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A computational study of cell membrane
damage and intracellular delivery in a
cross-slot microchannel

Ruixin Lu, *ab Peng Yu c and Yi Sui *b

We propose a three-dimensional computational framework to simulate the flow-induced cell membrane

damage and the resulting enhanced intracellular mass transport in a cross-slot microchannel. We model

the cell as a liquid droplet enclosed by a viscoelastic membrane and solve the cell deformation using a

well-tested immersed-boundary lattice-Boltzmann method. The cell membrane damage, which is

directly related to the membrane permeability, is considered using continuum damage mechanics. The

transport of the diffusive solute into the cell is solved by a lattice-Boltzmann model. After validating the

computational framework against several benchmark cases, we consider a cell flowing through a cross-

slot microchannel, focusing on the effects of the flow strength, channel fluid viscosity and cell

membrane viscosity on the membrane damage and enhanced intracellular transport. Interestingly, we

find that under a comparable pressure drop across the device, for cells with low membrane viscosity,

the inertial flow regime, which can be achieved by driving a low-viscosity liquid at a high speed, often leads

to much larger membrane damage, compared with the high-viscosity low-speed viscous flow regime.

However, the enhancement can be significantly reduced or even reversed by an increase of the cell

membrane viscosity, which limits cell deformation, particularly in the inertial flow regime. Our computational

framework and simulation results may guide the design and optimisation of microfluidic devices, which use

cross-slot geometry to disrupt cell membranes to enhance intracellular delivery of solutes.

1. Introduction

Intracellular delivery, which refers to the process of introducing
exogenous cargoes such as small-molecular drugs, nucleic
acids or synthetic nanoparticles into living cells, has drawn
increasing attention due to its ground-breaking applications
ranging from mRNA vaccines, preparation of CAR-T cells for
cancer treatment, to genetic engineering of plants.1–5 To
enhance the internalisation of foreign cargoes in cells, various
approaches have been proposed, which are commonly classi-
fied into carrier-mediated and membrane disruption-based
methods.4 The former uses carriers, in various forms including
viral vectors, liposomes or cell-penetrating peptides to deliver
encapsulated cargoes into cells using their pathways such as
infection or fusion.1,6,7 Membrane disruption-based methods
often apply external energy, e.g., in an electrical, thermal or

mechanical form, to cells to create structural damage including
pores and ruptures in the cellular membrane, enabling foreign
cargoes dispersed in a solution to enter the cells.8–10 While
carrier-mediated delivery strategies are limited in the types of
cargo–carrier combinations that can be used in specific appli-
cations, membrane disruption-based methods are nearly uni-
versal, allowing for the delivery of almost any cargo that can be
dissolved in a solution.1

Amongst the numerous membrane disruption-mediated
intracellular delivery methods, microfluidic-based membrane
disruption, such as cell squeezing through a narrow
channel11–13 or cell stretching in a micro cross-slot,10,14 have
been particularly promising, for their simplicity and superior
capabilities in precisely controlling the flow condition and fluid
stresses, high processing throughput rate, and potential for
fully automated systems.1,4,15 In those systems, cells are flown
through and deformed in well-defined flow geometries, where
the cell membrane is disrupted largely via two mechanisms:
mechanosensitive (MS) channel opening and membrane pore
or rupture formation (i.e., membrane damage).

MS channels that form in the lipid bilayer of the cell
membrane are mainly gated by membrane tension, introduced
by cell deformation, and therefore their opening and closing
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can be controlled by the ambient flow strength.16 Exogenous
cargoes can be transported through the membrane during the
opening state of MS channels.11 When cells undergo significant
deformation, the cell membrane can be damaged through the
formation of nano/micro pores or ruptures,17–21 leading to
enhanced membrane permeability to exogenous substances.
Unlike MS channels, whose opening and closing are almost
instantaneously determined by the transient membrane ten-
sion, membrane damage could last for seconds or minutes
before the membrane reseals.11,22

Despite recent developments and the success of
microfluidic-based techniques for membrane disruption-
mediated intracellular delivery, numerical simulation of the
problem at the single cell level, taking into account the flow-
induced cell deformation, membrane damage and the asso-
ciated mechanical weakening, as well as the solute transport
inside and around the cell with spatial resolution, is still at a
very early stage. Amongst the relevant pioneer studies, Liu and
co-workers have built a comprehensive three-dimensional (3D)
model which considers the cell deformation using an
immersed boundary method.23–27 The cell membrane damage
depends on the local strain and is predicted using molecular
dynamics. The membrane damage leads to enhanced
membrane porosity, and the cross-membrane mass transport
is resolved using a 1D mathematical model. Specifically, the
comprehensive model takes into account the recovery of the
membrane damage, on a time scale of several minutes. With
the model, the group considered the intracellular drug delivery
by rapid squeezing in a constricted channel,26 and various
other problems such as haemoglobin release from red blood
cells.24,26 Luo and Bai28 considered the release of a diffusive
solute from an elastic microcapsule flowing through a con-
stricted channel. The mass transport was resolved by the
convection–diffusion equation, and the diffusion coefficient
at the membrane was assumed to depend on the membrane
tension through an exponential equation. Misbah and co-
workers pioneered the coupling of cell deformation and
membrane MS channel opening for numerical simulation of
cross-membrane solute transport.29–32 In their model, the
membrane permeability depends on the local membrane stress
and the temporal evolution of the membrane curvature. They
employed a lattice Boltzmann model for the mass transport and
developed a highly efficient approach to deal with the three
different types of boundary conditions at the deforming cell
membrane. The method has been used to study ATP release
from RBCs flowing in microchannels29–31 and capillary
networks.32

In the studies mentioned above, the effect of the cell
membrane viscosity, which has been shown to play important
roles in the transient cell deformation,33–38 has not been
considered. Besides, the models often neglect the membrane
mechanical degradation (i.e., reduction of strain energy den-
sity) as a result of the membrane damage. In the present study,
we develop a comprehensive computational framework to take
into account those important factors. We consider the cell
using a recent mechanical model that has been verified against

flow experiments conducted on human leukaemia cells in a
constricted microchannel. The model takes into account
both the cell membrane elasticity and viscosity. The fluid
flow and cell deformation are simulated using a well-
tested 3D immersed-boundary lattice-Boltzmann method
(LBM). We employ continuum damage mechanics (CDM)
to model the evolution of cell membrane damage, caused by
flow-induced deformation, and its effect on membrane
mechanical degradation. The CDM approach has been widely
used for simulating the damage process of biological tissues
and bioartificial microcapsules.39–42 The cell membrane per-
meability depends on the membrane damage, and the trans-
port of the diffusive solute across the deforming cell
membrane, inside and outside the cell, is solved using a
lattice-Boltzmann model.

