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We show incredible complexity of self-assembly in mixtures
of particles or proteins adsorbed at interfaces or embedded
in lipid bilayers when electrostatic and solvent-induced
interactions are of opposite sign. Thermodynamic states with
spontaneously emerging patterns are found theoretically
and verified by simulation.
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A model for a monolayer of two types of particles spontaneously forming ordered patterns is studied
using a mesoscopic theory and MC simulations. We assume hard-cores of the same size a for both
components. For r > a, like particles attract and repel each other at short and large distances,
respectively, with the same potential u(r) for both species, and the cross-interaction is —u(r). The model
is inspired by oppositely charged particles or macromolecules with preferential solubility in different
components of a solvent that is close to a miscibility critical point, in particular by inclusions in
biological membranes. We obtain the phase diagram in the chemical potentials and temperature
variables as well as in the concentration, density and temperature variables, using the mean-field one-
shell approximation. We find that the presence of the second component significantly extends the
temperature range of stability of the ordered phases. We obtain three stable phases with periodic
concentration: the lamellar L phase with alternating stripes of the two components for similar chemical
potentials, and a hexagonal arrangement of the clusters of the minority component in the liquid of the
majority component. The latter two phases, however, are stable only at relatively high temperatures.
At lower temperatures, the L phase coexists with a disordered one-component fluid or with very dilute
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L phase can be disordered or ordered, depending on the chemical potentials. The theoretical results are
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|. Introduction

Spontaneous pattern formation in soft matter or biological
systems” ™ is often induced by competing interactions between
particles or macromolecules. Due to the presence of electric
charges, the particles or proteins repel each other at distances
determined by the screening length, but at shorter distances,
solvent-induced attraction can dominate. The attraction can
result in particular from the thermodynamic Casimir potential
induced by critical concentration fluctuations in the solvent
when it is close to the miscibility critical point.®"® An important
example of a system that is close to the miscibility critical point
is a multicomponent lipid bilayer in living organisms.>°
Because of the fluctuation-induced Casimir interactions,
membrane inclusions preferentially soluble in the same or in
different membrane components attract or repel each other,
respectively. The electrostatic interactions between charged
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confirmed by MC simulations for selected thermodynamic states.

membrane proteins were typically disregarded because the
concentration of ions in their surroundings is large,'* and
according to classical theories, the screening length should
be very short. Recently, however, it was discovered that in
concentrated ionic solutions, the screening length increases
linearly with the increasing density of ions and can become very
large.”>™ Thus, the electrostatic interactions between the
charged membrane inclusions may be important, and further
studies are required to clarify their role.

While for particular membrane proteins, the interactions
resulting from the Casimir and the electrostatic forces are not
known yet, in the case of charged selective particles in the
critical mixture with a small amount of dissolved ions, the
interactions are known very well.>'® Parallel flat surfaces
separated by distance L and immersed in the near-critical
mixture with ionic impurities interact with the potential

V(L) & Acexp(—L/&) + Ae exp(—L/ip), €))

where ¢ and /p are the correlation length of the concentration
fluctuations in the solvent and the Debye screening length,
respectively, and A¢ and 4, are the amplitudes. The amplitudes
depend on ¢ and Ap and on the charge and selectivity of the
surfaces, and their theoretically predicted forms agree with
experimental results obtained for a small amount of salt

This journal is © The Royal Society of Chemistry 2024
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present in the critical water-lutidine mixture.®'® The first term
in (1) is attractive (Ac < 0) for like adsorption preferences, and
repulsive (Ac > 0) for opposite adsorption preferences. The
second term is repulsive (A,; > 0) or attractive (4.; < 0) for like
or opposite surface charges, respectively.

For identical weakly charged and strongly selective surfaces,
the interactions can have a form of short-range attraction long-
range repulsion (SALR) when £//p < 1. On the other hand, if &/
Ap < 1, oppositely charged hydrophilic and hydrophobic
surfaces can repel and attract each other at short and large
distances, respectively. Thus, the interactions between like par-
ticles and the cross-interaction are of opposite sign. Note that in
view of the nonmonotonic dependence of the screening length
on the density of ions, the interactions can have similar features
for small and large densities. In the case of curved surfaces of
spherical particles, the exponential terms in (1) should be
divided by the particle distance L, and the double Yukawa
potential with an opposite sign of the two terms is obtained.

The SALR potential is sometimes called “a mermaid
potential” because of an attractive head and a repulsive tail.”
Such interactions are interesting because they can lead to self-
assembly into aggregates with the size determined by the shape
of the potential.>***" The models with the SALR interactions
were intensively studied using theoretical and simulation
methods in three (3D) and two dimensions (2D),"*** the latter
case being suitable for the self-assembly in quasi 2D membranes
at fluid interfaces or at solid substrates. The universal sequence of
ordered patterns for increasing density in 2D is as follows:
disordered gas — hexagonal pattern of clusters - stripes — hexagonal
pattern of voids - disordered liquid.'®2%?>2%3> In the gas and the
liquid, randomly distributed clusters and voids with well-defined
size are present. If the interactions between the membrane inclu-
sions were of the SALR form, then clusters of well-defined size
would be present. Notably, clusters of membrane proteins are
necessary for signaling and other important functions of life.*”

It is natural to ask the question how the presence of different
particles or macromolecules influences the self-assembly and
pattern formation. Mixtures of particles with competing interac-
tions having spherical symmetry, however, were much less studied.
Only recently, several models for inhomogeneous binary mixtures
were introduced and studied using theory and simulations.*®** As
far as we know, experimental studies of self-assembly induced by
the electrostatic and Casimir potentials were restricted to particles
of the same type.”**> As a result, fundamental questions such as
the symmetries of the ordered phases and the sequence of patterns
for varying chemical potentials and temperature in mixtures with
competing interactions remain open.

