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MOFs using machine learning†

Simay Özsoysal, Burcu Oral and Ramazan Yıldırım *

Photocatalytic CO2 reduction over metal–organic frameworks (MOFs) is investigated by constructing

a database from published articles and analyzed using machine learning tools to predict the total gas

product yield (random forest regression) and predominant product types under various conditions

(decision tree classification). Hyperparameters of the random forest model, ntree (120) and mtry (14) are

optimized by 5-fold cross validation leading to R2 values of 0.96, 0.94 and 0.60 for training, validation

and testing, respectively indicating the predictive power of the model developed. Reactor volume,

sacrificial agent and amount of catalyst per reaction volume were the most important variables for total

gas production rate prediction. Decision tree models, developed for gas phase and liquid phase systems

separately, to determine the predominant product types (CO or CH4 in the gas phase, and one of

CH3OH, CO, H2 and HCOOH in the liquid phase) depending on the photocatalyst properties and

reaction conditions, were also successful with an overall testing accuracy of 87% and 77% for gas-phase

and liquid-phase processes, respectively.
Introduction

Global warming and environmental pollution are the major
challenges of our times; in order to address these problems
effectively, new, clean, renewable, and economically feasible
technologies for energy generation have to be innovated.
Meanwhile, effective capture or conversion technologies for CO2

have to be also developed as CO2 emission will likely continue to
be the major cause of air pollution and global warming in the
near future. The conversion of CO2 to valuable products is
a potentially attractive route to eliminate CO2 if it can be ach-
ieved in a commercially feasible way. Carbon monoxide as
syngas, methane as a chemical feedstock, methanol as
a commodity product, and many other hydrocarbons can be
synthesized from CO2 through (photo) catalytic/electrocatalytic
processes. Catalytic processes use noble metal catalysts, and
operate at high temperatures, making them costly,1 while the
photocatalytic CO2 conversion route offers a signicant cost
reduction since the energy for the reaction is obtained from the
sun. However, the photocatalytic/photo-electrocatalytic CO2

conversion efficiencies and selectivity towards the desired
products are still too low for commercial feasibility.2 There have
been various attempts to overcome these challenges and
commercialize photocatalytic CO2 conversion; new materials
are being searched for widely and experimental conditions are
aziçi University, 34342 Bebek Istanbul,
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being optimized for desired results. For instance, sub-
nanomaterials, double/single-atom catalysts, and 2D nano-
materials are used as novel catalysts due to their tunable char-
acteristics and quantum effects.3

Metal–organic frameworks (MOFs) are porous materials that
are created using metal centers and organic linkers; they have
favorable properties such as a homogenous metallic distribu-
tion and the excitonic effect.4,5 Additionally, their structure may
prevent the recombination of electrons and holes, thus making
them suitable photocatalysts.6 Indeed, MOFs are investigated as
promising materials for both CO2 capture and conversion; they
can be used as MOF-semiconductor composites, as photosen-
sitizers or as conductive photo-electrocatalysts.7 Organic linkers
or metal centers are both capable of light harvesting, and
according to oxidation states the photon transport can be either
from organic linkers to the metal center (LMCT) or the metal
center to organic linkers (MLCT); hence the separation of
photogenerated charge carriers is facilitated and efficiency
increases.8 Since many products can be obtained from CO2

conversion, it is important to have a selective photocatalyst for
maximum yield. Optimizing synthesis routes, engineering the
band gap, coupling with semiconductors and sensitization
using a suitable sensitizer are some of the methods that are
employed to increase product selectivity of MOF-based photo-
catalysts.9 Stability is another challenge for MOF-based appli-
cations as various researchers are searching for a way to develop
stable MOFs, which are also suitable for the function to be
performed. For example, Almazan et al. synthesized an effective
UiO-66 MOF-derived Ru@ZrO2 catalyst for catalytic photo-
thermal CO2 reduction; they obtained highly dispersed Ru
This journal is © The Royal Society of Chemistry 2024
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particles without stability loss and achieved high yield and
selectivity for CH4.4 In another study, Ding et al. created a BiOCl/
Bi-MOF catalyst via co-shared Bi–Cl bonding which showed
high CO2 capture and high CO production rate due to increased
oxygen vacancies and decreased electron–hole recombination.10

