughput microfluidic
experiments under the microscope only reveal a two-
dimensional projection of the cell shape and extrapolation to
a full three-dimensional is far from being trivial even in
symmetric flow.19 Also, subtle changes in morphology and
motion are often not detectable by the eye and simple image
analysis. AI offers a pathway to classify cells without detailed
three-dimensional modelling the cell shape20 and has the
flexibility to detect small differences of both morphology and
motion which evade the human eye.21

The deformation of RBCs have been studied in various
conditions and external fields22 as in electric fields23 using
impedance measurements24,25 or hydrodynamic fields.26 However,
so far RBCs in hydrodynamic microflow have been analysed using
AI methods, with very few exceptions,27 only based on AI image
analysis.28 However, using still images does not capture the full
dynamics of the shape transitions and motion of RBCs. In fact, the
motion of RBCs is rather complex29 including tumbling,30 tank
treading,31 oscillation,30 swinging,32 flipping33 and intermediary
forms of motion such as vacillating breathing.34 Temporal
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information of RBCs has also been used in flickering analysis and
applied to aging and pathological changes35,36 as well as for studies
of RBC dynamics and mechanics.37,38 A video based AI classifica-
tion has been used to classify tank treading from flipping motion27

of sickle cell disease samples, however, this form of motion is just
one aspect of potential differences among RBCs and does not
provide an end-to-end-classification of the state of a cell for medical
diagnosis. Moreover, the state of the cell is often hard to identify
with the bare eye and certain motion patterns or shapes are not
always present. This calls for a holistic approach where the deep
network uses any information available and not forcing it to focus
on just one aspect, such as morphology for image analysis or
motion for video analysis but let the network decide. To overcome
these limitations, video classification has emerged recently39 where
not just image features but also the temporal relationships between
frames are learned. Initially these have been used to classify sports
footage and action sequences based on YouTube videos.40 In the
medical context, for example, ultrasound videos have been classi-
fied with convolutional neural networks.41

In this present work, we chemically treat red blood cells using
three different chemicals to modify the viscous and elastic
mechanical properties of their plasma membrane and the
cytoskeleton to mimic various diseases. Unlike studies in pre-
vious work, we probe the dynamic shape transformations and
flow trajectories of RBCs in a spatiotemporal varying microchan-
nel and classify end to end the cells using TensorFlow video
analysis taking the full video sequences as input and directly
outputting the state of the cell being either chemically modified
or native. Our analysis can differentiate between healthy,
untreated red blood cells and chemically modified cells to a
high accuracy and provides a powerful tool for diagnostics.

Results

Red blood cell suspensions are diluted in a PBS buffer and
injected into a PDMS based microchannel fabricated by soft
lithography42,43 as shown in Fig. 1. The microfluidic setup is
mounted on an inverted research microscope (Olympus, IX73)
and observed in bright field. Cells that enter the periodically
oscillating section of the channel are recorded with a fast
camera (Phantom, VEO) at frame rates as high as 5000 FPS.
To minimize storage memory, the recording of cell movies is
triggered using a hardware trigger so that movies are only taken
upon arrival of a cell in the region of interest. We test suspen-
sions of native and chemically treated red blood cells in our
device to modify various aspects of their viscoelastic properties
and shape response in microflow to mimic various RBC dis-
eases. Diamide (DA) has been reported to create disulphide
bonds in the spectrin proteins44 and modifies the cytoskeleton
network of RBCs. Glutaraldehyde (GA) and formalin (FA)
include methylene bridges between amino acids and are com-
monly used to ‘‘fix’’ cells and have been shown to be a precise
tool to modify the cell mechanics.45 Often mixtures of both are
used because they are known to have different penetration
depth. In prior experiments46 we investigated the role of

confounding factors and identified the optical focus of the objec-
tive to be an important factor.47,48 To prevent the classifier to use
the optical focus to distinguish between native and chemically
modified, we take videos at different optical foci for all RBC
suspensions. We used three different foci, one in focus and one
slightly above and below the focus, respectively. The recorded
dataset consists of approximately 5000 labeled video clips, each
containing 250 frames. 200 videos are randomly selected from the
dataset and pre-processed. The pre-processing steps include sub-
traction of static background as shown in Fig. 2A–C, cropping and
subsampling to be able to fit all video data into the GPU memory.
The preprocessed dataset is then introduced into the TensorFlow
video classifier model for training. Clips being in focus and out of
focus are randomly chosen for training which prevents the net-
work to use the focus for classification.