In this work, we attempt to fill this gap by considering a
model with the interactions inspired by the oppositely charged
hydrophilic and hydrophobic particles in the near-critical sol-
vent with £/, < 1. We assume the SALR interactions between
like particles, and the cross interaction of the opposite sign. The
model was introduced in ref. 36 and named ‘‘two mermaids and
a peacock’” model because of the mermaid potential between
like particles, and a repulsive head and an attractive tail of the
cross-interaction. We should stress that although the model is
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inspired by the oppositely charged particles or macromolecules
with different adsorption preferences for the components of the
critical solvent, it is not restricted to such physical systems, and
can be considered as a generic model for spontaneous pattern
formation in binary mixtures with competing interactions.
Similar competing interactions may have different origins in dif-
ferent mixtures, and the ordered patterns on the length scale of
nanometers or micrometers self-assembled at lipid bilayers, fluid
interfaces or solid substrates may find numerous applications.

A phase diagram for the two mermaids and a peacock model
was determined theoretically and by molecular dynamics (MD)
simulations in ref. 46 for equal chemical potentials of the two
components in 3D. It was found that a gas coexists with a dense
lamellar phase of alternating layers rich in the first and the
second component. At low temperature T, the dense phase has
a crystalline structure and the gas is very dilute. The crystal
melts upon heating, but the alternating composition is pre-
served in the liquid layers. The density difference between the
gas and the lamellar phase decreases with increasing 7.

In this work, we determine the (p, pt,, T) phase diagram for
this mixture within the mesoscopic theory in the mean-field
approximation for a broad range of the chemical potentials u;,
U, and temperature 7 for a monolayer of the particles. The
results are verified by Monte Carlo (MC) simulations for
selected thermodynamic states.

Vertical displacements of particles embedded in biological
membranes or adsorbed at fluid interfaces are typically smaller
than their radius a/2, and such monolayers can be considered as
quasi-2D systems. In simulations, we consider particles confined
in a slit of a width 1.5a that should mimic a monolayer with
average positions of particle centers on a plane, and focus on
patterns formed by the projections of the particles on this plane.
In the theoretical model, we neglect the vertical displacements of
the particles that could lead to slight modification of the internal
energy and entropy, but no extra patterns would emerge, and only
slight shifts of the coexistence lines would appear. In a 2D model,
the unnecessary complication of the calculations is avoided.

In Section IIA, we briefly summarize the mesoscopic theory
in the mean-field (MF) approximation and determine the
boundary of stability of the disordered phase in Section IIB.
The one-shell approximation and the method of obtaining the
phase equilibria are described in Section IIC. In Section III, we
introduce the interaction potential for which the theoretical
and simulation results are obtained. The theoretical results are
described in Section IVA, and in Section IVB, the representative
patterns obtained in the MC simulations are presented. In
Section V, we discuss and summarize the results.

II. Mesoscopic theory for symmetrical
binary mixtures

A. Mesoscopic grand-potential functional in mean-field
approximation

The theory for mixtures with spontaneously formed inhomo-
geneities on the mesoscopic length scale was developed in ref.
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47. Here we briefly summarize it for binary symmetrical mix-
tures of particles having the same diameter « that sets the
length unit. For simplicity of calculations, we assume that the
interaction between particles of the same component is uy; =
U, = u and depends only on distance r between the particles. In
addition, we assume that for r > 1 (in a-units), u(r) is attractive
at short distances and repulsive at large distances (SALR or
‘mermaid’ potential'”"'?). With such interactions, the particles
in the one component system self-assemble into various aggre-
gates and can form regular patterns at sufficiently low tem-
perature T.>°*'2'*® Finally, we assume that the cross-
interaction is of opposite sign, and to simplify the calculations,
we postulate that uy,(r) = —u(r) for r > 1.

For the description of the ordering on the mesoscopic length
scale, we consider volume fractions {,(r) with i = 1, 2 in the
mesoscopic regions around r. For given forms of {(r), i.e. with
neglected fluctuations on the mesoscopic length scale, the pair
distribution function for our symmetrical mixture is approxi-
mated by g;; = 0(r — 1), where 0(x) = 1 for x > 0, and 0(x) = 0 for
x < 0 is the Heaviside unit step function, and the internal
energy takes the form

1 I(dk . -

U= EJdrljdrc(rl)V(r)c(rl +r) = Ejﬁ(k) V(k)e(=k), (2)
where ¢ = {; — {5, r = |r], k = |k| and by V we denote the product
of the interactions and the pair distribution function,

6\’ 6\’

Vr)= (E) u(r)0(r — 1). The factor (E) is present because
the volume fraction rather than density is used in (2). We use the
tilde for functions in Fourier representation. At this stage, we do
not specify the form of V, and only require that V(k) takes a
global negative minimum for k = k, > 0. With such interactions,
the concentration wave with the wavenumber k, leads to the
largest decrease of the internal energy compared to the homo-
geneous state. This decrease of U competes with the decrease of
the entropy, for which we assume the same form as for the hard-
sphere mixture in the local density approximation,

-1§ = Jdr[ks T(py(r) In(p;(r)) + p(r) In(p(r)))
(3)

+fex (L(1))];

6
where kg is the Boltzmann constant, p,(r) = Eéi(r) is the local

dimensionless density of the i-th component, and { = {; + {,. The
first two terms come from the entropy of mixing, and the last
term is the contribution to the free energy associated with the
packing of the hard cores. In an open system, the last factors
determining the structure are the chemical potentials y; of the
two components.

In this MF approximation, the grand potential functional
takes in terms of ¢ = {; — {, and { = {; + {, the following form

@M (e, ) = Ul = 7S[e. 8] - [dr(u, {0 + s clr), (@)
3 3
where p, =—(u; + 1) and p_ = E(’ul — i), and U and S are

I
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given in (2) and (3), respectively. In equilibrium, ¢ and {
correspond to the minimum of Q¥[c,(] for given T, u,, and
u_. In this work, we neglect the fluctuation contribution to the
grand potential that can play a significant role for weakly
ordered phases. The role of the variance of the local concen-
tration will be studied in future works.