Machine learning (ML) is used to analyse the patterns in
large datasets and to develop models for descriptor (input
variables) and performance relations; this way one can identify
the most suitable materials and conditions, make predictions
for the new cases or deduce heuristic rules and decision for
future studies. The recent improvements in data availability
through scientic publications and online databases as well as
the developments in computational power, including ML algo-
rithms, allowed ML to be widely employed in materials
research, reaction modelling, and yield prediction for many
photocatalytic applications. For instance, our group has previ-
ously studied the performance of various photocatalytic systems
such as water splitting11,12 and CO2 reduction13 as well as other
catalytic systems related to CO2 capture and conversion14 using
machine learning tools to develop models and heuristics from
the studies published in the literature to enhance the photo-
catalytic performance in future studies. There are also studies in
the literature that aim to design or discover new photocatalytic
materials, as reviewed by Ge et al. and Mai et al.15,16

Most of the MOF-based ML studies focus on gas uptake on
MOFs17 and screening of materials for CO2 capture18–21 and
separation.22 There are also some studies focusing on synthesis
conditions to predict stability as well as inverse material design
using ML.23 Additionally, Lin et al. reviewed newMOF databases
developed from the experimental and DFT-based data.24

In this work, a literature-based dataset is constructed for gas
and liquid phase CO2 photo-reduction on MOF photocatalysts
and analysed using machine learning tools. The aim was to use
the experience in the literature to identify the major patterns
and signicant factors related to MOF properties and reaction
conditions for high photocatalytic performance and develop
models and heuristics to show the direction and variables to be
manipulated for future studies. Predictive random forest
models correlating the total gas production rate with the MOF
properties and process variables were developed for the gas and
liquid phase processes separately. Similarly, decision tree clas-
sication models were developed to show the effects of MOF
properties and process conditions on the predominant product
type as the indicator of product distribution. To best of our
knowledge, there is no such work on the ML analysis of pho-
tocatalytic CO2 reduction on MOFs.

Computational methodology
Dataset construction and pre-processing

The dataset containing 605 data points is constructed by
extracting instances from 197 individual experiments reported
in 57 published articles; 186 of the data points are recorded in
gas-phase processes while the remaining 419 instances are from
liquid-phase processes. We collected data starting from the
research papers reviewed by Luo et al. (2023),8 and formed the
initial dra of our dataset by extracting data from these papers.
This journal is © The Royal Society of Chemistry 2024
Then, we added the data from the research papers such as the
review articles by Dhakshinamoorthy et al. (2021)25 and Zhoa
et al. (2021)26 if they were not already covered by Luo et al.
(2019). Finally, we performed a Web of Science search with the
keywords CO2 photoreduction or photocatalytic CO2 reduction and
metal organic framework orMOF in the article title for the results
published in 2022–2023 (on January 15, 2024).

Inuential parameters related to MOFs (photocatalyst
properties) and reaction conditions are selected as descriptors
while the output (performance) variable is chosen as the total
gas production rate (used in the random forest-regression
model), indicating the sum of production rates of the result-
ing products and major gas type (used in the decision tree-
classication model), representing the predominantly gener-
ated product as a consequence of CO2 photoreduction. The nal
dataset is recorded manually on an Excel worksheet and orga-
nized in a tabular format. It comprises product types and
production rates against a set of features (descriptors) in six
fundamental categories (process phase, MOF-characteristics,
feed composition, light source, reactor parameters and MOF
synthesis conditions). Descriptors and the corresponding range
of variables are listed in Table 1 while the complete dataset is
provided in the ESI.

In the MOF category of functionalized and/or metal-added
MOFs (FUNC), ligands undergo modications via organic
functionalization (i.e., amine functionalization) or inorganic
material incorporation (i.e., metal addition); on the other hand,
MOFs undergo metal-ion exchange rather than direct addition
of metals in the category of metal-ion exchanged and/or doped
MOFs (EXCH), which also includes metal doping.27

We think that we should also clarify our approach for
selecting some of the descriptors. MOFs are usually used
together with some semiconductors and other materials that
may also act as co-catalysts. There were many different types of
MOFs combined with different materials, and it would be
inefficient to use photocatalysts and co-catalysts as descriptors
as usually done in similar studies; instead, the pre-analysis of
data indicated that it would be more practical to use different
parts of the photocatalyst as different descriptors. Hence, we
identied ve descriptors to distinguish the photocatalysts
from each other: MOF type, center metal, NH2 presence (related
to functionalized type MOFs), type of additional material and
presence of a noble metal in the structure. The type of MOF, the
center material and the presence of NH2 are directly related to
the characteristics of MOFs since they can be identied using
the center metal (for instance Zr) and type (for instance PURE).
The presence of NH2 is related to being functionalized or not;
most of the functionalized MOF types include NH2 groups.
However, there are some cases where the MOF is identied as
functionalized without having an NH2 group (they have an
additional metal or –OH group). Additionally, there were also
some data sets that have both NH2 and metal for functionali-
zation; so the presence of NH2 was described separately to avoid
confusion. The additional material and noble metal descriptors
involve the type of addition performed to the MOF. Noble
metals such as Pt and Au were used as co-catalysts, but the
number of noble metal containing photocatalysts is too small,
J. Mater. Chem. A, 2024, 12, 5748–5759 | 5749
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Table 1 Variable list of the dataset