To perform training and validation, the model consists of
standard layers for video classification as suggested by the
TensorFlow documentation (Fig. 2D) with one numerical out-
put: either ‘‘native’’ (0) or ‘‘chemically modified’’ (1). Training
is performed by presenting the model with the pre-processed
videos in random order. After each classification, the model’s
predicted label is compared with the true label of the video. It
produces a non-zero error value if they are not the same, which
is called ‘‘loss’’. In simpler terms, loss is the penalty for a bad
prediction. This is then used to optimise the model in a
direction so that it converges towards correct classifications.
Each of this training cycle where the model is adjusted is called
epoch. During training the accuracy is tested against the actual
training videos and against videos which were not used for
training which is called ‘‘validation’’. The validation provides
TensorFlow with additional information how data of the train-
ing regime performs and is a measure of how good the model
generalises to never seen data. After full training and simulta-
neous validation, the model is then tested against the test
dataset, which consists exclusively of 100 videos that the model
was not trained on and not been used for validation.

We conduct separate training sessions for each of the three
types of chemically modified categories (native vs. FA, native vs.
DA, and native vs. GA). In addition, we also train the model by
asking it to just distinguish between native and anything

Fig. 1 Schematics of the microfluidic setup attached to an inverted
microscope. Red blood cells (RBCs) enter the device and proceed to flow
into a region where the width oscillates, causing them to adopt a specific
shape and behaviour. High-speed videos are captured using a fast camera,
and the recording process is initiated by a hardware trigger when a cell
crosses the defined area (blue square).
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chemically modified. We use 200 videos for each of these four
cases and train the model for 100 epochs in each of these.
The validation and test datasets consist of additional 100 pre-
processed videos each.

Fig. 3A–D shows the development of the accuracies and loss
for classifications of DA, FA, GA chemically modified RBCs and
mixed classification against native RBCs. We observe for all
four cases the training accuracy converges towards 100% and
the loss towards zero which means that learning overall con-
verges. However, there are distinct differences how the four
training sessions in Fig. 3A–D develop from the first to the last
epoch. For RBCs chemically modified with DA (Fig. 3A) the
validation accuracy rapidly reaches values close to 100% which
indicates that the difference between chemically modified and
native is very consistent so that learning has no need to
incorporate many different shapes and motion patterns. This
seems to be less the case for RBCs chemically modified with FA
and GA (Fig. 3B and C) where the validation accuracy develops
slower and stays at lower levels around the 90% mark. The
worst performance is achieved when training against any
chemically modified RBC (Fig. 3D) with a mix of FA, GA and
DA modified RBC videos. This shows best for the validation loss
in this case which stays at about 0.1 while any other validation
loss converges towards zero. This comes as no surprise but is
an excellent sanity check that shows that by creating very
different behaviours and shapes by combining DA, FA and GA
modified cells the algorithm finds it harder to find overall
distinguishing features between native and chemically modi-
fied. After training the 4 cases (DA, FA, GA, mixed) are then

tested with additional 100 videos which the classifier has not
seen before. The resulting testing accuracies alongside the
training and validation accuracies are shown in Table 1. The
results of the testing accuracies reflect what we found during
training: classification of RBCs chemically modified with DA
yield the highest testing accuracy of 98%, while FA and GA
reach a still respectable 93%. The detection of a mix of DA, FA
and GA results in an accuracy of just 87%.

To gain a better insight why the test accuracies between DA,
FA, GA and their mix are different, we show example videos of
the test dataset in Fig. 3E–G. Remember that we ran the four
classification tasks separately so that we have four times a
classification between chemically modified, in the 1st column,
and native, in the 2nd column. The bar charts to the left of each
overlay show the probability output of that video being native
(N) or chem. mod. (C) as predicted by the trained model. Fig. 3E

Fig. 2 Data processing pipeline. (A) Frames overlaid from a video clip with
a red blood cell moving in a microfluidic channel from left to right. (B)
Background mask created by separating the microfluidic channel (A) from
a foreground mask that contains the moving red blood cell. (C) OpenCV
library employed to perform background subtraction, resulting in a bitwise
pixel overlay that displays only the moving red blood cell. (D) TensorFlow
layers: ’Norm’: rescaling values between 0 and 1, ‘Time Distributed’: applies
a transformation on each frame in a video batch using EfficientNetB0 base
model, ’Dropout’: standard layer for preventing overfitting, ’dense’: stan-
dard dense layer, ’GlobalAvgPool3D’: standard 3D average pooling layer.
The final layer generates two outputs: one for the detection probability
of a native red blood cell and another for the chemically modified
red blood cell.

