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Thermodynamics description of startup flow of
soft particles glasses†

Nazanin Sadeghi, a Hrishikesh Pable a and Fardin Khabaz *ab

Particle dynamics simulations are used to study the startup flow of jammed soft particle suspensions in

shear flow from a thermodynamic perspective. This thermodynamic framework is established using the

concept of the two-body excess entropy extracted from the transient pair distribution function and elastic

energy of the suspension as a function of strain at different shear rates and suspension volume fractions.

Although the evolution of the elastic energy in these soft particle glasses closely mimics the stress–strain

behavior at different shear rates and volume fractions, there are several differences corresponding to their

overshoots in terms of the broadness and location of the peaks. The transient excess entropy shows an ani-

sotropic behavior due to the anisotropic distribution of contacts at high shear rates. The excess entropy at

high shear rates increases as a function of the strain and attains a steady state. On the other hand, it is nearly

constant and isotropic in the quasi-static regime, where the stress response is close to the dynamic yield

stress. Using the transient elastic energy and excess entropy, a transient temperature is defined to establish a

relationship between thermodynamics and the static yield stress data. This transient temperature increases

with the strain and then diverges at strains close to the static yield point at high shear rates.

1 Introduction

Yield stress fluids, such as slurries, pastes, and certain
food products (like ketchup and mayonnaise), and geological
materials, such as lava flows, are a class of non-Newtonian
fluids that exhibit solid-like response at rest and flow when the
applied stress or force, exceeds a critical value known as
dynamic yield stress sy.1–5 A particular type of these fluids
categorized as soft particle glasses (SPGs) are suspensions
composed of soft particles suspended in Newtonian fluids
and are jammed in disorder phase at volume fractions above
the random close packing frcp = 0.64 of equivalent hard
spheres.3,6–8 These soft particles can be in the form of swollen
microgels suspended in water, emulsions, star polymers with
many arms, and block copolymers, and can maintain disor-
dered microstructure above volume fraction of frcp.1,9 In this

regime, each particle is surrounded by a strong cage formed by
neighboring particles at contact; the strength of the cage scales
with the contact modulus of the particles and is much stronger
than thermal energy.3 Thus, these suspensions are athermal and
show weak elastic solid behavior at rest and low stresses. At
stresses larger than the dynamic yield threshold, sy, they flow
according to the Herschel–Bulkley (HB) equation s = sy + k_gn,
where _g is the shear rate, k is the consistency index, and n is the
HB exponent which is close to 0.5.3,10–12

Prior studies in this area have shown that interparticle
contact and lubrication forces govern the shear rheology of
SPGs.3,7,13–19 The viscoelastic properties of SPGs are controlled
by particle properties such as softness, their volume fractions,
and macroscopic parameters such as deformation rate, and
these macroscopic rheological properties are correlated with
the microdynamics of individual soft particles in flow.7 The
shear-induced dynamics of suspensions in these systems show
two distinct flow regimes:7,20 (1) the dynamics are dictated by the
transport of mobility between domains formed by the mobile
and immobile particles, or avalanches, which have also been
reported in shear simulations of two-dimensional jammed
suspensions21,22 and granular materials.23,24 The stress response
is nearly constant in this quasi-static regime, which covers
several orders of magnitude in shear rate, and corresponds to
the dynamic yield stress, sy, which is the minimum stress
required to keep SPGs flowing. (2) Particles show very localized
dynamics at high shear rates, which gives rise to the appearance
of a power-law regime in the flow curve. The key observation is
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that a unique dimensionless number _gZs/G0, where Zs is the
viscosity of solvent and G0 is the low-frequency modulus of SPGs,
separates these two regimes of flow.