Variable category Variable name Range

Process phase Phase Liquid, gas
MOF characteristics MOF type PUREa, COMPb, EXCHc, and FUNCd

Center metal Zn, Zr, Co, other, none
Noble metal None, present
NH2 functional group None, present
Additional functional group Adenine, CdS, CN, CNNs, CsPbBr3, Cu2O, metal,

nonmetal, OH, Ti, Ti3C2, TiO2, Zn2GeO4, etc.
Band gap (eV) 1.52–5.00

Feed composition Catalyst per volume (mg mL−1) 0.037–375
Sacricial agent (TEOA) (%) 0–100

Light source Electromagnetic spectrum UVe, UV-visf, and VISg

Reactor parameters Time (h) 0.5–24
Volume (mL) 1–2700
Pressure (atm) 0.1–1.5
Temperature (°C) 0–230

Synthesis conditions Time (h) 0.5–240
Temperature (°C) 40–250

Gas production Produced gas type H2, CO, CH4, HCOOH, and CH3OH
Total gas production rate (mmol gcat

−1 h−1) 0.031–2463.2

a PURE: pure (unmodied) MOFs. b COMP: MOF composites. c EXCH: metal-ion exchanged and/or doped MOFs. d FUNC: functionalized and/or
metal-added MOFs. e UV: 280–380 nm. f UV-vis: 380–420 nm. g VIS: 420–700 nm.
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while the types and concentrations of noble metals used are
rather diverse; for this reason, the number of data points was
not sufficient to describe the noble metals with their names and
concentrations. Hence, we decided to represent them with
a separate descriptor as a noble metal having two values as
present or absent; even this simple representation improved our
models (as also evident from Fig. 5). The additional material
descriptor (labeled as an additional functional group) consists
of every other type of addition performed to the MOF structure
(they may also act as a co-catalyst). For instance, the type of
semiconductor added to the MOFs in a composite MOF or any
functional group other than NH2 was included under this
descriptor.

Before the ML analysis, the log (10 based) transformation of
the output variable (total gas production rate) is performed to
stabilize the variance and improve the normality of data; for
this, each value of the output variable is incremented by 1
before taking the logarithm as a safeguard against zero values of
output. With this transformation, the total gas production rates
Fig. 1 Output displays of the total gas production rate (a) before and (b

5750 | J. Mater. Chem. A, 2024, 12, 5748–5759
are constrained between 0 and 3.5 while the distribution of data
approached normal distribution as shown in Fig. 1b (unless
stated otherwise, all subsequent numeric output values corre-
spond to data aer undergoing logarithmic transformation).
Following the transformation process, the dataset is randomly
divided into training and testing sets, with approximate
proportions of 0.7 and 0.3, respectively. The splitting is done
based on experiments (i.e., all data taken in one experiment are
placed in either the training or test data set only); otherwise, it
may cause data leakage (changing only some variables during
the experiment may not change the results, or the results may
change in a predictable manner and may create false impres-
sion of high generalization ability). Subsequently, the presence
of missing values in both datasets is examined and lled with
the average values of the related input variables in the corre-
sponding dataset (training or testing). An important aspect
related to handling missing values is that, for the reaction
pressure of liquid-phase processes, an exception is made: the
missing values are not imputed using the mean value; instead,
) after logarithmic transformation.

This journal is © The Royal Society of Chemistry 2024
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Fig. 3 Liquid and gas phase data distribution of MOF types.
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they are lled with a value of 1 atm. This organization is
signicant since it aligns with a common practice detected in
most liquid-phase studies within the literature, where experi-
ments are usually conducted under atmospheric conditions. At
the end, the pre-processed (including log transformation)
dataset is found to be suitable to machine learning (ML)
applications. In essence, pre-processing boosted the predictive
power of our new dataset in comparison to the preliminary
models constructed with the raw dataset.