Fig. 3 TensorFlow training behaviour and results. The line charts show
the training and validation accuracy as well as the loss graphs for different
datasets: native vs. DA dataset (A), native vs. FA dataset (B), native vs. GA
dataset (C), and native vs. a mix of all modified datasets (D). Two classifica-
tion results are shown for each batch for DA vs. native (E), FA vs. native (F),
and GA vs. native (G). ‘‘N’’: native, ‘‘C’’: chemically modified. The images
shown are superimpositions of the video frames for better visualization
and illustration.

Table 1 Training, validation and testing accuracy for classifying chemi-
cally treated vs. native for DA, FA, GA and a mix of all three

Training (%) Validation (%) Test (%)

DA 99.5 99 98
FA 100 89 93
GA 100 89 93
Mix 98.5 88 87
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shows two examples of chemically modified RBCs with DA and
two videos of native RBCs used for testing. The different
lengths of the traces in the video overlays indicate different
speeds of the RBCs but these do not impact on the classifica-
tion result which stays robustly very close to 100%. The videos
with RBCs chemically modified by FA are shown in Fig. 3F and
have a slightly larger variability than the one modified by DA
which explains the lower testing accuracy compared to the ones
modified by DA. The last row shows the classification of RBCs
chemically treated with GA (Fig. 3G). This is an interesting case
where visually there is very little difference between native and
chemically modified which requires the classifier to learn more
subtle features and it certainly does: the classifier reaches a
testing accuracy of 93%.

We tested the results shown in Fig. 3 in terms of another
potential confounding factor in addition to the optical focus
mentioned. We took the 6 native and 6 modified videos from
the Fig. 3 output and plotted the distance of flight against the
average cell distance from the centre line of zig-zag channel
(Fig. 5). Both native and modified RBC values overlap in the
scatter plot, indicating that the model is not biased towards the
velocity or the position of the cell to classify the RBC.

Discussion

AI based video classification was initially developed on everyday
actions such as cycling or sports because of the vast amount of
data on social media such as YouTube.49 In medicine video
classification was first applied to pose estimation50 and then to
predict or diagnose illnesses based on behaviour such as
autism51 or cerebral palsy.52 More recently ultrasound videos
have been classified with machine learning for example to
detect cancer53 or illnesses of the heart.54 While single images
of RBCs have been classified with machine learning in the
past,20,28 video classification is extremely rare and to our
knowledge we are the first who have presented a machine
learning end-to-end approach which classifies healthy and
diseased RBCs directly from video. In this context Darrin
et al. present classification of different RBC motions such as
tank-treading and flipping which could then be used to detect
the sickle cell disease based on motion. However, in our
experiments these features occur rarely. Unlike in Darrin
et al. where sickle cell shaped cells are used, that are simple
to be identified by their shape, in our study it is generally
difficult to judge the state of a cell (native/chemically modified)
by the naked eye based on a micrograph or motion. However,
some representative examples are shown in Fig. 4 to indicate
different shapes and motions that we observe. Native cells are
often flowing relatively ‘‘smoothly’’ through the channels,
adapting their shape and undergoing a ‘‘gentle’’ tank-
treading-like motion. Generally, for chemically modified cells
a tumbling motion can be observed more often. In contrast to
Darrin et al. we do not try to classify motion patterns first, but
let the AI directly detect the modified cells. This allows the AI to
choose any other feature which is not directly related to cell-

motion. For example, for DA and FA modified cells, echinocytes
are more frequently observed, displaying an irregular, spiked
cell surface which can be also learned by our AI as it is not
limited to motion analysis. AI image analysis has been exten-
sively used in the context of RBCs but also here an intermediate
step is usually applied: while video analysis naturally used
motion as an intermediate step image analysis uses morphol-
ogy as an intermediate step and then infer from the morphol-
ogy to the illness of the RBC.

Finally, the work by O’Connor et al.55 is not specifically
about red blood cells but shows a different approach to ours
where they first classify the cells and then for temporal
sequence learning they use long-term-short-term memory
(LSTM).55

Fig. 4 Micrographs of representative video sequence shown as overlays
of 10 frames for native and chemically modified red blood cells (DA:
diamide, FA: formalin, GA: Glutaraldehyde). Moderate cell deformation
and tank-treading motion (Native). Spiked RBSs with rough echinocyte-
like surface (DA and FA), Wrinkled surface and strongly deformed RBC
with tumbling motion (GA). The velocities for the different samples were
nnative = 4.4 � 0.8 mm s�1, nDA = 6.5 � 0.4 mm s�1, nFA = 4.2 � 0.4 mm s�1

and nGA = 3.9 � 0.3 mm s�1. The scale bar is 10 mm.