Apart from the steady state flow behavior of soft glasses,
understanding the static yield behavior, which corresponds to
the stress required to flow the suspensions from rest and is
highlighted with an overshoot in shear stress at a given rate, is
crucial since controlling the startup flow response can avoid
pressure overshoot and subsequent damage to the processing
tools in manufacturing these materials.19,25 In addition, the
transient response of soft glasses reveals key physical mechanisms
of their complex rheology. Statistical physics links the yield
behavior of thermally annealed amorphous materials to phase
transitions.26 Depending on the annealing degree of structure at
rest, brittle or ductile yielding can be observed. In this regard, the
fluidity model associates stress overshoots with shear band for-
mation near moving walls due to nonlocal effects.27 Stress over-
shoots follow power laws with different exponents at low and high
shear rates. Theoretical approaches like shear-transformation-zone
theory,28 mode coupling theory,29 elastically collective nonlinear
Langevin equation theory,30 molecular dynamics simulations,31,32

and micromechanical models18,33 emphasize nonaffine deforma-
tions in amorphous materials during startup flow. The micro-
structure of SPGs continuously changes until shear stress reaches a
steady state in the startup flow.18 During this period, shear stress
exhibits an overshoot, which corresponds to static yield at inter-
mediate and high shear rates,18,19 while at low shear rates, the
overshoot is not detected. At the overshoot point, the anisotropy of
the pair distribution function is maximum. Furthermore, the
magnitude of the stress overshoot and corresponding strain is a
function of the mechanical history of the SPGs, and the magnitude
of the stress overshoot decreases with the internal stress stored in
the material at the onset of the shear flow.18 Furthermore, the
direction of the preshear flow also plays an important role in the
overshoot magnitude.19

The onset of the shear flow rearranges the microstructure of
SPGs by redistributing the contacts between the particles and
inducing anisotropy.18 The latter is correlated with the macroscopic
stress response of the SPGs in shear flow.3 On the other hand,
microstructural signatures can be utilized to extract thermody-
namic properties, such as excess entropy, to provide a thermo-
dynamic description for the measured macroscopic property, i.e.,
an equation of state (EOS). Simulation studies have shown that the
concept of the excess entropy, SE, proposed by Rosenfeld34,35 is
applicable to correlate the dynamics properties with the entropy in
several complex fluids, such as hard-spheres,36 star-like polymers,37

metallic glasses,38 Gaussian core fluids,39 supercooled liquids,40

soft spheres,41,42 and this method can be reliably used for SPGs in
shear flow. In SPGs at steady-state,17 this framework provides an
EOS which relates the excess entropy to the shear stress at steady-
state according to �SE = �SE

y � B ln(s/sy), where B is a constant
close to 1.35. Thus, the excess entropy can be used in these
suspensions to provide a thermodynamic framework to determine
the shear stress flow curve. The remarkable achievement of the
scaling law determined by correlating excess entropy to rheological
properties of SPGs is that these suspensions are athermal, and the

generality of the thermodynamic framework is extended in a shear-
flow case which is a nonequilibrium state. This success of the
correlation with excess entropy becomes more important when one
considers the properties at the dynamic yield point, or the quasi-
static regime, since the shear viscosity and normal stress functions
diverge, and the diffusivity vanishes at a critical excess entropy,
corresponding to the yield stress of the suspension. An effective
temperature is defined based on the derivative of the elastic energy

(U) with respect to the excess entropy, i.e., T ¼ @U

@SE

� �
V

, which is

found to vary linearly with the shear stress and the elastic energy of
the sheared SPGs. Furthermore, it was shown that a universal
behavior based on Dzogootov’s theory43 for particle diffusivity
versus excess entropy unifies observations for systems at equili-
brium and nonequilibrium.

Similarly, Khabaz and Bonnecaze44 used this framework and
described the shear-induced phase transition of SPGs with a
low degree of polydispersity in particle size distribution. These
jammed SPGs transform into a layered phase in strong shear
flow.45,46 After sufficient exposure to shear flow, the shear stress
decreases and reaches a steady state in a layered phase. The
latter creates a discontinuity in the flow curves. Using the two-
body excess entropy formulation, a clear discontinuity in the
excess entropy is observed at this phase transition. The entropy
of the system decreases significantly upon layering, that is an
indicator of the formation of an ordered microstructure. At the
transition, the effective temperature at steady-state, T, shows a
discontinuity as a function of the shear rate. This discontinuity in
the T–_g curves is similar to the discontinuity observed in the flow
curve. At a fixed temperature, where there is a transition from
glassy to layered phase, the Helmholtz free energy is equal in two
phases, which reveals that this transformation is a first-order
thermodynamic phase transition. Furthermore, the elastic energy,
shear stress, and Helmholtz free energy correlate with the tem-
perature in stable/metastable glassy and layered phases. The latter
emphasizes the importance of this thermodynamic framework
not only in building useful relationships between rheological
properties of disordered systems but also in capturing flow-
induced transitions and structures with short-range ordering.