Implementing machine learning tools

Random forest regression model for total gas production
rate. The random forest regression model is constructed by
using the randomForest28 package in RStudio, and optimized by
employing k-fold cross validation (k was 5 here). Other regres-
sion models, including multiple linear regression, articial
neural network, gradient boosting and support vector machine
regression models are also tested, yet none of them could reach
the performance achieved by the random forest model. There-
fore, no further details for those models are provided in the
manuscript. The 5-fold cross-validation technique is imple-
mented via dividing the training set into ve subsets. In each
iterative step, the data are trained with four subsets, and the
remaining subset is utilized for validation. Two hyper-
parameters, namely ntree (the number of decision trees utilized
for the growth of random forest) and mtry (the number of
variables considered for splitting each node) are tuned during
these iterations in order to improve performance of the random
forest model.29 To obtain the best combination of these
parameters, nested loops are formed in RStudio, and the
sequence of ntree and mtry parameters is scanned. In the iter-
ative procedure, ntree values are alternated from 50 to 200, with
increments of ten at each step. Similarly, the mtry sequence is
changed within the range of ve to 15 by increments of three at
each step. Optimum model hyperparameters are established as
120 for ntree and 14 for mtry. Root mean square error (RMSE)
values for training, validation and testing dataset models are
used as the measure of the tness of the model.

Decision tree models for classication of major gas products
in liquid and gaseous mediums. By employing the rpart
package30 in RStudio, decision tree models are created, with the
primary objective of classifying the predominant gas type. The
term predominant implies the type of gas displaying the highest
Fig. 2 MOF type distribution by using a (a) bubble graph and (b) swarm

This journal is © The Royal Society of Chemistry 2024
production rate (among H2, CO, CH4, HCOOH, and CH3OH).
Given that there are differentiations between gas phase and
liquid phase photocatalytic CO2 reductions, two separate
models were developed. The optimum hyperparameters of both
models are determined as 20 for minsplit, 7 for minbucket and
0.01 for cp. The seed value is arbitrarily chosen as 461 for the gas
phase model and 161 for the model concerning the liquid
medium.

Results and discussion
Pre-analysis of MOF types in the dataset

As shown in Table 1, MOF types are categorized into four groups
namely, PURE, FUNC, EXCH and COMP; representing pure
(unmodied) MOFs, functionalized and/or metal-added MOFs,
metal-ion exchanged and/or doped MOFs, and MOF compos-
ites,27 respectively. The distribution of data points, aer pre-
processing steps, is visualized in Fig. 2; the bubble plot in
Fig. 2a shows the average gas production rate (as well as the
data size indicated by the size of spheres), and Fig. 2b presents
the distribution of data as a swarm plot. These representations
indicate that most of the data points belong to the COMP type
even though it does not represent the highest average perfor-
mance. In contrast, the number of instances in the class of
EXCH is the lowest, yet it has the highest gas generation rate.
This outcome is anticipated given that ion exchange or doping
applications modify the redox potentials and improve photo-
catalytic efficiency.27

The average effect of the MOF type is presented in Fig. 3 for
both liquid and gas phases, separately. It is observable from the
plot.

J. Mater. Chem. A, 2024, 12, 5748–5759 | 5751
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Fig. 5 Descriptors that represent the percentage increase in the mean
squared error (MSE).
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gure that average total gas production rates for the gas phase
are generally lower than that of the liquid phase while higher
CO2 conversion was attained in the liquid phase. One plausible
reason could be the effect of stirring, as turbulence is a critical
parameter to overcome the resistance of boundary layers on the
photocatalyst surface in the liquid phase.31 Without stirring, the
liquid layer on the top of the photocatalyst would act as a barrier
to CO2 molecules and hinder the efficiency of the photoreduc-
tion reaction by reducing mass transfer and therefore CO2

conversion rates.31

Random forest regression of the total gas production rate

As mentioned in the Computational methodology, the random
forest regressionmodel, with an optimized ntree andmtry of 120
and 14 respectively, represented the dataset best; the actual vs.
predicted total prediction plots for training, validation and
testing sets are presented in Fig. 4. As can be seen, the model
predictions closely align with the actual data points, showing
that the tting is satisfactory. In quantiable terms, it is re-
ported that the RMSE, which is the main indicator of model
tness, is 0.15 for training, 0.16 for validation, and 0.48 for
testing while R2, as the other measure of tness, is 0.96 for
training, 0.94 for validation and 0.60 for testing (recent data are
slightly underpredicted probably due to the fact that relatively
higher performances were obtained over the same materials
with improved experimental conditions and experience gained).
However, it is important to remember that these results are
obtained aer the logarithmic transformation of the data;
hence, the model is successful within the order of magnitude
predictions. Nevertheless, better predictions, at this stage, are
not realistic with the current data structure anyway; the
measurement errors associated with low product concentration
and non-standard testing conditions, especially those related to
irradiation (variations in frequency, density, irradiation angle
and distance, transmittance of glassware used in the system,
adsorption/transmittance characteristics of solution, etc.) and
the possibility of products generated from carbon contamina-
tion in the reaction medium instead of CO2 (ref. 32) create
serious levels of uncertainty in the data.