We consider the flow-induced cell deformation, membrane
damage and associated transport of a diffusive solute into a cell
flowing through a cross-slot microchannel. The channel geo-
metry has been successfully applied to disrupt the cell
membrane to enhance the intracellular delivery of agents
including dextran, DNA and mRNA with high throughput (up
to 106 cells per min),10,14 as it can generate a strong extensional
flow with a stagnation point at the centre of the cross-slot
region. At high flow speeds when the inertial effect becomes
important, the extensional flow transits to a spiral flow.43,44

Despite the great success in practical applications, there are
still a number of fundamental open questions. In the context of
generating membrane damage to enhance intracellular deliv-
ery, experiments can be conducted in either the inertial or
viscous flow regimes, with comparable pressure drop across the
whole device. The inertial flow can be achieved by driving a low-
viscosity suspension through the channel at a high speed, while
the viscous flow regime features a high-viscosity medium
flowing at a low speed. Which regime is more effective in
mechanically disrupting the cell membrane and enhancing
cross-membrane mass transport? What are the effects of cell
membrane properties, in particular the membrane viscosity, in
this process? The present study aims to address those open
questions.

This paper is organised as follows: the flow geometry, the
governing equations and the main dimensionless parameters
are detailed in Section 2; the numerical methods and their
validations are presented in Section 3. In Section 4, we present
the findings of our study on cell deformation, membrane
damage, and intracellular mass transport of a cell flowing
through a cross-slot microchannel under various flow regimes.
We then conclude the paper in Section 5.

2. Problem statement

We consider the cell deformation, membrane damage, and
intracellular mass transport as a cell flows through a
cross-slot microchannel, which is illustrated in Fig. 1. The
four branches of the inflow and outflow channels all have
a constant square cross-section with a side length of 2l.
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A three-dimensional Cartesian coordinate is defined with the x-
axis along the inflow channel branches, the z-axis along the
outflow branches, and x = y = z = 0 at the centre of the channel
cross-slot. The fluid flow is governed by the Navier–Stokes
equations, and the inlets Si1, Si2 and outlets So1, So2 are set
with fully developed laminar flow profiles and have the same
flow rate Q. A no-slip boundary condition is imposed on the
channel walls.

The cell is initially spherical with radius a and is enclosed by
a viscoelastic membrane. The fluids inside and outside the cell
have identical density r, but different viscosities min and mout,
respectively. The centre of the cell is initially located within the
cross-section Sc, which is 2l away from the inlet Si1. To mimic
experiments where cells are often not perfectly aligned with the
centreline of the feeding channel, a small off-centre distance of
0.02l is set along the z-direction.

2.1. Cell mechanical model

The cell is modelled as a liquid droplet enclosed by a viscoe-
lastic membrane with a small bending stiffness. The total
membrane stress s is the sum of the elastic and viscous
stresses:

s = se + sv. (1)

The membrane elasticity is governed by the two-
dimensional Skalak (SK) law,45 with a strain energy function

W I1; I2ð Þ ¼ Gs

4
I1
2 þ 2I1 � 2I2

� �
þ CI2

2
� �

; (2)

where Gs is the surface shear elasticity modulus, and I1, I2 are
the strain invariants with I1 = l1

2 + l2
2 � 2 and I2 = (l1l2)2 � 1.

l1 and l2 are the two principal extension ratios. The constant
term C is related to the membrane area dilatational modulus Ks

by Ks = (1 + 2C)Gs. We set C = 1 in the present study.
The elastic stress tensor se can be calculated from

se = te
1e1 # e1 + te

2e2 # e2, (3)

where

te1 ¼
1

l2

@W

@l1
; te2 ¼

1

l1

@W

@l2
; (4)

are the two principal stresses. e1, e2 are their corresponding
directions, which can be determined from the unit eigenvectors
of the left Cauchy–Green deformation tensor G = F�FT. F = qx/qX
is the deformation gradient of the deformed cell configuration
x with respect to the undeformed configuration X.

The membrane viscous stress sv has contributions from the
shear viscosity ms and area dilatational viscosity m0s

33:

sv ¼ ms½2D� trðDÞP� þ m0strðDÞP; (5)

where D is the membrane strain rate tensor, tr(D) is the area
dilatation rate, and P = I � nn is the projection tensor of the
deformed membrane, with n as the unit normal vector. In the
present study, we set m0s ¼ 3ms, so that the relaxation times
corresponding to the shear and dilatational viscosities (ms/Gs

and m0s ¼ Ks) are equal.
The bending resistance of the membrane is modelled using

Helfrich’s formulation46

Eb ¼
kc

2

ð
A

2H � cur0ð Þ2dA; (6)

where kc is the bending modulus, A is the surface area, H is
the mean curvature and cur0 is the spontaneous curvature
which is set as 0. In the present study, a small resistance to
bending kc = 0.004Gsa2 is used to prevent the formation of
membrane wrinkles.

2.2. Membrane damage model

Membrane damage in the form of pores or ruptures appears
when cells are subjected to intense mechanical stresses from
the surrounding flow. With the damage growing, the
membrane mechanically degrades and has less strength to
resist deformation. In the present study, we model this process
by the CDM, that has been widely applied for the damage of
biological tissues and biomaterials.39–42,47 In the CDM, the
local average damage state is represented by a continuum
damage variable. For a small patch of the cell membrane, the
continuum damage variable can be defined as the ratio of the

Fig. 1 (a) Geometry of the cross-slot microchannel. The shadow repre-
sents the cross-slot region. Top left inset is the three-dimensional view. (b)
Illustration of the flow-induced cell membrane damage that leads to
increased membrane permeability and enhanced intracellular delivery.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
1/

27
/2

02
4 

5:
39

:4
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00047a


4060 |  Soft Matter, 2024, 20, 4057–4071 This journal is © The Royal Society of Chemistry 2024

damaged area dSD to the total area dS of the membrane patch:

d ¼ dSD

dS
¼ 1� d ~S

dS
; (7)

where S̃ is the undamaged area. The damage variable d can
range from 0 (undamaged state) to 1 (completely damaged).