Inspired by prior works,17–19,44 here we study the transient
response of the excess entropy and elastic energy during the
startup flow at different shear rates and five different volume
fractions above the random close-packing fraction. The aniso-
tropy of the microstructure in strong shear flow is fully captured
in the excess entropy, and the results highlight the distinction
between the thermodynamic response at high shear rates and
the quasi-static regime. We establish a thermodynamic descrip-
tion of the static yield point appearance at different flow regimes
for SPGs. Our results suggest that a transient temperature can be
constructed by the concept of transient excess entropy.

2 Simulations methods

The model system comprises N = 10 000 polydisperse soft
particles with a contact modulus of E* and an average radius
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of R suspended in a Newtonian fluid with a viscosity of Zs

(Fig. 1). The polydispersity in the particle size distribution is
20% of the average radius to avoid the formation of ordered
structures.45,46 Five different volume fractions in the range of
f A [0.70–0.90] are selected. Particles in contact interact via
generalized elastic Hertz force, FE, and elastohydrodynamic
force, FEHD, which depends on the magnitude of the relative
velocities of two particles in contact and overlap distance.3

Following our previous works on this topic,3,45,46 we utilize
the methodology for simulating SPGs in shear flow governed by
the generalized Hertzian elastic contact according to:47

FE
ab ¼

4

3
CE�enabRc

2n?; (1)

where C and n are constants which depend on the degree of
compression of particles, E* is the contact modulus of the
individual particle (E* = E/2(1� n2), with E and n are the Young’s
modulus and the Poisson ratio, respectively), eab is the dimen-
sionless overlap parameter which is defined as eab = (Ra + Rb �
rab)/Rc, where Rc = RaRb/(Ra + Rb) is the effective radius of the two
particles in contact and rab is the distance between particles a
and b. n> is the normal vector to the facets at contact as shown
in Fig. 1B. Two neighboring particles in contact also exert
elastohydrodynamic (FEHD

ab ) force onto each other based on:

FEHD
ab = �(Zsuab8E*Rc

3)(2n+1)/4e(2n+1)/4
ab n8, (2)

where uab8 is the magnitude of the relative velocity of two
particles in the direction parallel to the facets in contact, i.e., n8.

Considering these two forces, and the far-field shear flow

u1a ¼
_gZs
E�

yex, where ex is the basis vector in the flow direction

equation. Using the scales of the particle size R, time Zs/E*, the
dimensionless equation of motion for particles becomes:

dxa

dt
¼ u1a

þ f ðfÞ
6pRa

4

3
C~_g�1

X
b

enabRc
2n? �~_g�1=2

X
b

CuabkRc
3

� �1=2
eð2nþ1Þ=4ab nk

 !
;

(3)

where f (f) is the mobility coefficient and is set to 0.01.3,16 Note

that a dimensionless shear rate of ~_g¼ _gZs=E
� emerges from

these equations of motion and is used to impose the shear rate
on the suspensions by applying the Lees–Edwards boundary
conditions.48 The stress tensor is computed as a function time

using the Kirkwood formula,49 i.e., r¼ 1

L3

P
a

P
b
Fab xa�xb
� �

,

where L is the length of the cubic box and Fab = FEHD
ab + FE

ab is
the total force acting on particle a from b. The maximum shear
strain of two is set as the final time in all simulations. A wide

range of shear rate ~_g2 10�9� 5� 10�3
� �

, which translates to _̂g¼
Zs _g=G0 2 10�10� 10�1

� �
when the low-frequency modulus of

SPGs, G0(f),20 is used for collapsing the data obtained at
different volume fractions. The time step of simulations is
chosen to produce 107 steps per strain at each shear rate. The
initial configuration of the particles is in a minimized elastic
energy at the beginning of the shear flow to avoid the effect of
mechanical aging on the startup flow.3 The stress tensor and
trajectories of the particles are monitored at regular strain
interval of Dg = 0.001. All results are averaged over five inde-
pendent replicas.