We also examined the relative importance of descriptors for
the predictive performance of our random forest model as
shown in Fig. 5 displaying the percentage change in mean
squared error with the change in the values of a specic
Fig. 4 Random forest regression model of (a) training, (b) validation, an

5752 | J. Mater. Chem. A, 2024, 12, 5748–5759
descriptor, and this provides insight about the inuence of that
descriptor on the model's predictive accuracy. It is apparent
that the reactor volume, the sacricial agent and amount of catalyst
used per reaction volume stand out as the most inuential
parameters; the result involving the volume and amount of
photocatalyst is highly foreseeable, given that the catalyst
formulation exerts a notable inuence on the photocatalytic
activity.33 The association can be further claried by referring to
the study conducted by Zhao et al.,33 who examined the inu-
ence of catalyst and solvent addition on the product yield. Their
ndings revealed that the CO production rate displays
a continual increase as the amount of catalyst (NH2-IUO-66 and
CdS in this particular study) is increased, until a maximum
value is reached. Beyond the peak value, a decrease in yield is
detected and the reduction of catalytic activity is attributed to
the agglomeration through excess addition of particles.
Accordingly, outcomes of the study prove the existence of an
optimal quantity of catalyst addition, in which the highest gas
production rate is achieved. The reactor volume, especially in
the liquid phase, on the other hand, inuences the mixing and
transfer of the products from the surface of the particulate
catalyst to the gas phase. The signicance of the sacricial agent
indicates the signicance of concentration, which is an ex-
pected result because only TEOA (triethanolamine) is used for
this purpose. It is interesting to note that the process phase
emerges as the least inuential factor as shown in Fig. 5. Low
d (c) testing datasets.

This journal is © The Royal Society of Chemistry 2024
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inuence of the process phase (liquid or gas) on the outcome
could be attributed to the relative importance of other inu-
ential factors. In essence, other factors such as catalyst loading,
feed composition, MOF properties, and reactor parameters
(temperature, pressure, etc.) could be directly or indirectly
related to the phase and these phase-specic factors could
overshadow the inuence of the process phase. As a result, the
predictive models lack the ability to assign more importance to
them.

Decision tree classication of the predominant gas type

Decision tree classication models are also constructed for
prominently generated gas types in photocatalytic CO2 reduc-
tion to provide relationships between descriptors and gas
output categories, and to identify possible routes (or heuristic
rules) to achieve the desired product type. Naturally, there are
usually multiple gaseous products with different ratios;
however, we only considered the product having the highest
production rate in each case. This approach provides signicant
advantages for model building: (1) an efficient and simplied
classication can be achieved by avoiding the categorization of
every potential gas type, especially those present in trace
amounts, (2) the interpretability of the model would be much
higher providing more insight for future studies. Subsequently,
two individual models, denoting gas and liquid phase photo-
catalytic CO2 reductions separately, are provided below.

Photocatalytic CO2 reduction in the gas phase. A decision
tree classication model for gas phase photocatalytic CO2

reduction is presented in Fig. 6; the predominant products in
184 cases were used to develop the model. Normally, our data
set contains 186 cases, but we excluded two cases in which H2 is
the major product, because only two cases are not sufficient to
make a generalization (compared to 130 and 54 cases having CO
and CH4 as the major products, respectively). Consequently, the
model presented in Fig. 6 does not contain the route for
hydrogen production; it provides potential routes for CO and
CH4 production (nodes with shades of green signify CO and
blue tones denote CH4 as the dominant gas type). It should be
remembered that hydrogen, or other gases, may be produced
Fig. 6 Decision tree model for the predominant gas type in gas-phase
photocatalytic CO2 reduction.

This journal is © The Royal Society of Chemistry 2024
signicantly in these cases as well (especially with CO) but it
does not have the highest concentration.

Shortly, the tree starts with root node (at the top) and splits
the data via applying some criteria (values of descriptors that
cause a change in the major gas type); when the criterion is
fullled under each splitting condition (in nodes), the decision
tree proceeds along the le branch; in the opposite case, it
continues along the right branch. The gas type (either CO or
CH4) specied in the rst row at each node represents the
prevailing class while the percentage in the middle row
expresses the predicted probability of CO production. The
percentage specied in the bottom row signies the proportion
of the total data stored in that particular node. The proportion
at the rst node (root node) is specied to be 100%, as it
contains the entire dataset; where CO dominates with 71%,
while CH4 constitutes only 29%.