Fig. 5 Scatter plot of showing the RBC residence probability20 of the RBC
(distance from the channel centre line) against the distance of flight (which
is proportional to the cell velocity). In the plot we used all RBCs shown in
Fig. 3. The channel width at its widest section is 20 mm.
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We achieve an accuracy of 98%, 93% and 93% for DA, FA GA
respectively. For the mix of all chemically modified we reached
an accuracy of 87%. For this mixture we shuffled all the frames
in each test video in order to understand the role of the
temporal factors in the video classification and reached an
accuracy of 81%. The study of Darrin et al. achieved a high
accuracy of 97% between two RBC motion patterns. However,
in a pre-processing step they discarded already 97% of unreli-
able cell sequences and used the remaining 3% for classifica-
tion. In contrast, we only discarded clips with empty frames but
otherwise drew a random selection from our pool.

It should be also stressed that a direct comparison between
their performance and our performance is strictly not possible
because we ultimately train our classifiers to detect different
categories: motion detection vs. detection of a certain chemical
modification.

Conclusions

Our label free microfluidic cytometer can distinguish to high
accuracy between native and various chemically modified RBC
suspensions. The different protocols that have been applied in
this study, control the cell mechanics in multiple ways. While
FA interconnects amino acids by methylene bridges in proteins
in the cell membrane and potentially in the cytosol, DA induces
the formation of disulphide bonds in spectrin proteins in the
plasma-membrane. In this way various changes of viscoelastic
moduli have been tested in this model system to mimic known
changes of cell mechanics as they occur in haematological
diseases and secondary disorders that affect the mechanical
properties such as diabetes mellitus or malaria. In the future we
plan to use our validated video AI based cytometer to wide-
spread diseases such as diabetes mellitus and malaria.

In our study we have used a stock video classifier as
suggested by TensorFlow to show how classification can be
achieved out of the box by approaches recommended by the
industry. Our goal was to demonstrate the feasibility of this
approach also in an industrial environment. For this reason, we
also used open-source pre-trained models to achieve very fast
training.56

Material and methods
Microfluidic device preparation

Microfluidic channels are created through the process of soft
lithography, which involves several steps.29,30 First, the channel
structure is designed using computer-aided design (CAD) soft-
ware and transferred onto a chromium mask (ML&C GmbH).
The channel itself is zigzag shaped with 20 periods of 20 mm
length, an amplitude of 20 mm and a narrowness of 10 mm. The
field of view of the camera is 230 mm � 40 mm and covers nine
periods.

Next, the pattern from the mask is transferred onto a silicon
wafer coated with a 10 mm layer of SU8-3010 photoresist
(Microchem, SU8 3000 series) using a mask aligner (MA6, Süss

MicroTec). After development with MicroposittEC Solvent, the
structured SU8 layer serves as a template for creating PDMS
(polydimethylsiloxane) moulds. The PDMS (Sylgardt 184 Sili-
cone Elastomer Kit) is poured onto the template and cured for
four hours at 75 1C. The ratio of elastomer base to curing agent
used is 10 : 1.

To establish connections for the inlet and outlet of the
channels, holes are punched into the cured PDMS moulds,
allowing for tubing attachment. Finally, the PDMS mould is
covalently bonded to a microscope slide using oxygen plasma.

RBC preparation

For our experiments, we prepared native and three different
chemically modified red blood cell samples using the following
procedure. Whole blood was purchased from Cambridge
Bioscience from screened, healthy donors (Research Donors,
Cambridge Bioscience) in accordance with the general princi-
ples set out in the Declaration of Helsinki. Samples were
washed 3� in a phosphate-buffered saline solution (PBS 1�,
pH 7.4, 330 mOsm L�1, Gibco Life Technologies). After each
wash, the sample was centrifuged at 2500 rpm for 5 minutes
using the mini spin plus centrifuge (Eppendorf), and the white
buffy coat and supernatant were carefully discarded.

For the chemically modified RBC experiments, we employed
a combination of chemicals to achieve the desired modifica-
tions. Initially, we prepared a solution by mixing 5 mL of a 37%
formaldehyde solution (final concentration of 0.37% formalde-
hyde, Sigma-Aldrich) with 485 mL of PBS. We then added 10 mL
of the RBC pellet to this formaldehyde solution and incubated
it for 10 minutes at room temperature. After incubation, the cell
suspension underwent three thorough washes to eliminate any
residual formaldehyde.