3 Results and discussion
3.1 Transient shear stress and elastic energy in startup flow

The shear stress, s, as a function of the strain, g, is plotted in
Fig. 2A–C for suspensions with volume fractions of f = 0.70–0.9
(s–g data for f = 0.75 and 0.85 are not shown here). The general
trend in s–g curves is that shear stress increases in the linear
regime and then shows an overshoot, which is marked by sp, at a
strain of gsp, and then decreases to the steady-state value. This
stress overshoot highlights the energy barrier required to initiate
the plastic flow of SPGs in shear. Similarly, the elastic energy, U,
is determined from the contacts between the particles as a

function of the shear strain as UðgÞ ¼ 8

3N

PN
a

PN
b

Cenþ1ab Rc
3

nþ 1
, and

it is scaled by E*R3. At g = 0 (Fig. 2D–F), the elastic energy value is
U0, which increases with the volume fraction of suspensions and
shows a linear relationship with G0. The transient elastic energy
follows a very similar trend as the shear stress, except that
overshoots are slightly milder and broader than those in s–g
curves since the number of the contacts per particle shows a
minimum, while the overlap distance between the particles
shows a mild maximum at the overshoot point (see Fig. S1 in
ESI† for the plots on the linear scales).18 Furthermore, the
evolution of the first and second normal stresses, i.e., N1(g)
and �N2(g) as well as the osmotic pressure, P(g), are shown in
Fig. S2 in ESI.†

As seen in Fig. 3A and B, the stress and elastic energy
overshoots at different volume fractions show limiting values
and power-law behaviors at low and high shear rates, respec-
tively. Using the corresponding values in the quasi-static regime
and steady-state (i.e., sy and Uy), and utilizing the rescaled shear

rate, _̂g ¼ Zs _g
G0

, all data collapsed onto master curves in Fig. 3C.

Fig. 1 (A) Configuration of suspensions with volume fraction of f = 0.80 in a
cubic simulation box that is in the shear flow with an applied shear rate of
~_g ¼ _gZs=E

�, where E* is the particle contact modulus and Zs is the suspending
fluid viscosity. The flow (u), gradient (r), and vorticity (x = r � u) directions
are shown. (B) Two particles form flat facet at a contact and interact via
generalized Hertzian contact and elastohydrodynamic lubrication forces.3
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These behaviors are described by HB relationships, i.e.,
sp
sy
¼

1:2þ 1202:4 _̂g0:52�0:03 and
Up

Uy
¼ 5:83þ 1882:3 _̂g0:54�0:04. These HB

exponents are similar to those reported in simulations and
experiments for SPGs (see Fig. S3 in ESI† for the master curve
of the steady-state flow curve).7,18,19 The strains corresponding to
these overshoots in transient stress, gsp, and elastic energy, gU

p,
also increase with the shear rate (Fig. 3D and E) and decrease
with the volume fraction at a given shear rate. We also note
that at lower shear rates, detecting these overshoots becomes
challenging, especially for the elastic energy (it does not show
overshoot at the low shear rates), and uncertainty in the data
increases. Albeit the latter point, the data show reasonable
collapse at high shear rates, and dispersion increases at low
rates (Fig. 3F). At high shear rates, both peak strains show power-

law relationships with the rescaled shear rate: gsp � _̂g0:15 and

gUp � _̂g0:10. At low and intermediate shear rates, the exponent for

the gsp slightly increases to 0.20. The values of gU
p are almost twice

gsp. Note that the scaling exponents are weakly dependent on the
mechanical history of the pastes, as discussed by Di Dio et al.19