In order to elucidate the dominant occurrence of CO, an
initial investigation into the reaction mechanism of CO2

photoreduction is conducted. In the context of CO2 reduction
with H2O, a simultaneous reaction of water splitting occurs that
results in H2 generation.34 However, since the primary focus of
this article does not include the details of water splitting, the
particular mechanism of H2O reduction to H2 is intentionally
omitted. The potential reactions of the CO2 photoreduction
process with H2O vapor to generate CO and CH4 in the context
of thermodynamic reduction potentials relative to the normal
hydrogen electrode (NHE) are given below in eqn (1)–(4).35,36

CO2 + 2H+ + 2e− / CO + H2O, E0 = −0.48 V (1)

2H+ + 2e− / H2, E
0 = −0.41 V (2)

CO2 + 8H+ + 8e− / CH4 + 2H2O, E0 = −0.24 V (3)

2H2O + 4h+ / 4H+ + O2, E
0 = +0.82 V (4)

The lower reduction potential difference for the reduction of
CO2 to CH4 (E

0(CO2/CH4)= −0.24 V) compared to that of CO2 to
CO (E0(CO2/CO) = −0.48 V) facilitates the conversion to
methane. Nevertheless, it is worth emphasizing that eight
electrons are required for CH4 production, yet only two are
required for CO. Accordingly, this leads to a substantial yield
rate of CO in the resultant gaseous products.35 For this reason,
designating CO as the initial product of CO2 photocatalysis is
not an unexpected outcome, considering the fact that photo-
catalytic CO2 reduction entails a complex mechanism and
results in a range of products.34 Although CH3OH (methanol) is
reported as a potential product, a literature review reveals that
CO2 is more likely to undergo reduction to CH4 rather than
CH3OH in most cases.34 Our ndings align with the existing
literature, since CH3OH is not detected as a major gas type in
our data. Consequently, the frequent presence of CO (dominant
share of 71%) in the model can be rationalized based on the
aforementioned factors.

Upon examining Fig. 6, it can be seen that the rst splitting
condition relies on the CO2 pressure level. A specic threshold
of 0.43 atm pressure was established within this splitting
J. Mater. Chem. A, 2024, 12, 5748–5759 | 5753
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Table 2 Confusion matrix for the predominant gas type in gas-phase
processes

Accuracy
# Of data
points Actual class

Predicted
class

RecallCH4 CO

Training 0.96 41 CH4 39 2 0.95
88 CO 3 85 0.97

Precision 0.93 0.98
Testing 0.87 13 CH4 9 4 0.69

42 CO 3 39 0.92
Precision 0.75 0.90
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condition (node i). For pressure levels below this threshold, the
branch leads to a node dominated by CH4, where the predicted
probability of CO production is zero. The choice of the splitting
condition (division according to the CO2 pressure level) is well-
founded, since the products formed during the photoreduction
process are a direct result of the CO2 available for the reaction.35

This claries the critical role played by CO2 concentration as
a determining factor in the photoreduction process. Accord-
ingly, increasing (or decreasing) the concentration of CO2

within an enclosed system correlates with a subsequent rise (or
fall) in the pressure of CO2. This adjustment can be achieved by
changing the CO2/H2O ratio at a given reactor volume and
reaction temperature. In other words, CO2 pressure, CO2

concentration and CO2/H2O ratio are interconnected factors;
hence, modifying one could correspond to changes in another,
ultimately affecting the resulting predominant gas type.
Following is a detailed exposition on the inuence of the CO2-
to-H2O ratio:

The CO2/H2O ratio stands out as a signicant parameter
inuencing both the reaction rate and product yield.37 Tahir
et al.35 conducted a study to observe the changes in the H2O/CO2

ratio through modifying the ow rates of CO2. Their studies
indicate that increasing the H2O/CO2 ratio (or decreasing the
CO2/H2O ratio) resulted in an increase in CH4 yield. The ratio-
nale behind this enhancement is elucidated as follows: an
elevated H2O/CO2 ratio (signifying a decrease in CO2 concen-
tration) promoted the adsorption of H2O molecules on the
catalyst surface and enhanced the ability to reduce CO2 in order
to generate CH4. The alignment between Fig. 6 and ndings of
Tahir et al. becomes evident when taking into account that
a decrease in CO2 concentration (and a reduction in CO2 pres-
sure accordingly) may result in boosted CH4 yield in both cases.
This pattern highlights the reliability of our results and
consistency of our model with prior research.