In addition to the formaldehyde treatment, we employed
two other chemicals. Firstly, to induce oxidative stress, we
created a premixed solution of 10 mL of 20 mM diamide
solution and 180 mL of PBS (final concentration of 1 mM
diamide). We then added 10 mL of the RBC pellet to this
diamide solution and incubated it for 30 minutes at 37 1C.
Subsequently, the cell suspension underwent three washes to
remove any residual diamide.

Secondly, to facilitate crosslinking, we created a premixed
solution of 20 mL of 25% glutaraldehyde with 470 mL of PBS
(final concentration of 1% glutaraldehyde). We then added 10
mL of the RBC pellet to this glutaraldehyde solution and
incubated it for 30 minutes at room temperature. Following
the glutaraldehyde treatment, the cell suspension underwent
three additional washes to ensure the proper removal of any
unbound or excess glutaraldehyde.

To prevent cell sedimentation during the experiments, we
suspended the cells in a density-matched solution using Opti-
Prep Density Gradient Medium (Sigma Life Science). OptiPrep
is a sterile non-ionic solution containing 60% (w/v) iodixanol in
water. Furthermore, to prevent cell adhesion to each other and
the microchannel walls, we incorporated bovine serum albu-
min (BSA, Ameresco) in the suspension. To achieve this, we
weighed 40 mg of BSA and added 3035 mL of PBS. The BSA mass
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concentration of this solution was 10 mg mL�1. We then mixed
it with 945 mL of OptiPrep solution. After thoroughly mixing the
solution, it was degassed for at least 15 minutes before use.

For the experiments, 5 mL of either the native or the different
chemically modified cell pellet, after the washing steps, were
resuspended in 995 mL of the density solution. This created
samples with a haematocrit of Ht = 0.5% and a density of the
solution r = 1.080 g mL�1. All experiments were conducted on
the same day as the blood collection to maintain the freshness
and viability of the cells.

The rbcs are injected into the channel using a pressure
driven system with a pressure drop of 2 kPa.

TensorFlow and Python code

TensorFlow 2.11.0 compiled from source and Keras 2.11 is
installed on an Intel Xeon E5630 2.53 GHz computer with
24 GB RAM and an NVIDIA GTX1070 graphics card. This system
is running Ubuntu 22.04 LTS and is configured with CUDA
11.8 and cuDNN 8.6.

The python code is available under https://zenodo.org/
record/8126539. To train our model to be able to distinguish
between native and chemically modified RBCs, we implemen-
ted a random selection process: where in total 200 videos were
chosen, with an equal split of 100 videos from the native
category and 100 videos from the chemically modified category.
The videos were labelled as 1 for native and 0 for the chemically
modified and then pre-processed.

During this pre-processing stage, we applied background
subtraction by utilizing the OpenCV create Background Sub-
tractor MOG2 algorithm. This algorithm leverages Gaussian
mixture-based background/foreground segmentation, incor-
porating a history of 100 and a varThreshold of 10 to effectively
separate the foreground objects from the background.

To ensure consistency, address the presence of empty
frames in some recorded videos, and optimize the efficiency
of the model training process, we subsampled each video down
to 10 frames. This reduction was accomplished by starting from
frame #50 and incrementing by 10 up to frame #140. Conse-
quently, the processed videos assumed a shape of (10, 132, 800, 3),
containing 10 frames at a height of 132 pixels, a width of 800
pixels, and 3 colours per channel. We subsequently converted
these videos into tensors, along with their corresponding labels.
The time of flight for all experiments was 20 ms.

For our neural network model, we employed the Keras
sequential model as suggested in the TensorFlow tutorial
documentation57 for video classification, which consisted of
five layers. The pre-trained EfficientNetB0 model was employed
for transfer learning approach, with its convolutional base used
for feature extraction. Its base layers are frozen to prevent it
from retraining. The following classification layers are then
added to map the extracted features to the output classes: The
rescaling layer was used to normalize the pixel values, ensuring
consistent input across frames. The TimeDistributed layer
applied the EfficientNetB0 model independently to each frame,
capturing temporal dependencies. The dropout layer was intro-
duced to mitigate overfitting, preventing the model from

relying too heavily on specific features. The dense layer facili-
tated the learning of higher-level representations, capturing
complex relationships between input frames and labels.
Finally, the GlobalAveragePooling3D layer summarized the
learned features into a concise representation, allowing for
efficient analysis and classification. We trained the classifier
end-to-end using Adam optimizer with Sparse Categorical
Crossentropy loss function.
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