3.2 Thermodynamics in startup flow behavior

Since shear flow induces anisotropy of the configuration of the
particles in contact, the pair distribution function is deter-
mined in the flow-gradient plane, i.e., g(x,y), at low and high

shear rates over the startup flow period for suspensions with
a volume fraction of f = 0.80 (Fig. 4). At a low shear rate of
~_g ¼ 10�9 (Fig. 4A–C) particles show symmetric distribution at
rest, and increasing the strain does not make major rearrange-
ment in the contacts. On the other hand, at a high shear rate of
~_g ¼ 10�4 (Fig. 4D–F), the distribution of the contacts for a
reference particle becomes anisotropic as soon as shear stress
increases. In strong shear flow, neighboring particles tend to
accumulate in the upstream compressive quadrant,
p
2
� y � p

� 	
, where they are more compressed, and deplete

along the extension axis, y ¼ p
4

� 	
, where they are less distorted.

The particles are also more compressed by increasing the strain
up to the gsp. This anisotropy is maximum at gsp and then slightly
decreases and reaches steady-state (see Fig. S4 in ESI† for the
polar plots of g(r,y)). Alternatively, this anisotropy of the pair
distribution function between the compression and extension
axes can be captured by the g2,�2(r) coefficient of the spherical
harmonics expansion of g(r), as shown in Fig. S6 and S7 in ESI†
and prior works.3,18 This behavior is consistently observed when
the suspensions undergo strong shear deformation, which cor-
responds to the power-law flow regime at all volume fractions.18

The dimensionless excess entropy is calculated using the
two-body approximation as SE ffi S2 ¼ �0:5r

Ð1
0 ½gðrÞ lnðgðrÞÞ�

ðgðrÞ � 1Þ	dr,34,35,42 where r is the number density of the suspen-
sions. The excess entropy is non-dimensionalized by the Boltzmann

Fig. 2 Shear stress, s, (top row) and elastic energy, U, (bottom row) as a function of strain, g, at different shear rates for suspensions with volume fraction
of (A) and (D) f = 0.70, (B) and (E) f = 0.80, and (C) and (F) f = 0.90. The color-coding in all sub-figures is the same as (A).
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factor kB. Since the shear flow induces anisotropy in the flow-gradient
plane, we consider g(r) = g(r,y), where y is defined with respect to the
flow direction and capture the anisotropy in the flow-gradient
plane.50 Considering the latter, the dependence of the excess entropy
on y is given by:

S2ðyÞ ¼ �r
ð1
0

½gðr; yÞ lnðgðr; yÞÞ � ðgðr; yÞ � 1Þ	r2dr; (4)

and S2 ¼
Ð 2p
0 S2ðyÞdy. In the above equation the g(r,y) is

calculated using:

gðr; yÞ ¼ L3

2r2DrDyNðN � 1Þ
X
iak

d r� rikj jð Þd y� yikð Þ; (5)

where L is the simulation box length and Dr = 0.01 and Dy = p/50 are
the bin sizes in r and y directions. Using this formulation, the S2(y) is
shown for two nominal low and high shear rates at different strains
in Fig. 5. As expected, at rest, the excess entropy does not have a y-
dependence behavior. At low shear rates, when g increases the excess
entropy shows no significant changes compared to that at rest, at all y
values. On the other hand, at high shear rates, due to the anisotropic
nature of the contacts, we observe a decrease in excess entropy on the
extension axis (y = p/4 and 5p/4). The excess entropy also shows that
maximum points of contacts are on the compression axis, i.e., y = 3p/
4 and 7p/4. This characteristic behavior that S2(y) shows two minima/
two maxima pattern as a function of y over 0 r y r p is a
resemblance of the behavior reported for Weeks–Chandler–Anderson

fluid under shear deformation.50 We also note that the magnitude of
the extremum is the highest at the stress overshoot point. The latter
is also expected since the anisotropy in g(x,y) is captured by g2,�2