On the other hand, it can be seen that a signicant portion of
the data assembles at a node where CO is identied as the
predominant gas (node iii). The splitting criterion of synthesis
temperature may not be used for practical purposes; the
synthesis temperature and time are usually coupled with the
MOF structure (i.e. they are actually referring to certain MOF
structures), which is the true reason for the branching but
labelled with temperature or time instead. For examples, the
MOF types, such as CO-ZIF-9/TiO2, TiO2/NH2-UiO-66, CsPbBr3
quantum dots/UiO-66(NH2), and CPO-27-Mg/TiO2, are accu-
mulated on the right hand side of the branch (low synthesis
temperature and usually high synthesis time) promoting CO
production. The following assertions can be made concerning
these photocatalysts: Co-ZIF-9 serves as an effective co-catalyst
that could endorse CO2 photoreduction over TiO2, resulting in
the production of CO, CH4 and H2 gases.38 Notably, upon
analyzing the CO2 photoreduction activity data, it is apparent
that CO emerges as the most predominantly produced gas
among these. Besides, in the gas phase experiment involving
the use of TiO2/NH2-UiO-66 as a photocatalyst at ambient
temperature and H2, the only detected product is CO.39 Simi-
larly, an extensive amount of CO was generated when CsPbBr3
quantum dots/UiO-66(NH2) was used as the photocatalyst; this
5754 | J. Mater. Chem. A, 2024, 12, 5748–5759
notable photocatalytic performance was attributed to fast
charge separation and transfer occurring at the interface
between CsPbBr3 quantum dots and UiO-66(NH2) nano-
composites.40 Lastly, in the context of using CPO-27-Mg/TiO2 as
a photocatalyst, the product mixture contained H2, O2, CO, and
CH4, yet CO stands out as the major product. All these photo-
catalysts have a common characteristic that they accumulate
under a branch related to a synthesis time larger than 7.5 hours.
Indeed, this criterion is highly associated with photocatalyst
properties. In other words, categorizing MOFs by using their
synthesis duration fundamentally equates to their classication
based on photocatalyst properties. Regarding this matter, when
the aforementioned photocatalysts are employed under appro-
priately congured experimental conditions, the likelihood of
CO production can be notably boosted. Node iii is then further
puried with MOF types resulting in node vi, indicating the
conditions for CO production as the predominant gas product.

It is generally known that the position of band edges,
magnitude of band gaps and mobility of charge carriers serve as
fundamental factors in photocatalytic performance.41 There-
fore, it is imperative to conduct a comprehensive examination
of photocatalyst characteristics in this context as well. Indeed,
lower bandgaps tend to lead to CO while the higher values are
usually linked to CH4 as the primary product. For example,
FAPbBr3/Ti3C2 (with a band gap of about 2.0 eV) exhibits
a notable CO2 reduction performance, leading to a signicant
generation of CO, accompanied by minimal production of H2

and CH4.42 In contrast, in certain cases where photocatalysts
named CsPbBr3 QD (Eg = 2.4 eV, absorption band edge of 530
nm) and ZIF-8 (Eg= 3.3 eV, absorption band edge of 380 nm) are
employed, CH4 could become the predominant gas as a result of
CO2 photoreduction.43 However, the bandgap does not appear
as a decision criterion in the decision tree in Fig. 6, even though
it does in some of our (less optimum) models; similar to the
discussion presented above for the coupling of synthesis time,
temperature and the type of photocatalyst synthesized under
specic conditions, the bandgap is also coupled with most of
the structural descriptors and does not always appear directly in
the tree even though it is highly inuential (such cases are more
frequent in small datasets in which the same data point can be
represented by different descriptors).

The confusion matrix containing the statistical measures for
the tness of the decision tree is shown in Table 2. Overall
This journal is © The Royal Society of Chemistry 2024
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accuracies of 96% for training and 87% for testing sets indicate
that the model's performance is quite satisfactory. It is
reasonable to conclude that correlations and patterns are
recognized successfully, and hence, a good classication model
is obtained. The precision and recall values of classes CH4 and
CO are also reported in the table to assess the effectiveness of
the model for each category; again, the values are satisfactory
for both of these classes. Here, the precision measures how
accurate the model's positive predictions are (i.e., what percent
of the model’s positive identications is really positive), whilst
the recall signies how procient the model is when capturing
all the actual positive cases (i.e., what is the percent of positive
that the model identied as positive). The high precision is
especially quite critical because we usually need the paths
suggested to be really correct (precision) rather than the iden-
tication of all correct paths (recall). Considering the overall
confusion matrix, the binary model seems to yield notable
success.