B. Boundary of stability of the homogeneous phase in the
mean-field approximation

At high temperature, the system is homogeneous and ¢(r) = ¢
and {(r) = {. When T decreases, oscillatory perturbations of the
concentration, ¢ — ¢ oc cos(xk,) and superposition of such waves
in different directions can induce instability of the disordered
homogeneous phase because such waves lead to the largest
decrease of U. Although the volume-fraction waves are not
directly energetically favored (see (2)), the coupling between ¢
and ( in the entropic contribution to € can support such waves.

Let us consider periodic perturbations about the space-
averaged concentration and volume fraction, ¢ and {, of
the form

or) = ¢ + dg(r), () =+ g, ()

where g(r) is a superposition of the plane waves with the wave
number k, in different directions, [, drg(r)=0 and
Vu‘leudrgz(r) = 1, with V, denoting the volume or the area
of the unit cell of the periodic structure in three or two
dimensional systems, respectively. Here, we limit ourselves to
2D patterns expected for particles confined in narrow slits or
embedded in bilayers.

In the one-component system with the SALR interactions,
stripes and hexagonal arrangement of clusters or voids were
found in the previous studies of the 2D models."®**?° In the
symmetrical binary mixture with ¢ = 0, alternating stripes of the
first and second component were observed for this type of
interactions.’® For a certain range of ¢ # 0, the hexagonal
arrangement of clusters of the minority component filling the
voids formed by the majority component can be expected based
on the layers adsorbed at a surface attracting particles of
the first species, and on the results obtained for a triangular
lattice model of a similar mixture.”®° In principle, a chess-
board pattern can occur in addition to the alternating stripes
for ¢ = 0. We assume that such patterns can be stable or
metastable in the considered mixture and shall verify this
assumption by MC simulations at different parts of the phase
space. The g(r) functions for the above patterns are shown in
Fig. 1. The mathematical formulas for g(r) describing the 2D
patterns are given in Appendix. Note that different combina-
tions of signs and magnitudes of @, ¥ can correspond to
different hexagonal patterns for the same form of g(r), namely
to clusters or bubbles in the one-component system, or to
clusters of the minority component in the liquid of the majority
component.

In the case of 2D patterns, we consider the grand potential
per unit area, o = Q"F/A. For ¢ and { of the form (5), the grand

This journal is © The Royal Society of Chemistry 2024
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Fig. 1 The contour plots of the considered forms of the g functions. (a) Stripes (L phase), (b) chess-board, and (c) hexagonal (H) pattern. The red and blue colors
correspond to g(r) > 0 and g(r) < O, respectively. Note that when the amplitude changes the sign, only the first two patterns remain the same (up to translation). In
the one-component case, the last figure represents a hexagonal arrangement of clusters, and —g(r) represents a hexagonal arrangement of bubbles.

potential per unit area takes the form
po(e.lo,v) = %[(Z +o) I+ + (- -0)
+21n G) Z} + Bl (D) + §V(0)52 Q)

- ﬁﬂJj - ﬁ:u—é + Aﬁw(a Za ¢7 T)a

where Afw is associated with the periodic deviations of ¢ and {
from the space-averaged values. Afw can be Taylor-expanded in
terms of @, ¥. In order to determine the boundary of stability
of the homogeneous phase, it is sufficient to truncate this
Taylor expansion at the second order-terms,

1 6( .
Afo = 5(@ + /W(ko)> @’

1 6( -\ o
tol———=t+ 4 b4 7

6c
(2 — )
where h.o.t. means higher-order terms, and

a0 = B2l ®)

®Y¥ + h.o.t.,

In our computations, we assume the Carnahan-Starling form
for ffi.>' At the boundary of stability of the homogeneous
phase, the determinant of the matrix of the second derivatives
of Afw with respect to @ and ¥ vanishes, and the corres-
ponding A-surface is given by

L@ =)0
¢ 1+

T;(c.0) = ; ©)

where T* = kgT/|V(ko)| is the dimensionless temperature. At the
state points (¢, {, T%) with T* < T;(¢,(), the homogeneous
phase is unstable, and either one of the periodic structures is

present, or different phases coexist. Note that when the dimen-
sionless temperature is given by the ratio of the thermal energy

This journal is © The Royal Society of Chemistry 2024

and the energy gain due to the excitation of the concentration
wave with the optimal wavelength and unitary amplitude, the A-
surface is universal, i.e. independent of the form of the inter-
actions. This universality resembles the law of the corres-
ponding states in the van der Waals theory.

It is instructive to compare 77 for the one-component
¢ (ie. with (, = T; =
/(6 + nAd1(£)0), and the symmetrical mixture with ¢ = 0 where
T; =n(/6 (see Fig. 2). Note that the ordered phases can be
present at much higher temperature when the second compo-

system with { = 0), where

nent is added. For given [, the temperature at the instability
of the homogeneous phase takes the maximum when both
components are in equal proportions. Moreover, in the one
component case, the temperature at the instability takes the
maximum at much smaller { than in the mixture with ¢ = 0,
where it linearly increases with (.

It is also interesting to analyze the A-surface in the (u_, ., T*)
variables, because in these variables, we construct the phase
diagram. From the minimum condition of the grand potential
with respect to ¢ and { in the homogeneous phase, including its
boundary of stability, we have the relations

P2 =200+ i@+ 2 n(3) +1] + 2mE - 0) (10

and

PP =2+ + PO -inC-a, ()

where the superscript D denotes the disordered phase with @ =
¥ = 0. The cross-sections of the A-surface for fixed T* = 0.15,
0.025, and 0.024 are shown in Fig. 3. We can see that at high T*,
there is a single disordered phase, i.e. there exists a continuous
path from the dilute gas of mixed components to the dense one-
component liquid. At low T%* however, the dilute two-
component gas is separated from the one-component disordered
liquid by the one-component ordered phases.

Soft Matter, 2024, 20, 1410-1424 | 1413
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Fig. 2 The J-surface in the two-component system with competing
interactions (top), and the A-line in the absence of the second component
(bottom). The dashed line in the top figure indicates the one-component
system with & = {.