coefficient of the g(r) expansion, and the shear stress is related to this

coefficient via: sxy ¼ �r2
ffiffiffiffiffiffiffiffiffiffi
p=15

p Ð 2R
0 r3FEðrÞg2;�2ðrÞdr.3

By integrating the S2(y) over y, the total excess entropy is
determined as a function of strain (Fig. 6) at different shear rates
and volume fractions. At low shear rates, the excess entropy reaches
a steady state quickly since the microstructure shows minor
adjustment in this regime of the shear flow. On the other hand,
SE initially increases with the strain and then attains a steady state
at higher shear rates (note that �SE decreases as a function of the
strain). Although the pair distribution function shows an aniso-
tropic distribution and S2(y) clearly shows a y-dependence at high
shear rates, the total excess entropy as a function of strain does not
show a measurable overshoot, due to the compensation of the
contribution from extension and compression axes at large strains
and shear rates. In addition, the SE(g) increases with an increase in
the volume fraction at a given shear rate and strain.

Now, we turn our attention to the scaling behavior of the
steady state value of excess entropy, SE

st, and correlate that with

the shear rate, ~_g. At low shear rates, data suggest that there is a
limiting value for SE

st, and then it shows a logarithmic increase

as a function of ~_g at all volume fractions (Fig. 7A). The

dependence of the SE
st on ~_g is expressed by a logarithmic

function in the form of SE
st ¼ a� b ln ~_gþ c

� �
, where a, b, and c

Fig. 3 (A) Peak stress, sp, and (B) peak elastic energy, Up, as a function of the shear rate ~_g. (C) Master curve of the sp/sy (left axis) and Up/Uy (right axis) as a

function of the rescaled shear rate, _̂g, at different volume fractions. The solid lines are the HB fits to data. (D) Strain corresponding to peak stress, gsp, and (E)

elastic energy, gU
p , as a function of the shear rate, ~_g. (F) Master curves of gsp (left axis) and gU

p (right axis) as a function of the rescaled shear rate, _̂g. The color-
coding in (D)–(F), is the same as (A)–(C), respectively.
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are fitting parameters and are presented in the ESI.† By scaling
the excess entropy at steady-state with the value obtained in a
quasi-static regime, SE

y , as a function of the rescaled shear rate,

_̂g, a universal behavior for different volume fractions is
obtained (Fig. 7B). This relationship is well-described by a

logarithmic function in the form of SE
st

.
SE
y ¼ a� b ln _̂gþ c

� 	
,

where a = 0.396 � 0.013, b = 0.046 � 0.001, and c = 1.84 � 10�6

� 6.09 � 10�7.
As shown in Fig. 8, the excess entropy increases with the

elastic energy in the startup flow. Since there is a weak over-
shoot in U and SE smoothly increases and reaches steady
behavior as a function of strain, the SE–U curves show a
hook-like shape near and after the overshoot points, especially
at the lowest volume fraction, f = 0.70 (Fig. 8A). The steady-

Fig. 4 Two dimensional pair distribution function, g(x,y), at shear rate of (A)–(C) ~_g ¼ 10�9 and (D)–(F) ~_g ¼ 10�4 for f = 0.80 at different strains: (A) and (D)
g = 0, (B) and (E) g = gsp, and (C) and (F) g = gst.

Fig. 5 Excess entropy, �SE, as a function of y, at (A) ~_g ¼ 10�9 and (B) ~_g ¼
10�4 for suspensions with volume fraction of f = 0.80.

Fig. 6 Excess entropy,�SE, as a function of strain, g, at different shear rates for suspensions with volume fraction of (A) f = 0.70, (B) f = 0.80, and (C) f =
0.90. The color-coding in all sub-figures is the same as (A).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 8
:0

2:
56

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00514g


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 7387–7396 |  7393

state condenses to a single point on the SE–U plot. This trend
occurs at all shear rates and volume fractions. Interestingly, the
initial part of the transient SE = SE(U) data obtained at different
shear rates that approximately correspond to elastic deforma-
tion follows a universal behavior. Thus the departure from this
trend can be considered as an indication of plastic flow.