To account for the mechanical degradation due to damage,
we adopt a strain energy function under the CDM:

Wd I1; I2; dð Þ ¼ d ~S

dS
W I1; I2ð Þ ¼ ð1� dÞW I1; I2ð Þ: (8)

The damage strain energy release rate is

Y ¼ �@Wd

@d
¼W ; (9)

which is needed to construct the damage threshold function
f (Y, d), which is useful to build the damage criterion and derive
the damage evolution equation. In the present study, we choose
a simple form of f (Y, d), which was developed for the
membrane of a bioartificial microcapsule:47,48

f (Y, d) = Y � k(d), (10)

where k(d) is the function of damage, which employs the model
of Marigo48:

k(d) = Gs(YD + YCd), (11)

where YD is the damage threshold and YC is the hardening
modulus. Note that such simple functions of damage, where k
only depends on the instantaneous d, have been widely used for
the damage of viscoelastic materials.49,50 More realistic models
probably should take into account the rate of evolution of the
damage variable.51

We assume that the damage evolution is irreversible and
follows the Karush–Kuhn–Tucker (KKT) loading–unloading
conditions:41,47,52

f r 0,
:
d Z 0, f

:
d = 0. (12)

To illustrate the evolution of the local membrane damage
variable d, we can consider a small membrane element. At a
specific time, the damage strain energy release rate Y of the
element is determined by its instantaneous deformation (via
eqn (9)). If Y r k(d), the element is under elastic or neutral
loading, which will not lead to a change of d (i.e.,

:
d = 0). If the

deformation is large, Y would exceed k(d), leading to damage
loading of the membrane element, and then the damage
variable will increase (i.e.,

:
d 4 0). To ensure f

:
d = 0 of KKT

conditions, f must be zero. From eqn (10), this leads to k(d) =
Ymax, where Ymax is the maximum damage strain energy release
rate during the damage process. The final damage evolution
function is

d ¼ 0; if Y � kð0Þ

d ¼ Ymax � YDGs

YCGs
; otherwise

9=
;: (13)

In the present study, since we are mainly interested in the
membrane damage when the cell flows through the channel

cross-slot, which often takes place in milliseconds in
experiments,10,14 we have neglected the membrane recovery
process that usually requires a much longer time period. To
consider the membrane recovery, one could use the model of
Nikfar et al.,26 in which the membrane pore size reduces with
time following an exponential decay function.

2.3. Model for mass transport

When the cell membrane is damaged, solutes can be trans-
ported across the membrane through the damaged area into
the cell. The cell membrane permeability P measures the
passive diffusion rate of the solute molecules across the
membrane, and is proportional to the porosity,53,54 which is
equivalent to the damage variable d of the present model:

P = kpd. (14)

The term kp is a permeability coefficient which should depend
on the diffusion coefficient of the solute in the bulk, membrane
thickness and the size ratio between the solute molecule and
the membrane pore.55,56 In the present study, kp is set to be a
constant for simplicity.

We assume that the transport of the solute follows the
convection–diffusion equation

@c

@t
þ u � rc ¼ r � ðDrcÞ; (15)

where c is the solute concentration, and u is the fluid velocity.
The term D is the diffusion coefficient, describing how quickly
the solute diffuses through the bulk fluids inside and outside
the cell. For small molecules D could be estimated by the
Stokes–Einstein equation.57 The mass flux across the cell
membrane follows

j ¼ D�
@c�

@n
¼ �Dþ@c

þ

@n
¼ P cþ � c�ð Þ; (16)

where c� and qc�/qn are respectively the solute concentration
and the normal concentration gradient at the membrane sur-
face. The symbols + and � denote the external and internal
sides of the membrane, respectively, and n is the unit normal
vector pointing from the internal side to the external side. The
numerical method to deal with the Neumann boundary condi-
tion at the deforming cell membrane will be introduced in
Section 3.2.

2.4. Dimensionless parameters

The present problem is governed by the following dimension-
less parameters:
� the flow Reynolds number Re = 2rUl/mout, where U is the

average flow speed in the inflow/outflow channels;
� the capillary number Ca = moutU/Gs, which measures the

relative importance of the fluid viscous and membrane elastic
forces;
� the viscosity ratio between the fluids inside and outside

the cell lm = min/mout;
� the dimensionless membrane viscosity Z = ms/mina;
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� the cell confinement ratio a/l, which compares the size of
the cell relative to the channel; and
� the dimensionless permeability coefficient.
To quantify the cell deformation, we mainly use the Taylor

deformation parameter

DXZ ¼
a3 � a1

a3 þ a1
; (17)

where a1 and a3 are the maximum dimensions of the cell’s
y-plane projection along the x- and z-axes, respectively. When
the cell is flowing in the spiral flow regime, its long axis is often
out of the plane of y = 0 and its deformation deviates from a
regular ellipsoid. Therefore, a normalised cell height along the
z-axis, a3/2a, is used as the indicator of the cell elongation in
this flow regime.

3. Numerical methods and validations
3.1. Method for flow-induced cell deformation

The flow-induced cell deformation is resolved using a 3D
immersed-boundary LBM, that has been extensively verified
in our previous studies of the dynamics of microcapsules and
cells in various flow geometries.38,58–64 Here we only give a brief
introduction. The fluid flow is governed by the Navier–Stokes
equations which are solved using a 3D nineteen-velocity LBM
with a grid size of Dx = Dy = Dz = 2l/80. At the walls of the
channel branches, a second-order bounce back scheme based
on interpolation65 is used to maintain the no-slip boundary
conditions. A second-order non-equilibrium extrapolation
method66 is employed to impose the velocity boundary condi-
tion at the inlets and outlets.