0.7

C. One-shell approximation for the periodic phases

At relatively high 7* in the one-component SALR model, the
density in the ordered phases can be approximated by a
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superposition of plane waves, but for low temperatures, the
shape of ((r) — { strongly deviates from the sinusoidal
function.?" Similar behavior can be expected in the inhomoge-
neous mixture. The purpose of this work, however, is to deter-
mine the (u_, uy, T%) and (¢, {, T*) phase diagrams on a
qualitative level, and in this first study of the global phase
diagram, we restrict ourselves to the one-shell approximation (5).

In order to get the qualitative phase diagram, we truncate
the Taylor expansion of fAw in terms of @ and ¥ at the fourth-
order terms, by which the stability of the functional (6) with (7)
for T* < T7 is restored. The truncation of the Taylor expansion
is valid for small @ and ¥, and is consistent with the one-shell
approximation. The explicit expressions in the ¢* theory for the
higher-order terms in Afw (see (7)) can be obtained easily, and
are not given here.

In the stable or metastable phase, the derivative of
Bo(c, {, @, V) with fixed T*, u,, u_ vanishes. We need to solve
4 equations, 0fw/dt = 0fw/d( = VPw/0P = IPw/O¥ = 0 with fixed
T*, p, and p_ to determine ¢, {, @, and ¥ in the stable or
metastable phase for the given thermodynamic state. Two
phases coexist for the state-point 7%, u,, and u_, when Bw in
these phases takes the same value. At the minimum, in our
approximation, the grand potential per unit area takes the form

po = ~ 57O + @ - (5 + )T+ E 0
2 T 2
(Ay = {A3) n | (A3 = {Aa)is s | (Ag — (As)iy g
L R R T
3K3

3
(X272 =
+A +2Z°) 3

_(X3+Z3)+E(X4+Z4)
/| T

(12)

where k, = Vu*IJ"Vudrg”(r) are the geometric factors character-
izing different structures, 4, are defined in (8), we introduced
the notation

-9
{-¢’
and ¢, {, @, and ¥ satisfy the equations 0fw/d¢ = 0fw/d( = dfw/
0% = 0pw/d¥ = 0 for the considered state-point 7%, u,, u_. The

o+ Y
{+¢’

(13)

121 120025 0] T0024
1.0
0.2
0.8+
N
+, 061 S ., 011
=3 3.
04+ 0.0 U
U
021 -0.14
0.0+ _—_—“‘~\\\\\
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Fig. 3 The cross-sections through the Z-surface for fixed temperature. Only u* > 0 is shown because the vertical axis is the symmetry axis of the full
diagram. From the left to the right figure, T* = 0.15, 0.025, and 0.024. U and S refer to unstable and stable disordered phase, respectively. T = kgT/|Viko)|,

_ 3
and pt = py/|V(ko)|, where puy = =(u; £ u,), and y; is the chemical potential of the i-th species.

T
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explicit forms of the above equations in our approximate ¢*
theory are given in Appendix.

Our general framework with ¢ < { includes the symmetrical
case with ¢ = 0 already studied in ref. 46, as well as the one
component case with {, = 0, i.e. { = ¢, studied in ref. 48.
Determination of ¢, {, ®, and ¥ in the one-shell approximation
for given T*, u,, u_ and x, is in principle an easy algebraic
problem. However, as can be seen from (6) and (7), when ¢ — {,
singularities in Afiw appear. In the one-component system, we
have @ = ¥ in addition to ¢ = {, and the singularities present in
individual terms cancel out, giving the grand potential of
the form

o — BTN + g<g In(20) +1In Gg)) B

— B + ABor, (14)
where [i; = yy + u_ and
spon (4 D) - 1) = (5 - ) )0
(15)
Kqf 12 -
+ 4—‘!‘(R—Z3+ A4(C)) ot

The expressions for ® and { with fixed T* and fji, are given in
Appendix.

Note that when a small amount of the second component is
added, (i.e. ¢ — ), the coefficients of the individual terms in fw
are very large (see (7)). We introduced X and Z (see (13)) and
transformed the original Taylor expansions to the form where
the dependence on 1/({ — )" is through z" = [(¥ — ®)/({ — o).
Since we expect & — ¥ for ¢ — {, our expression (12) and
formulas in Appendix are suitable for numerical calculations.

l1l. Interactions

We choose for the interaction u(r) between particles of the same
species the hard-core repulsion plus the double Yukawa
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potential,

exp(—kir) K exp(—xar)

=-K
u(r) ! r r

(16)

with K; =1, K, = 0.2, k; =1 and k, = 0.5. The interaction between
particles of different species is uy,(r) = —u(r) for r > 1. The
potential (16) will be used in simulations verifying and illus-
trating our results.

As discussed in Introduction, the double-Yukawa form is
inspired by oppositely charged particles with different adsorp-
tion preferences for the components of the near-critical binary
solvent. The parameters of the effective potential in such
physical systems can be finely tuned by changing temperature,
salinity of the solvent, as well as charge and adsorption proper-
ties of the particles. We choose the parameters leading to
relatively large thickness of the self-assembled aggregates.
The correlation functions in the disordered phase were calcu-
lated for the same parameters in ref. 36 in the 3D system.

As discussed in Sections IIA and B (see (2), (6) and (7)),
the phase diagram in our one-shell approximation depends
only on 3 parameters characterizing the interaction potential
in Fourier representation, k,, V(k,) and V(0) (recall that

2

V(r)= <g) u(r)0(r — 1)). n/k, characterizes the size of self-
assembled aggregates, and |V(k,)| sets the temperature scale.
The last parameter, V/(0) = [dr¥(r), determines whether in the
absence of periodic patterns, the homogeneous mixed phase
(for V(0) > 0) or separated homogeneous components (for
V(0) < 0) are energetically favored. For the interaction (16),
the relevant parameters take the values: k, ~ 0.6088, V(ky) ~
—10.092, V(0) ~ —0.363. With the chosen interactions, the size
of the clusters is n/k, &~ 5, and separation of the homogeneous
components is energetically favored over the homogeneous
mixture. The function u(r) in the real space and the function
V(k) in Fourier representation are shown in Fig. 4.