Next, we utilize the thermodynamic definition of tempera-

ture, i.e., T ¼ @U

@SE

� �
V

, with a goal to define a transient

temperature during the startup flow as a function of the strain.
Considering the scales for the SE and U, this transient tempera-
ture is normalized with E*R3/kB. Note that these calculations
have been performed over the period that shear stress and elastic
energy show a transient behavior, i.e., 0 r g r 1.0; thus, we call
this parameter transient temperature to distinguish this defini-
tion from the prior definition obtained based on the steady-state
properties.17,44 At volume fraction of f = 0.70 and high shear
rates, T monotonically increases as a function of the elastic
energy, until it reaches the point which corresponds to the
steady-state of the steady state point of SE–U diagram. This
behavior consistently occurs at shear rates which a clear over-
shoot in the stress–strain data is observed. Furthermore, the
transient temperatures at different rates show overlap in the T–U
plot in the linear part of the stress–strain data. At higher volume
fractions (f = 0.80 and 0.90), the transient temperature generally
increases with elastic energy. At low rates, where the shear stress
reaches steady-state behavior rather over smaller strains, T
shows a minor increase-note that the range of U or SE is
significantly limited when determining the temperature. The
latter is more severe for data obtained at higher volume frac-
tions. In other words, the data on the SE–U diagram is limited to
one thermodynamical state point. Thus, the transient tempera-
ture does not exist. At a high shear rate, the T–U diagram is more
extended to higher temperatures at high elastic energy values.
One should note that these calculations are performed up to
strain values that elastic energy and excess entropy show steady-
state since T can diverge when SE becomes steady or it can
fluctuate about zero when U shows an overshoot. This behavior
can be explained by considering the chain rule of differentiation

applied to the transient temperature as TðgÞ ¼ @U

@SE

� �
V

¼

@U

@g

� �
V

� @g
@SE

� �
V

(see the insets of Fig. 8D–F for T = T(g)).

Thus, T(g) - N when
@SE

@g

� �
V

! 0. Generally, at shear rates

lower than _̂g� ffi 2� 10�6, this transition temperature shows a
value fluctuating about zero since no significant adjustment in
the microstructure occurs.

We also observe that the rate of the excess entropy change,
@SE

@g

� �
V

, at high shear rates shows at least one maximum

before descending to zero, i.e., steady-state behavior in SE,
while at low shear rates, this parameter decays to zero
(Fig. S8 in ESI†). This result is important since it shows this

measurement can separate two flow regimes: (1) at _̂g 
 _̂g� at
high and intermediate shear rates where shear stress shows an
overshoot and nonaffine dynamics of particles are localized and

(2) at _̂go _̂g� where flow is driven by the avalanches in dynamics
of the particles at low stresses close to the dynamic yield limit
and stress overshoot is suppressed.7,20

Finally, the transient shear stress and excess entropy of SPGs
with different shear rates and volume fractions are correlated in
Fig. 8G–I. Similar to the SE–U data, the SE–s diagrams at
different shear rates show a hook-like shape in the plastic flow
regime and approximately collapse in the elastic part of the
deformation. Other transient rheological properties, such as
first normal stress, N1, second normal stress, N2, and osmotic
pressure, P, can also be correlated with the SE as shown in Fig.
S9 (ESI†). Furthermore, the steady-state points at different rates
can be explained by a logarithmic relationship in the form of
SE

y � SE
st = A ln(s/sy). Notably, the thermodynamic path to reach

a steady state at a given volume fraction becomes longer on
SE–s by increasing the shear rate and decreasing the volume
fraction. This path essentially reaches a single thermodynamic
state point close to the dynamic yield stress value in the quasi-
static regime.