The fluid–cell interaction is addressed using an immersed-
boundary method.67 The cell membrane is discretised into
8192 flat triangular elements, which are connected by 4098
nodes, following Ramanujan and Pozrikidis.68 The immersed-
boundary method ensures that the cell membrane moves at the
same velocity as the fluid surrounding it, thereby satisfying the
no-slip boundary condition. We use the approach of Yazdani
and Bagchi34 to calculate the viscoelastic force of the
membrane. This involves a slightly modified mechanical sys-
tem to approximate eqn (1). Further information on the imple-
mentation and validation can be found in Yazdani and Bagchi34

and Wang et al.64 The bending force density can be derived
from the bending energy formulation (eqn (6)), and we follow
the approaches of Garimella and Swartz69 and Yazdani and
Bagchi.70

3.2. Numerical method for mass transport

The mass transport is governed by the convection–diffusion
equation, which we solve using a 3D seven-velocity D3Q7 LB
model, with a hybrid regularisation (HR) collision scheme.
Details can be found in the Appendix A. To deal with the
Neumann boundary condition for the mass flux at the cell
membrane, we extend the 2D LB model of Zhang and Misbah30

designed for ATP release from RBCs, to 3D simulations.

We describe the implementation of the Neumann boundary
conditions with the aid of Fig. 2, which illustrates the boundary
lattice points in a 2D cross-section of the present problem. For
lattice points close to the cell membrane, represented by the
square symbols, the streaming process in the LB model is
affected by the existence of the membrane. For example, in
Fig. 2 at the interior boundary lattice x, its concentration
distribution function along the direction of ci at time t + Dt,
gi(x, t + Dt), cannot be determined by streaming of the post-
collision distribution function g�i x� ciDt; tð Þ, due to the
presence of the membrane. Therefore gi(x, t + Dt) needs to be
constructed. Inspired by the half-way bounce-back scheme of
Huang et al.71 and Zhang and Misbah30 proposed that the
solute concentration gradient along the direction cı̄ at the
middle point M, amid, can be used to determine gi(x, t + Dt),
following

giðx; tþ DtÞ ¼ 1þ 3u0 � ĉi
1� 3u0 � ĉi

g��i ðx; tÞ þ
D0Dx

1� 3u0 � ĉið Þa
mid; (18)

where ı̄ is the opposite direction of i, and ĉi = ci/|ci| is the unit
vector. The terms u0 and D0 are the dimensionless velocity and
diffusion coefficient, respectively, defined as

u0 ¼ u � Dt=Dx;

D0 ¼ D � Dt
�
Dx2:

(19)

The concentration gradient amid can be constructed as

amid ¼ @c

@ĉ�i

����
M

¼ ĉ�i � n
@c

@n

����
M

þ ĉ�it � t1
@c

@t1

����
M

þ ĉ�i � t2
@c

@t2

����
M

;

(20)

where t1 and t2 are the tangential directions and are mutually
perpendicular. Following Zhang and Misbah,30 the normal and
tangential derivatives on the right-hand side of eqn (20) can be

Fig. 2 Schematic diagram of the lattice points close to the cell
membrane. The full and empty squares are the interior and exterior
boundary lattice points, respectively. The solid circles are the intersection
nodes between the cell membrane and the fluid lattice mesh. The full
diamonds represent the middle points of the fluid lattice.
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obtained from the following equations:

@c

@n

����
M

¼
aþ b� 1

2

� 	
@c

@n

����
x

� @c
@n

����
xþciDt

 !
if b� 1

2

a
2b
þ 1� 1

2b

� 	
� @c
@n

����
x

if b4
1

2

8>>>><
>>>>:

@c

@s1

����
M

¼ @c

@s1

����
x

þ 1

2

@c

@s1

����
x

� @c

@s1

����
xþciDt

 !

@c

@s2

����
M

¼ @c

@s2

����
x

þ 1

2

@c

@s2

����
x

� @c

@s2

����
xþciDt

 !

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

; (21)

where b is the normalised distance between the boundary lattice
point at x and the boundary node B, as shown in Fig. 2. a = qc�/qn
is the Neumann boundary condition for the solute mass flux at
the cell membrane, which can be obtained from eqn (16).

With the cell membrane moving, some lattice points of the
fluid domain would shift from one side of the membrane to the
other side. The concentration distribution functions of these
points are constructed from those of the adjacent points on the
same side of the membrane, using the linear interpolation
scheme of Zhang and Misbah.30

3.3. Validation of the method for mass transport

We first validate our implementation of the numerical model
for mass transport by considering the time-dependent diffusion
of a solute across the membrane of a non-deformable spherical
capsule in the absence of fluid flow, a problem that has been
studied by Amiri and Zhang72 with a LBM. The computational
domain has dimensions of L 	W 	 H = 250 	 80 	 80, and the
spherical capsule has a radius R = 10, placed at the centre of the
domain. The diffusion coefficient D is set as 1/80 and 1/160,
respectively, inside and outside the capsule. The membrane
permeability P = 1/2400. The solute concentration at the top
and bottom surfaces of the domain is fixed at zero, and periodic
boundary conditions are applied on surfaces along the other
two directions. At time t = 0, the initial solute concentration
inside the capsule is c0, and is zero elsewhere in the computa-
tional domain. The solute will diffuse through the capsule
membrane and eventually be absorbed by the top and bottom
surfaces. In Fig. 3, we present the time evolution of the volume-
averaged solute concentration %c inside the capsule, and com-
pare the result with that of Amiri and Zhang.72 Very good
agreement has been achieved.

To further test the numerical method for mass transport for
moving boundary problems, we consider the time-dependent
diffusion of a solute into a non-deformable spherical capsule
with a permeable membrane that is advected by a flow with a
constant speed u0 = (U, 0, 0), as shown in Fig. 4. The solute
concentration outside the capsule remains constant at cN, and
the capsule membrane permeability P = 3 	 10�4. Inside the
capsule, the initial solute concentration is zero, and the solute
diffusion coefficient is D = 0.000781. It can be deduced from the
Galilean invariance that the solute concentration inside the
capsule is independent of the advection velocity of the
surrounding fluid.

The volume-averaged solute concentration inside the cap-
sule can be obtained analytically:

�cðtÞ ¼
Ð a
r¼04pr

2cðr; tÞdr
4

3
pa3

: (22)

The solute concentration c(r, t) within the capsule is given in a
number of textbooks (e.g. Bergman et al.73)

cðr; tÞ ¼ c1 1�
X1
n¼1

Cn exp �zn2
Dt

a2

� 	
a

znr
sin zn

r

a


 �" #
; (23)

and

Cn ¼
4 sin znð Þ � zn cos znð Þ½ �

2zn � sin 2znð Þ : (24)

The zn is the positive roots of

1� zn cot znð Þ ¼
P

D
: (25)

In Fig. 5, we present the time evolutions of the volume-
averaged solute concentration %c within a stationary and a
moving capsule. The results are visually identical, and both
agree very well with the analytical solution.