V()

64

-84

-10 .
0 1 2 3 4
k

Fig. 4 Left: The interaction potential u(r) in the real space in units of the attraction strength (see (16)). Note the deep minimum at short distances and low
but broad maximum for large distances. The repulsive part of the potential, u(r) > 0, is shown in the inset. Right: The Fourier transform (k) of V' (r) =

2

thickness 1.5a, therefore the Fourier transform is calculated for a 3D system.

This journal is © The Royal Society of Chemistry 2024

(g) u(r)0(r — 1) (see egn (2)). The length unit is the particle diameter a, and k is in 1/a units. In simulations, the particles are confined to a 3D slit with the
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V. Results

In this section, the results are presented in reduced units. The

length unit is the particle diameter a, the dimensionless tempera-

ture is T* = kgT/|Wko)|, and the chemical potentials are
- 3

W= py/|V(ko)|, where p, ==(u; +p,) and p; denotes the
T

chemical potential of the i-th species (see eqn (4) and below). Recall

that W(k,) is the energy gain due to the excitation of the concen-

tration wave with the optimal wavelength and unitary amplitude.

A. Theoretical results

We first present the phase diagram in the one-component system.
Next, we show the estimated (¢,7*) diagram for the fixed large value
of { and relatively large T* based only on the minimization of Afw
with respect to @ and . Finally, we present the (u* , 1',) diagrams
for a few selected temperatures, obtained from the minimization of
P for fixed u* , y*. and T*. The corresponding (¢, {) diagrams are
shown too. We choose T* above and below the boundary of
stability of the homogeneous phase in the one-component system.
Our results are verified by MC simulations, and representative
configurations are shown for selected state points.

The sequence of ordered phases in the one-component
system was previously determined using our mesocopic theory
by considering only the excess grand potential associated with
periodic oscillations of the volume fraction, Afw, (see (15)).
Here, we take into account different densities in the coexisting
phases. The obtained phase diagram is shown in Fig. 5. Note
that the two-phase regions are quite narrow.

View Article Online

Paper

Following the one-component case, we construct the (¢,T*)
phase diagram for fixed { based on the minima of Afw, which
can be done easily. In Fig. 6, the diagram obtained by the
minimization of Afw with respect to @, ¥ for fixed ¢, { is
presented for { = 0.4 and T* > 0.08. Importantly, this proce-
dure can give the correct sequence of the ordered phases when
the concentrations and densities in the coexisting periodic
phases are similar. We verify the diagram shown in Fig. 6 by
the minimization of the grand potential with fixed 7, u’, u* .
The diagrams obtained in this way are shown in Fig. 7-9, for
fixed T* higher than the temperature at which the one-
component system forms ordered patterns.

As can be seen in Fig. 7 and 8, the diagram obtained by the
minimization of Afw as shown in Fig. 6 is qualitatively correct
for T* = 0.15 but incorrect for T* = 0.1. For T* = 0.1, the
hexagonal phase is absent at { = 0.4, and instead of it, a two-
phase coexistence region between the L and D phases is
present. Thus, by disregarding the different values of ¢ and
in the coexisting phases, one can obtain a wrong sequence of
the stable phases. Minimization of fw with fixed chemical
potentials, where ¢ and { in the coexisting phases can be
different, is necessary to get a qualitatively correct phase
diagram in the self-assembling mixture.

For the illustration of the structure of the L and H phases,
we choose T* = 0.1, u* = 0.35, and several values of y* , namely
w* =0.001 inside the stability region of the L phase, u* = 0.08
at the L-H phase coexistence and ¢ = 0.111 at the H-D phase
coexistence. The volume fractions of the two components in
the L and H phases at the above state points are shown in
Fig. 10 and 11. In both phases, |®| > |¥|, ie. mainly the
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Fig. 5 The phase diagram in the one-component SALR system obtained by minimization of the grand potential (egn (14)). In panels (a) and (b), the
diagram in the (u*,T*) and ({,T*) variables is shown, respectively. Dy, He, L1, Hp and D denote the disordered gas, hexagonal pattern of clusters, stripes
separated by empty layers, hexagonal pattern of bubbles and disordered liquid, respectively, shown schematically in panel (c). { is the average volume
fraction, T* = kgT/|V(ko)| and pu* = Eu/W(ko)\, where p denotes the chemical potential.
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Fig. 6 The (&, T*) phase diagram obtained by minimization of Afw (see eqn (6)) with respect to @, ¥ in our ¢* approximation for { = 0.4. D, H, and L
denote the disordered phase rich in the majority component, the hexagonal phase of clusters of the minority component in the liquid of the majority
component, and the lamellar phase of alternating stripes of the two components, respectively. In the schematically shown structures of the phases, the
blue and red spheres represent the first and the second component particles, respectively. T* = kBT/|\7(kO)| and & = {; — { with {; denoting the average

volume fraction of the i-th component.

concentration oscillates. Moreover, in the L-phase, ¢ is quite
small, meaning rather small asymmetry between the stripes
rich in the first and the second component even at the coex-
istence with the H or D phases, where the largest asymmetry
between the stripes takes place (see Fig. 10).

The diagram for temperature low enough for ordering of the
one-component system is shown in Fig. 12 for T* = 0.02. We
can see that the L phase with oscillating concentration coexists
with very dilute gas (almost vacuum) for i < — 6, and with the
liquid of the first component for u* > 7. In the corner with
W, = —6.8, u* = 6.8, the L phase with oscillating concentration
coexists with the one-component ordered phases stable
between the parallel lines p’ =~ uj, —pu*, where pj; is the

0.08

0.04 0.12

*

i

chemical potential of the first component at the coexistence
between the one-component ordered phases. We verified that
for the considered temperatures, the chess-board pattern was
only metastable.