4 Summary and concluding remarks

Our study explores the thermodynamics of startup shear flow in
jammed suspensions comprising soft particles using particle
dynamics simulations. Results reveal that the excess entropy
proposed by Rosenfeld34,35 not only explains the steady-state
rheology behavior as reported by Bonnecaze et al.17 but also
effectively captures the stress–strain behaviors in transient flow
regimes at different shear rates and volume fractions. The
transient excess entropy, SE(g), derived from the pair distribu-
tion function, exhibits an overshoot whose magnitude generally
increases with the shear rate. Notably, the magnitudes of these
overshoots in stress, elastic energy, and excess entropy collapse
onto master curves when the shear rate is scaled by the
parameter G0/Zs, reflecting the ratio of elastic to viscous forces
in the paste. In these master curves, either determined from
transient rheology or thermodynamics, two behaviors reflecting
the dominant flow mechanisms at the quasi-static regime and

Fig. 7 Steady-state excess entropy,�SE
st, as a function of shear rate, ~_g, and

(B) rescaled excess entropy SE
st/S

E
y, where SE

y is the excess entropy in the

dynamic yield point, as a function of the rescaled shear rate, _̂g. The solid
line shows the logarithmic fit to the data.
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high shear rates are observed. These two regimes are separated

at a critical shear rate of _̂g� ffi 2� 10�6.
From a thermodynamic perspective, our analysis reveals the

variation of the excess entropy as a function of the elastic
energy, i.e., SE–U data, follows a universal behavior when data
from different shear rates are limited to small deformations.
Any departure from this generic behavior can be considered a
thermodynamic indication of nonlinear flow and the onset of
plastic deformation in these materials. Furthermore, a transi-
ent temperature can be defined using the thermodynamic
definition of temperature from SE–U data. This transient tem-
perature, T, is not defined at steady-state. In the transient flow
regime, it increases with an increase in the elastic energy
(equivalently increasing strain or stress), while at low rates

corresponding to the quasi-static regime, it shows fluctuating
behavior about zero.

The scaling relationships and thermodynamic framework
established in this work provide valuable insights into the
transient flow behavior of athermal, flow-driven systems across
various conditions. Our findings suggest a promising route for
exploring the applicability of this framework to thermally
activated and flow-driven systems for future research. Given
the similarities between SPGs and other flow-driven systems,
such as granular materials,24 where particle dynamics are
driven by avalanches in a jammed state, it would be construc-
tive to apply this method to correlate the transient macroscopic
rheology with the microstructure. We also note that the defini-
tion of the granular temperature, which is related to the kinetic

Fig. 8 Excess entropy,�SE, (top row) and transient temperature, T, (middle row) as a function of the elastic energy, U, for suspensions with volume fraction
of (A) and (D) f = 0.70, (B) and (E) f = 0.80, and (C) and (F) f = 0.90. Insets are temperature as a function of strain, g. Excess entropy, �SE, (bottom row) as a
function of shear stress, s, at different shear rates for suspensions with volume fraction of (G) f = 0.70, (H) f = 0.80, and (I) f = 0.90. The color-coding in all
sub-figures is the same as (A).
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energy of the particles, cannot reproduce the trend seen here
since the average nonaffine velocity of the particles does not
change as a function of the strain at a given rate. These
suspensions also share similarities with hard spheres when
under shear, exhibiting anisotropy of microstructural and
arrested state in the shear flow. While this similarity exists,
there are specific differences in the transient stress response
when the volume fraction of hard spheres approach the ran-
dom close-packing; the stress overshoot magnitude decreases
with the increasing the f, while as we have shown, the over-
shoot is monotonically increased with volume fraction. The
latter is due to the difference in the origin of the stress, which
arises from the purely entropic origin in hard spheres, while in
SPGs, particles can deform at contact and accumulate elastic
energy. Nevertheless, this framework can be tested for these
hard-sphere suspensions, in which particles experience the
caging behavior in the flowing state,51–55 and show shear-
driven microstructural changes in form of structuring into
layers. This phenomenon also occurs in SPGs when the dis-
tribution of the particle size is narrow, and they show a similar
trend in terms of the existence of an induction period, where
stress gradually decreases before attaining a steady state in the
layered phase.45,46,56 We also note that hard-sphere colloidal
gels57,58 and glass forming systems59 that show caging behavior
can be used to establish these correlations between the tran-
sient thermodynamics and macroscopic rheology.
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