Fig. 3 Time evolution of the volume-averaged solute concentration %c
inside the capsule. Symbols are the results of Amiri and Zhang.72

Fig. 4 Time-dependent diffusion of a solute into a non-deformable
spherical capsule with a permeable membrane that is advected by a flow
with a constant speed. The solute concentration outside the capsule
remains constant at cN, while the solute concentration inside the capsule
c(r, t) increases with time towards cN.
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3.4. Verification of the method for membrane damage

In the present study, we have employed the model developed by
Grandmaison et al.47 for the flow-induced membrane damage.
To verify our numerical implementation of the model, we
consider the membrane damage of an initial spherical capsule
with a hyperelastic neo-Hookean membrane in simple shear
flow in the Stokes regime, which was studied by Grandmaison
et al.47 using a boundary integral method. The fluids inside and
outside the capsule are assumed to have equal density and
viscosity. The governing dimensionless parameter for the cap-
sule deformation is the capillary number, defined as Ca =
moutKa/Gs, where K is the shear rate. In the membrane damage
model, the damage threshold YD = 0.2 and the hardening
modulus YC = 2. After being released into the simple shear
flow, the capsule deforms into a steady ellipsoidal shape with a
certain inclination with respect to the flow direction, and its
membrane rotates around the fluid inside (i.e., tank-treading
motion). As the capillary number increases, the capsule
becomes more deformed. Membrane damage appears and the
maximum damage variable dN

max increases almost linearly with
Ca until Ca E 0.6. A further increase of Ca results in that dN

max

grows drastically, and at Ca B 0.72, complete local membrane
damage is onset, where dN

max = 1. In Fig. 6, we present dN

max of
the capsule membrane as a function of Ca. Our results agree
very well with those of Grandmaison et al.47

4. A cell flows through a cross-slot
microchannel

Using the comprehensive computational model proposed in
the present study, in this section, we consider the flow-induced
deformation, membrane damage and enhanced transport of a
diffusive solute into a modelled 3D cell when it is flowing
through a cross-slot microchannel. We attempt to address two
open questions: firstly, under similar pressure drop across the
device, is the viscous or inertial flow regime more effective in
generating cell membrane damage and enhancing intracellular
mass transport? Secondly, how are the membrane damage
affected by the cell membrane viscosity? In experiments, cells
have been flown through cross-slot microchannels at flow
speeds up to metres per second,14,74,75 leading to shear rates
well above 103 s�1, where the cell membrane viscosity is
expected to play an important role in determining the cell
transient deformation and the associated membrane damage.

To elucidate the effect of flow regime, we conduct numerical
simulations using three sets of parameters, corresponding to
the same cell flowing in three distinctive flow regimes with
increasing flow strength and inertial effect, under comparable
pressure drop across the whole device:
� viscous flow regime: Re = 0.4, U = U0, mout = 2min;
� moderate-inertia flow regime: Re = 40, U = 10U0,

mout = min/5; and
� spiral flow regime: Re = 80, U = 14U0, mout = min/7.
Note that in practical flow experiments for cell stretching,

the cross-slot region often only has a length of tens of micro-
metres, representing a very small faction of the entire flow path
of the whole device, compared with the straight feeding and
outlet channels that are usually much longer, in tens of
millimetres.10,74 Therefore, the pressure drop across the whole
device is primarily determined by the flow characteristics and
lengths of the feeding and outlet channels. For the same device
operating in the steady laminar flow regime, the total pressure
drop is approximately proportional to the product of the fluid
viscosity and average flow speed in straight channels DP p

moutU.76 For the three sets of flow parameters considered in the
present study, when increasing the average flow speed in the
feeding channels, we reduce the fluid viscosity to ensure moutU =
constant.

The streamlines of the background flow in the channel
cross-slot region for the three distinctive flow regimes are
presented in Fig. 7. From Fig. 7(a and b), one can see that the
flow patterns for the viscous and moderate-inertia flow regimes
are qualitatively similar, featuring extensional flows that are
symmetric about the x = 0 and z = 0 planes, with a stagnation
point at the centre of the cross-slot region. Our simulations
suggest that when the flow Reynolds number exceeds 43, a
spiral flow onsets due to a symmetry-breaking bifurcation.43

Fig. 7(c and d) present the streamlines of the spiral flow at Re =
80. The spiral vortex rotates about the axis of the outlet
channels. It is steady and symmetric with respect to the z = 0
plane. In the following sessions, we first consider the flow-
induced cell membrane damage in the viscous and moderate-

Fig. 5 Comparison of the time evolutions of the volume-averaged solute
concentration in a moving and a stationary capsule obtained from numer-
ical simulations. Symbols are the analytical results.

Fig. 6 Maximum damage value at steady state, dN

max, as a function of Ca
for YD = 0.2 and YC = 2. Symbols are the result of Grandmaison et al.47
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inertia flow regimes, focusing on the effects of inertia and cell
membrane viscosity in Sections 4.1 and 4.2, respectively. We
then consider the spiral flow regime in Section 4.3.

4.1. A cell with a hyperelastic membrane

We start from considering a simple cell where its membrane is
purely hyperelastic that follows the SK law. We do so mainly for
two reasons: firstly, the study serves as an important baseline
reference for more realistic cells that have a viscoelastic
membrane; secondly, the membrane damage and enhanced
cross-membrane transport for a simple hyperelastic cell
remains largely unknown. We conduct numerical simulations
of a cell with a/l = 0.4, k0p ¼ 0:17, under the viscous and

moderate-inertia flow regimes at Re = 0.4 and 40, respectively.
Fig. 8(a) shows the time evolution of the Taylor shape

parameter DXZ of a cell in the viscous and moderate-inertia
flow regimes at Ca = 0.2. In this and other figures of the present
study we set t = 0 as the time when a cell begins to enter the
cross-slot region, i.e., any membrane element reaches the plane
at x = �l. The time when the entire cell leaves the cross-slot
region is marked with a circle symbol. To aid the understand-
ing of the result, we also present the instantaneous shapes of
the cell in Fig. 9 and 10 for the two flow regimes, respectively. In