B. Simulation results

To verify and illustrate our predictions, we performed MC
simulations in the uVT ensemble. The purpose of this study
was to check if the patterns obtained in our MF theory indeed
occur in some part of the phase space, and if these are the only
patterns that can be present in the considered mixture. For this
purpose, we chose hard spheres with the same diameter a that
sets the length unit, u;4(r) = uyy(r) = u(r) = — uy,(r) and the

0.40

0.38 1

0.36 1

0.34

0.32 1

Fig. 7 The cross-sections through the phase diagram for fixed temperature T* = 0.15. Only u* > 0 and ¢ > 0 are shown because the vertical axes are

the symmetry axes of the full diagrams. The left and right figures show the diagram in the (ui,yi) and (¢, {) variables, respectively. The dashed lines in the

right figure are the tie lines. L, H, and D denote the lamellar (stripe), hexagonal and disordered phases, respectively. T* = kgT/|V(ko)| and W= py/| V (ko))

3 . ) ) . ) s B . ) .
where p, = E(”‘ + u,), and y; is the chemical potential of the i-th species. ¢ = {; — {; and { = {; + (> with {; denoting the average volume fraction of the i-

th component.
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Fig. 8 The phase diagram in the chemical potentials (uguj) (left) and in concentration-volume fraction, (¢, ) (right) for T* = 0.1. L, H, and D denote the

lamellar (stripe), hexagonal and disordered phases, respectively. The symbols indicate the state points for which the volume fractions {; and {, are shown
in Fig. 10 and 11. The dashed lines in the right panel are the tie lines. In the D phase coexisting with the H and L phases, { > &, i.e. D contains some amount
of the second component. The short red line is a piece of the line ¢ = {; the region with { < ¢ is unphysical. T* = kgT/|V(ko)| and i} = p./|V (ko)|, where
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Fig. 9 The phase diagram in the chemical potentials (pi,,uj) (left) and in the concentration-volume fraction, (&, {) (right) for T* = 0.05. The dashed lines
in the right figure are the tie lines. The red bar lies on the { = ¢ line, meaning that the L phase coexists with pure one-component fluid, except from very

small &, where { > € (invisible on the plot). The region with { < & is unphysical. T* = kgT/|V(ko)| and 1. = p./|V (ko)|, where i, = 3(/11 + u,), and y; is the

T

chemical potential of the i-th species. ¢ = {; — {> and { = {; + {, with {; denoting the average volume fraction of the i-th component.

double Yukawa potential (16) for u. The cut-off radius was 15a.
This distance was chosen because the potential energy of pairs
separated by 15a is less than 10~°.

In the simulations, the particles can be displaced, destroyed
or created. The acceptance probability for both these moves is
determined using the Metropolis criterion min[1,exp(—fAU)],
where AU is the change of the total energy due to a trial move.
In a creation trial move, a new molecule is created at a random
location in the simulation box with volume Vi, with the
acceptance probability min[1,z; exp(—SAU)V,/(N; + 1)], where z;
is the configurational activity of species i defined by z; =
exp(—pu)/Ii’ and I; is the de Broglie thermal wavelength; in a
deletion trial move, a molecule is randomly chosen
and deleted from the system with the acceptance probability
min[1,N; exp(—BAU)/(z;V)].>>>

In all the simulated cases, the initial configurations were
with around one hundred of particles, randomly distributed in

1418 | Soft Matter, 2024, 20, 1410-1424

the slit. Higher densities as initial configurations were tested as
well, and the final mean density was the same.

In order to simulate quasi-2D systems such as inclusions in
biological membranes, we considered a simulation box with
the edges L,, L,, and L,, with L, = L, = 80q, (in some cases L, =
L, = 45a to speed up the simulations), and applying periodical
boundary conditions with the minimum image convention in
these two directions. We verified that the mean density and the
observed patterns were independent of the system size when
the side of the simulations box was larger than 30a. In the z
direction, however, the particles were confined by impenetrable
hard walls and L, = 1.5a. Each system has run 10° MC steps for
equilibration and 5 x 10> MC steps for production. A larger
number for production was not necessary because the average
results were stable with this number of simulated steps.

We performed simulations along several paths in the phase
space (uj, s, T*). In the first family of paths, uj = u3, and in

This journal is © The Royal Society of Chemistry 2024
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Fig. 10 The volume fractions {3(x,0) (blue solid line) and {»(x,0) (red dashed line) in the L phase in the direction x of the density oscillations for T* = 0.1
and p} = 0.35. In the left and right figure, u* = 0.001 (in the middle of the stability region of the L phase, red square in Fig. 8) and u* = 0.08 (at the
coexistence with the H phase, green circle in Fig. 8), respectively. Negative volume fraction is the artifact of the one-shell approximation. T* = kgT/|V(ko)|

_ 3
and p} = py/|V(ko)|, where py = =(u; £ 1), and y; is the chemical potential of the i-th species. Distance is in units of the particle diameter a.

T

Cibo

Fig. 11 The volume fractions {i(x,y) and {x(x,y) of the first and the second component, respectively, in the H phase. Left and central panels: At the
coexistence with the L phase with T = 0.1, u, = 0.35, u* ~ 0.08 (green circle in Fig. 8). Right panel: At the coexistence with the D phase with T* =
0.1, wi ~0.35, u* ~0.111 (blue diamond in Fig. 8). Negative volume fraction is the artifact of the one-shell approximation. In the right panel, {;(x,0) (blue

solid line) and {»(x,0) (red dashed line) are shown in the same plot for comparison. T* = kgT/|V(ko)| and u’. = . /|V (ko)|, where p, = 3(y1 + uy), and g is

T

the chemical potential of the i-th species. Distance is in units of the particle diameter a.

the second one pj was fixed, and yu; varied. The obtained
patterns generally agree with our theoretical predictions. In
particular, for the same region of the chemical potentials, the
clusters of the minority component appear at higher 7* than
the symmetrical stripes.

Representative snapshots are shown in Fig. 13-15. In Fig. 13,
we show the disordered phase with mixed components,
whereas in Fig. 14, the disordered liquid rich in the first
component is shown. In the symmetrical mixture, we show
how the structure evolves for increasing density, i.e. for decreas-
ing T*. Note the increasing inhomogeneity of the concentration
for increasing density. For ¢ > 0, the self-assembly of the
minority component into clusters occupying the voids present
in the majority component is clearly seen in Fig. 14. The
number and size of the clusters decrease for increasing
u* = uj — u3, and the formation of the pure one-component
liquid can be observed.

In Fig. 15, we show the alternating stripes of the two
components for ¢ = 0, and clusters of the minority component

This journal is © The Royal Society of Chemistry 2024

for ¢ > 0. The stripes can be interpreted as the L phase with
some defects that are typically present in the experimental
lamellar phase as well. The clusters shown in Fig. 15 show
hexagonal order with some displacements of the clusters. This
snapshot (as well as several other ones) suggests that the ordered
H phase can occur in the true equilibrium state in this region of
the phase diagram at the level of ensemble-averaged densities.

In Fig. 16, we present an example of the potential energy and
the volume fraction as functions of the chemical potential.
Because of the finite system used in simulations, instead of
discontinuities, we obtained a continuous function with a very
large slope at the transition.

In principle, one could also expect a chess-board pattern
(see Fig. 1, central panel) or chains of particles separated by
empty spaces, observed in ref. 50 for the lattice version of the
model but with ¥(0) > 0. We did not see such ordered patterns
in MC simulations of our model (16), except from the local
chess-board pattern shown in Fig. 13. In the theory, we found
that the chess-board structure was metastable.

Soft Matter, 2024, 20,1410-1424 | 1419
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Fig. 12 The phase diagram in the chemical potentials plane (y*_,yi) (left) and in the (¢, ) plane (right) for T* = 0.02. The L phase with parallel stripes of
alternating components coexists with the disordered gas (Dg) and the disordered liquid rich in the first component (D)), and with periodic phases in the
one-component system between the two triple points L-Dg—H. and L-H,-D,, where H. and Hy, denote the hexagonal pattern of clusters and bubbles,
respectively, and L, denotes the one-component lamellar phase with stripes separated by empty layers. The structure of the odered phases is shown
schematically in Fig. 5 and 6. In the inset in the left panel, the bottom-right corner where the ordered phases in the one-component system are stable is
expanded. The dashed lines in the right panel are the tie lines. The u* < 0 part of the diagram is not shown because u7 is the symmetry axis. T* = kgT/
[Vko)l and . = p /| V (ko)|. where . = %(ﬂl + 11,), and y; is the chemical potential of the i-th species. € = {; — {, and { = {; + {, with {; denoting the
average volume fraction of the i-th component.

Fig. 13 Representative snapshots for equal chemical potentials uj = p5 =, = —0.095 showing the inhomogeneous disordered structure for
increasing density. From the left to the right figure, T* = 0.03, 0.023, and 0.021, respectively. T* = kgT/|Vlko)l and w} = u./|V(ko)|. where

3
Hy = E(H' + u,), and y; is the chemical potential of the i-th species. The blue and red circles represent the first and the second component particles,

respectively.

Fig. 14 Representative snapshots for different chemical potentials showing the liquid rich in the first component for T* = 0.028. From the left
to the right figure, uj =—0.019,-0.019,-0.076 and 5 = —0.057,—0.076, —0.265, respectively. T* = kgT/|Vlko)l and ui = p./|V(ko)|. where
Hy = %(Hl =+ 1), and p; is the chemical potential of the i-th species. The blue and red circles represent the first and the second component particles,
respectively.
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V. Discussion and summary

We have found that when two types of SALR particles are mixed
together and the cross-interaction is repulsive at short separa-
tions and attractive at large separations, then ordered patterns
can be formed up to much higher temperature than in the one-
component system. This conclusion concerns the class of

models with the interactions u;,(r) = —u;(r), such that V(r) =

2
(g) u;(r)0(r — 1) takes in Fourier representation a global

minimum for k, > 0. According to our MF stability analysis,
the disordered phase in the one-component system looses
stability with respect to periodic ordering at the largest tem-
perature 7 ({,{) ~ 0.0247 for { ~ 0.15. For the same density of
each component in the mixture (for ¢ = 0), the temperature at
the instability of the disordered phase is 75(0,0.3) ~ 0.16, i.e. it
is much higher. Our /-surface depends on the interaction
potential V only through the temperature scale set by |V(ko)|.
Based on this universality, we conclude that it is much easier to
obtain self-assembled ordered structures in a mixture with the
two mermaids and a peacock interactions than in the absence
of the second component.

Ordered patterns are observed at higher temperature in the
case of the binary mixture because when regions occupied by
the first component are separated by regions occupied by the
second one (the L and H phases), the energy gain is larger than
when the first component-occupied regions are separated by
voids (the L; and H,, Hy, phases). This is because in the mixture,
in addition to the lack of repulsion between like particles, the
attraction between different ones is present. As a result of lower
energy of the ordered pattern, the ordered phase can be stable
at higher temperature.

Interestingly, the presence of the second component may
significantly influence the self-assembly and pattern formation
for different forms of interactions as well. For example, tem-
perature at the onset of clustering increases when hard spheres
attracting the SALR particles are added.”® Thus, it will be

Fig. 15 Representative snapshots of dense patterned structures. Left
panel: T* = 0.015, i} = u5 = u* = —0.11. Right panel: T* = 0.028, i} =
—0.076 and p5 = —0.17 (u%, = —0.123, yu* =0.047). T* = ksT/IV(ko)| and
wh = py )|V (ko)|. where uy = %(Ill =+ u,), and y; is the chemical potential

of the i-th species. The blue and red circles represent the first and the
second component particles, respectively.

This journal is © The Royal Society of Chemistry 2024
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particles, respectively.

interesting to investigate the effect of different forms of cross-
interactions on spontaneous pattern formation.