the viscous flow regime at Re = 0.4, the cell reaches a quasi-
steady ellipsoidal shape with its long axis aligned with the
direction of extension when it is approaching the stagnation
point (see Fig. 9). The Taylor shape parameter remains a
constant for a considerable time period. With a moderate
inertial effect at Re = 40, after entering the cross-slot region,
the cell quickly reaches its maximum elongation at t2 and then
starts to retract, even when the cell is still approaching the
stagnation point. This was termed an ‘‘overshoot–retract’’
motion and was analysed in detail in an earlier study by the
present authors.38 In the present study, the viscosity of the fluid
inside the cell is much higher than that of Lu et al.,38 and
therefore only a mild overshoot–retract motion has been
observed here. In Fig. 8(a), comparing the cell deformation in
the two flow regimes, it is clear that the cell experiences much
larger deformation under the effect of inertia.

We also present the distributions of the membrane damage
variable of the cell in the viscous and moderate-inertia flow
regimes in Fig. 9 and 10, respectively. In the viscous flow
regime, the maximum membrane damage occurs at the
membrane points that have the maximum y-axis values (see
Fig. 9(a) at t2), due to the highest membrane tension there (not
shown). Interestingly, when the inertial effect becomes signifi-
cant, as can be seen from Fig. 10(b) at t2, the locations for

Fig. 7 Front views of streamlines of the background flow starting from the feeding channel in the plane y = 0 at Re = (a) 0.4, (b) 40, and (c) 80. (d) Top
view of streamlines at Re = 80. The colour indicates the velocity magnitude.
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maximum membrane damage have shifted to the central
regions of the membrane faces that are perpendicular to the
direction of the inflows (i.e., x-direction). The result is not
surprising. In the inertial flow regime, the membrane elastic
force is generated mainly to balance to the fluid inertial force,
which is proportional to rU2 and therefore has the maximum
magnitude in the core of the inflow that has the highest
velocity.

Fig. 8(b) shows the time evolutions of the area-averaged
membrane damage variable %d of the cell in the two flow
regimes. After the cell enters the cross-slot region, the
membrane damage increases to peak values, when the cell
deformation is at the maximum, and then remains unchanged
due to the condition of

:
d Z 0 in the present membrane damage

model. Because of the greater cell deformation in the moderate-
inertia flow regime compared with the viscous regime, %dmax at
Re = 40 is almost four times larger than that of Re = 0.4, which

is expected to result in much faster intracellular mass trans-
port. We also consider the effect of the cell membrane damage
on its transient deformation. In Fig. 8(a), one can compare the
time evolutions of the Taylor shape parameter of the same cell
with and without taking into account the membrane damage. It
can be found that in the viscous regime, due to the relatively
small membrane damage, there is visually no difference
between the results. However, in the moderate-inertia region,
%d reaches the order of 0.1, which has led to a considerable
increase of DXZ, compared with the cell whose membrane
cannot be damaged by the fluid flow.

Note that the present computational model can predict the
instantaneous field of the solute concentration inside the cell.
Two examples are presented in Fig. 11 and 12, corresponding to

Fig. 8 Time evolutions of the (a) Taylor deformation parameter DXZ,
(b) area-averaged membrane damage variable %d and (c) volume-
averaged solute concentration within the cell %c, when the cell is flowing
through the channel cross-slot region in the viscous and moderate-inertia
flow regimes, at Re = 0.4 and 40, respectively, with a/l = 0.4, k0p ¼ 0:17,
Ca = 0.2, YD = 0.02 and YC = 2. t1, t2, and t3 are three dimensionless times
at 0.30, 0.61 and 0.90, respectively, when the instantaneous cell profiles
will be shown in Fig. 9 and 10. At t = 0 the cell starts to enter the channel
cross-slot; the circle symbols mark the moments when the cell completely
leaves the region. The cell has a hyperelastic membrane. In (a), the
temporal evolutions of DXZ of the same cell without taking into account
the membrane damage are also presented as references.

Fig. 9 Instantaneous membrane damage profiles of the cell of Fig. 8 at
Re = 0.4 as seen from (a) the y-axis and (b) the x-axis. The solid lines in
(a) are the trajectories of the cell’s mass centre. The time instances are
provided in Fig. 8.

Fig. 10 Instantaneous membrane damage profiles of the cell of Fig. 8 at
Re = 40 as seen from (a) the y-axis and (b) the x-axis. The solid lines in (a)
are the trajectories of the cell’s mass centre. The time instances are
provided in Fig. 8.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
1/

27
/2

02
4 

5:
39

:4
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00047a


4066 |  Soft Matter, 2024, 20, 4057–4071 This journal is © The Royal Society of Chemistry 2024

the cell in Fig. 9 and 10, respectively. From the figures, it is seen
that within the cell the regions with relatively high solute
concentration are always close to membrane areas with a
higher level of membrane damage. Fig. 8(c) presents the time
evolutions of the volume-averaged solute concentration within
the cell in the two flow regimes. Surprisingly, although the cell
at Re = 40 has developed much greater membrane damage,
leading to faster cross-membrane mass transport, its internal
solute concentration at the exit of the cross-slot region is much
lower than that of the cell at Re = 0.4. The intriguing result is
mainly due to the difference of the residence time of the cell in
the channel cross-slot in the two flow regimes. In the dimen-
sional form, the cell residence time at Re = 40 is only about a
tenth of that at Re = 0.4.

With all other cell and flow parameters kept unchanged, we
vary the cell membrane shear elasticity Gs and consider its
effect on the maximum cell deformation and membrane

damage in the channel cross-slot, as well as the volume-
averaged solute concentration %cl in the cell at the exit of the
cross-slot region in the viscous and moderate-inertia flow
regimes. The results are presented in Fig. 13.

4.2. Effect of cell membrane viscosity

In this section, we consider a cell with a viscoelastic membrane,
focusing on the effect of the membrane viscosity on the
membrane damage and the associated intracellular solute
transport. The membrane elasticity and its damage follow the
same models with identical parameters that are used in Fig. 8
of Section 4.1, and we add the membrane viscosity using
eqn (1). We conduct numerical simulations with increasing
cell membrane viscosity Z from 0 to 40. Note that in an earlier
study, membrane viscosity on the order of Z = 10 was reported

Fig. 11 Instantaneous solute concentration inside the cell of Fig. 9 in the
middle planes along (a) the y-axis and (b) the x-axis.

Fig. 12 Instantaneous solute concentration inside the cell of Fig. 10 in the
middle planes along (a) the y-axis and (b) the x-axis.

Fig. 13 Effect of the cell membrane shear elasticity on the (a) maximum
Taylor deformation parameter Dmax

XZ ; (b) maximum area-averaged
membrane damage variable %dmax and (c) volume-averaged solute concen-
tration within the cell when it leaves the cross-slot region at Re = 0.4 and
40. Cell membrane shear elasticity is related to the capillary number by
Gs = moutU/Ca. Other parameters are the same as those of Fig. 8. For the
cell at Re = 40, we only show results for Ca r 0.21, since at even high Ca
the cell will have complete local membrane damage with dmax = 1. From
Fig. 13, we can find that the general conclusions drawn from Fig. 8 are
robust with respect to the cell membrane shear elasticity. For all Gs values
considered, the cell always has larger deformation and greater membrane
damage when flowing through the channel cross-slot region in the inertial
flow regime. However, this does not necessarily lead to increased intra-
cellular solute transport due to the much shorter dimensional residence
time in the channel cross-slot.
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for human leukaemia cells64 flowing through a constricted
microchannel.

Fig. 14(a–c) respectively show the time evolutions of the
Taylor deformation parameter DXZ, the area-averaged
membrane damage variable %d and the volume-averaged solute
concentration inside the cell %c for the cell of Fig. 8 with
increasing membrane viscosity in both flow regimes.

In general, the membrane viscosity slows down the cell
deformation. This has much more significant effects when
the cell is flowing in the moderate-inertia regime, where the
flow speed is much higher and the residence time of the cell in
the channel cross-slot is much shorter, compared with the
viscous regime. The slow deformation and short residence time
have led to the a cell with high membrane viscosity reaching a
much lower maximum deformation in the channel cross-slot,
as can be seen from Fig. 14(a). The results of the area-averaged
membrane damage variable %d follow a similar trend, showing
that the membrane viscosity can significantly reduce the cell
membrane damage in the inertial flow regime, leading to much
less solute entering the cell in the channel cross-slot (see
Fig. 14(c)). Interestingly, we find that with ZZ 20 the maximum
Taylor deformation parameter and area-averaged membrane
damage variable of a cell at Re = 40 have both become lower

than those of the same cell at Re = 0.4. This is in contrast to the
results observed from hyperelastic cells of Section 4.1, for
which the cell deformation and membrane damage are always
larger in the inertial flow regime.

4.3. Spiral flow regime

We also consider a cell with a viscoelastic membrane flowing
through the channel cross-slot region under the spiral flow
regime at Re = 80. The undisturbed background flow has been
shown in Fig. 7(c and d). Fig. 15 presents the instantaneous
shape deformation and membrane damage profiles of the cell
of Fig. 14 with Z = 10. In the figure, the trajectory of the cell’s
mass centre is marked by a solid line. Compared with the
viscous and moderate-inertia flow regimes (see Fig. 9 and 10), a
distinct feature of the cell motion in the spiral flow regime is
that its trajectory is helical. Specifically, rather than directly
flowing through the channel cross-slot region via the close
proximity of the stagnation point at the centre region in the
viscous and moderate-inertia flow regimes, the cell rotates
around the z-axis for about 5401 before leaving the cross-slot
in the spiral flow at Re = 80. This helical trajectory, compared
with a directly flow-through scenario, helps to increase the
cell’s residence time in the cross-slot, giving it more time to
deform under the flow extension.

Fig. 16(a–c) present the time evolutions of a3/(2a), the area-
averaged membrane damage variable %d and the volume-
averaged solute concentration inside the cell of Fig. 15 in all
three flow regimes. Under the combined effects of the strongest
inertial force and the increased residence time due to the
helical flow trajectory, the cell flowing at Re = 80 has the
maximum deformation and area-averaged membrane damage.
These have also led to a slightly higher volume-averaged solute

Fig. 14 Time evolutions of (a) the Taylor deformation parameter DXZ; (b)
area-averaged membrane damage %d; and (c) volume-averaged concen-
tration %c of the cell of Fig. 8 with increasing membrane viscosity Z in the
viscous (solid lines) and moderate-inertia (dashed lines) flow regimes,
at Re = 0.4 and 40, respectively.

Fig. 15 Instantaneous membrane damage profiles of the cell of Fig. 14
with Z = 10 in the spiral flow regime at Re = 80, as seen from (a) the y-axis
and (b) the x-axis. The solid lines are the trajectories of the cell’s mass
centre. t1, t2, and t3 are three dimensionless times at 0.30, 0.77 and 1.50,
respectively.
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concentration inside the cell at the exit of the channel cross-
slot, compared with the cell at Re = 40.

For the cell of Fig. 16, we increase its membrane viscosity to
Z = 40, while keeping all other parameters the same, and
present the results in Fig. 17. At Re = 80, despite the strongest
inertial force and increased residence time, both the maximum
cell deformation and area-averaged membrane damage have
fallen below those of the cell flowing at Re = 0.4 in the viscous
flow regime. The results therefore confirm our early conclusion
that the cell membrane viscosity tends to protect the cell from
large deformation and membrane damage when it is flowing
through the channel cross-slot, in particular in the inertial flow
regime.

In Fig. 18 we summarise the maximum area-averaged
membrane damage of the cell considered in the present study
with different cell membrane viscosity values in the three flow
regimes that are driven by the same pressure drop across the
whole device. The results reveal distinct membrane damage
features that are strongly affected by the membrane viscosity.

The results suggest that for cells with low membrane visc-
osity, e.g., Z r 10, driving low-viscosity suspension at a high
speed in the inertial flow regime will lead to higher level of cell
deformation and membrane damage. However, the enhance-
ments can be significantly reduced or even reversed with an

increase of the cell membrane viscosity. For cells with high
membrane viscosity, e.g., Z = 40, operating experiments with a
high-viscosity suspension can be more effective in enhancing
cell deformation and membrane damage.