In our theory, apart from the temperature and chemical
potentials’ scale set by |V(k)|, the phase diagram depends
on the interactions only through the single parameter ¥(0)
(see eqn (12)). This means that our results, when expressed in
terms of dimensionless variables, should concern all versions
of the two mermaids and a peacock model, in which the
integral of V(r) takes the same value. We considered interac-
tions such that 7(0) = —0.363 < 0 (V(0)/|V(ky)] ~ —0.036),
leading to rather large clusters.

For equal chemical potentials, alternating stripes of the first
and the second component of the width n/k, were obtained in
the previous theoretical and simulation study of a 3D system.*®
The natural question was how this structure evolves upon
changing the chemical potentials or temperature. Our results
show that in 2D systems, the phase with alternating stripes of
the two components is stable only up to a quite small density
difference of the two components, |¢| « , for all temperatures
studied (Fig. 7-9 and 12). When the density in the stripes of the
second component decreases to about 0.7 times the density in
the stripes of the majority component, a first-order transition
to a phase poor in the second component takes place (see
Fig. 10 for {; at the L-H phase coexistence).

At low T*, the L phase is very dense and occupies a small
region in the (¢, {) diagram (see Fig. 9 and 12). The density in
the L phase at the coexistence with the dilute gas decreases
from very large values to rather small values upon increasing T*
(see Fig. 7 and 8).
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One could expect that upon increasing the chemical potentials’
difference, a transition from the L phase to the H phase with
clusters of the minority component in the liquid of the majority
component would occur because of relatively similar ¢ and { in
the two phases. We found out, however that at low T*, the L phase
coexists with the phase rich in the first component, either
disordered for large 7 , or ordered for u* =~ —pu7 . This is because
the H phase appears only at relatively large 7%, and its stability
region on the (u*,u’) plane increases with increasing T*. We
should stress that the jump of ¢ or { in the coexisting L and Dy,
H,, L,, Hy, and D, phases is very large, and that the density in the
H,, L;, and H;, phases is significantly smaller than the density of
the L phase coexisting with them (see Fig. 12).

We should note that in the model, the interaction potentials
are fixed, i.e. they depend only on the distance between the
particles, whereas in particular systems, the effective interac-
tions may depend on the thermodynamic state. For example,
the range of the Casimir potential induced by concentration
fluctuations in the near-critical solvent depends sensitively on
temperature. Our results, however, shed light on the possible
ordered phases, and on the coexistence between them.

Let us finally comment on the validity of the phenomenolo-
gical Landau-Brazovskii (LB) functional® that correctly pre-
dicts the sequence of the ordered phases for the SALR particles
and for the block copolymers, where the order parameter
was identified with the excess density and concentration,
respectively. The same sequence of phases for increasing ¢
would be predicted by the LB functional for the two mermaids
and a peacock model in the case of fixed density. We have
found, however that for our model, the LB functional can be
valid only for relatively high temperatures (see Fig. 6-9). For
lower temperatures, however, predictions of the LB functional
are qualitatively incorrect. It is necessary to take into account
different densities and concentrations, and equal chemical
potentials and pressure are required in the coexisting phases,
as done in this work.

We conclude that although the ordered patterns are rela-
tively simple, the phase diagram in the considered mixture is
quite complex. We expect that the topology of the phase
diagram will remain the same for various shapes of the inter-
actions having the property ¥(0) < 0. The question how the
phase diagram changes when the long-range repulsion between
like particles is strong, such that ¥(0) > 0 and small aggregates
are formed, will be a subject of our future studies.

Author contributions

Conceptualization: AC; formal analysis: OP, AM, AC; investigation:
OP, AM, AC; methodology: OP, AM, AC; software: AM; visualiza-
tion: OP, AM, AC; writing - original draft: AC, OP, AM, writing -
review and editing: AC.

Conflicts of interest

There are no conflicts to declare.

1422 | Soft Matter, 2024, 20, 1410-1424

View Article Online

Paper

Appendix
A. The g functions and the geometric factors

In the lamellar, hexagonal and chess-board phases, the g(x,y)
functions take the following forms, respectively:

g5 (r) = V2 cos(kpx) (17)

gl(r) = \@ |:COS(ka) + 2cos (l%) cos (ﬁzkby>} (18)

gP5(r) = cos(kpx) + cos(kyy) (19)
The corresponding geometric factors are:
L_ L3
K3 = 07 K4 -5 (20)
2
2 5
9
K<3:hess 0’ thess — Z (22)

B. Expressions for ¢, {, @, and ¥ in our MF approximation

In the binary mixture, the minimization of the grand potential
per unit area, as expressed through eqn (6), with respect to {, ¢,
@ and ¥ gives in the ¢* MF approximation

A K3 A K4 A
_p,D 32 374 y3 45,4
ﬁu+—ﬁu++7‘l’+ 3!‘1’—1—4!‘1’ o)
23
3.2 2 K303 3y K4, g 4
5 (X 2+ 2 4 2 - 2,
B = B2 — (X = 2 + 200 - 2) -yt 7
- - 2rn T 4n ’
(24)
A A
A2?’+K32 Sy K43| 4 +%(X+Z) —32—';3(X2 + 72
7 (2s)
—%(X3+Z3):0
and
1 3 3K3 2 o) Kg 3 3

In the above formulas, the Taylor-expansion of fw in @ and¥
was truncated at the fourth-order terms, fu? and pu° are
given in (10) and (11), respectively, and X and Z are defined
in (13). Solutions of (23)-(26) determine ¢, {, @, and ¥ for given
T* 1y, and p_.

C. One-component SALR system

In the one-component SALR system, the amplitude of the
volume-fraction oscillations and the average volume fraction
satisfy at the minimum of fw the following equations in our
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MF ¢* theory
K[ 12 - L) 6 _
g (n@ + A4(C))<D - (nzz - A3(C)>4>
(27)
6 - 1
+TE—Z+A2(() _2T* =0

and

v = 2(n(3) +1) + 4@ + 70X
6 A\ @ K12
— (R—Z2*A3(Q)>7+3_?<E_Z3+

K4 9 =
(- as0)e

A4(Z))¢>3 (28)
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