5. Conclusions

A novel three-dimensional computational framework has been
proposed in the present study, which can, for the first time,
simultaneously take into account the transient flow-induced

Fig. 16 Time evolutions of the (a) normalised cell height
a3

2a
, (b) area-

averaged membrane damage variable %d and (c) volume-averaged solute
concentration %c inside the cell of Fig. 15 in the three flow regimes at Re =
0.4, 40 and 80, respectively. The three time instances t1, t2, and t3 are from
Fig. 15 where the instantaneous cell profiles are shown.

Fig. 17 Time evolutions of the (a) normalised cell height
a3

2a
, (b) area-

averaged membrane damage variable %d and (c) volume-averaged solute
concentration %c inside the cell of Fig. 14 with a higher membrane viscosity
Z = 40 at Re = 0.4, 40 and 80.

Fig. 18 Maximum area-averaged membrane damage %dmax as a function
of membrane viscosity Z in the three flow regimes at Re = 0.4, 40 and 80
respectively.
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deformation of a viscoelastic biological cell, the deformation-
induced cell membrane damage, as well as the damage-resulted
membrane mechanical weakening and enhanced cross-
membrane intracellular mass transport. With the computa-
tional framework, we have considered an initially spherical cell
flowing through a cross-slot microchannel, focusing on the
effects of the flow regimes, under comparable pressure drop
across the whole device, and the cell membrane viscosity on the
cell deformation, membrane damage and enhanced intracellu-
lar mass transport. Our numerical simulations have generated
novel and interesting results, suggesting distinct cell dynamics
and membrane damage features that strongly depend on the
cell membrane viscosity. We find that for cells with relatively
low membrane viscosity, e.g., Z r 10, operating experiments in
the inertial flow regime, that can be achieved by driving a low-
viscosity suspension at a high speed, often results in larger cell
deformation and membrane damage, due to the effect of the
flow inertia. Increasing the cell membrane viscosity slows down
the cell deformation, and can lead to considerably smaller cell
deformation and membrane damage, when a cell flows through
the cross-slot region within a short time period and therefore
does not have sufficient time to deform. Thus, for cells with
high membrane viscosity, e.g., Z = 40, in order to enhance the
deformation-induced membrane damage, it could be advanta-
geous to operate experiments in the viscous flow regime, where
one drives a high-viscosity suspension at a low speed, offering
sufficient residence time for the cell to develop its deformation
in the channel cross-slot region. The present simulation results
may provide useful guidelines to practical experiments, which
flow cells through cross-slot microchannels to temporarily
damage cell membranes to enhance intracellular drug delivery.

As a general computational framework for modelling the
flow-induced cell membrane damage and the resulted
enhanced intracellular mass transport, the present model will
need to be validated against carefully designed experiments in
future. Such validations are presently not possible, due to the
lack of quantitative experimental data, that record the time
evolutions of the cell membrane damage and solute concen-
tration inside and around a cell. Once validated, the computa-
tional framework may be used in a wide range of applications,
ranging from designing microfluidic devices to physically dis-
rupt the cell membrane for enhanced drug delivery, to optimis-
ing flow conditions to minimise cell damage in cell printers
and other inertial microfluidics.
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Appendix
A. LBM model for mass transport

We use the D3Q7 model (three-dimensional seven discrete
micro velocities) to formulate a convection–diffusion LBM
model for mass transport. The discrete micro velocities are
defined as

c0 . . . c6½ � ¼
0 1 �1 0 0 0 0
0 0 0 1 �1 0 0
0 0 0 0 0 1 �1

2
4

3
5Dx
Dt
: (26)

The terms Dx and Dt represent the spatial and temporal mesh
sizes, respectively.

Similar to the LBM used in the fluid flow, fictive particles
with velocity ci can propagate and collide on a discrete lattice
mesh and form a concentration distribution function gi(x, t) at
the position x and time t. The temporal evolution of the
concentration distribution function can be divided into the
collision and streaming processes:
� the collision process

g�i ðx; tÞ ¼ geqi ðx; tÞ þ 1� 1

tg

� 	
gneqi ðx; tÞ; (27)

� and the streaming process

gi xþ ciDt; tþ Dtð Þ ¼ g�i ðx; tÞ: (28)

Here gneq
i is the non-equilibrium distribution and tg is the

dimensionless relaxation time which is related to the diffusion
coefficient by D = (tg � 1/2)Dtcs

2, where cs = 1/2(Dx/Dt) is the
sound speed in the D3Q7 model. The macro mass concen-
tration c can be obtained from the distribution function by

c ¼
X6
i¼0

gi: (29)

The LBM becomes unstable when the dimensionless relaxa-
tion time is close to 1/2 with the BGK collision. To avoid the
numerical instability, we reconstruct the non-equilibrium dis-
tribution gneq

i , following the method of Zhang et al.,77 by
expanding the non-equilibrium distribution with the Hermite
polynomial:

gneqi ¼ wi

Xn
1

1

n! cs2ð Þ2
a
ðnÞ
1 :H ðnÞ; (30)

where wi is the weight factor, H(n) is the Hermite polynomial
and a(n)

1 is the expansion coefficient of the non-equilibrium
distribution. In our simulation, we expand gneq

i to the first-
order, i.e., n = 1. The first-order Hermite polynomials are H(1)

ia =
cia, and the first-order expansion coefficient a(1)

1,a can be
obtained by directly projecting the non-equilibrium distribu-
tion function:

a
ð1Þ
1;a 


X6
i¼0

cia gi � geqið Þ: (31)

This first-order expansion coefficient a(1)
1,a can also be

calculated from the macroscopic quantity through the
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Chapman–Enskog analysis:77

a
ð1Þ;FD
1;a ¼ �cs2tgrc�

1

2
@t cuað Þ: (32)

In eqn (32), rc is computed with the second-order centred
finite differences scheme, and the time derivative term qt(cua) is
computed with an explicit Euler scheme. It was shown in an
earlier study that reconstructing the expansion coefficient a(1)

1,a

using a hybrid regularisation (HR) approach,77 in the form of

a
ð1Þ
1;a ¼ b

X6
i¼0

cia gi � g
eq
ið Þ þ ð1� bÞað1Þ;FD1;a ; (33)

can lead to better numerical stability and accuracy, compared
with using eqn (31) or (32) alone. The term b A [0, 1] is a free
parameter, and is set to 0.95 in the present study.
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