Photocatalytic CO2 reduction in the liquid phase. A decision
tree model is also constructed to categorize the predominant
gas type in the liquid phase as illustrated in Fig. 7. In contrast to
the gas phase model, this displays a higher degree of gas
diversity, including methanol (CH3OH), carbon monoxide (CO),
hydrogen (H2) and formic acid (HCOOH), with a total of 413
data points. The liquid dataset originally covers a total of 419
cases; the predominant gas is CH4 in seven cases, CH3OH, in 34,
CO in 177, H2 in 90 and HCOOH in 111 cases. Given the
infrequent occurrence of CH4, the corresponding six recordings
were eliminated, and the analysis focused on the remaining
data points to be able to make statistically reliable generaliza-
tions. In agreement with Fig. 6, the gas type specied in the
initial row denotes the product that was produced at the highest
rate under the conditions described by the branch, and the
Fig. 7 Decision tree model for the predominant gas type in liquid-phas

This journal is © The Royal Society of Chemistry 2024
percentage at the bottom line signies the distribution of total
data contained within that node as in the case of the previous
model for gas phase processes; the number in the middle row
represents, from le to right, the fraction of CH3OH, CO, H2 and
HCOOH in that node, respectively (format is slightly different
than that in the gas phase because this time there are more than
2 products). A point worth mentioning is that, CO is the most
commonly observed predominant gas in both liquid and gas
phases, which may be attributed to its position as the rst
product of photocatalysis.34 Although this is the primary
outcome of the CO2 reduction process, the general mechanism
aerwards is undeniably complicated, especially for liquid
phase processes.34 It has been argued that there is no exact
conversion route due to simultaneous production of varied
products.44 Yin et al.45 supported this notion by describing the
route of CO2 reduction as unclear.

It has been inferred that conversion routes highly depend on
reaction conditions,44 and amendment of photocatalytic prop-
erties (noble metal installation, doping with non-metals, pho-
tocatalyst coupling processes, photosensitization, etc.) could
have an impact on the variety of products.34 Correspondingly,
a detailed explanation of our model concerning photocatalyst
properties and reaction conditions is provided as follows for
liquid-phase processes:

The data points linked with nodes xvi and xvii are separated
by the specic MOF type used, indicating that when ion
exchanged or doped MOFs are selected for CO2 reduction, the
generation of H2 could potentially exceed that of HCOOH. The
notion emphasizes the importance of a case study of Sun et al.,46

who investigated the effect of noble metal doping on the cata-
lytic performance over M/NH2-MIL-125(Ti) (M = Au and Pt)
under irradiation of visible light in the presence of TEOA as
a sacricial agent. The research ndings demonstrate that the
e photocatalytic CO2 reduction.

J. Mater. Chem. A, 2024, 12, 5748–5759 | 5755
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use of pure NH2-MIL-125(Ti) results in only HCOOH generation.
On the other hand, both HCOOH and H2 production was
detected when doped MOFs (Au/NH2-MIL-125(Ti) and Pt/NH2-
MIL-125(Ti)) are used. Moreover, it is established that hydrogen
production becomes so substantial that it emerged as the main
product in CO2 reduction.46 This underscores the impact of
noble metal doping on changing catalytic selectivity.27 In
connection with node xvii, it is visualized that the choice of
MOF types such as PURE, FUNC or COMP can result in the
generation of HCOOH as the prominent gas. According to our
data, this category (node xvii) includes several photocatalyst
types such as Zr-SDCA-NH2, NH2-MIL-101(Fe), NH2-MIL-88(Fe),
NH2-MIL-53(Fe), NH2-UiO-66(Zr), (NH2)/(NH2)2-UiO-66(Zr),
NH2-MIL-125(Ti), PCN-222, AD-MOF-1, N-CNDs/NH2-UiO-66,
Ru-MOF, Ir-CP, etc. The existence of varied photocatalysts that
favor HCOOH production can be attributed to the choice and
usage amount of solvent (typically high amounts of acetonitrile)
in the reaction mixture. In the context of CO2 photoreduction in
the liquid phase, it has been revealed that the polarity of the
solvent plays a crucial role in stating the resulting outcome.34

Concerning this issue, selection of a solvent with a low
dielectric-constant is expected to form CO and H2O. On the
other hand, preference of a polar solvent (or high dielectric-
constant solvent) favors HCOOH formation. Given that aceto-
nitrile (MeCN) is an aprotic polar solvent with a notably high
dielectric-constant, utilization in higher amounts relative to
a sacricial agent TEOA (i.e., 50 : 1) is expected to favor the
production of HCOOH. The rationale lies in the fact that, when
a highly polar solvent is used, the anionic radical of CO2 expe-
riences more stabilization by solvent molecules, leading to
a weaker interaction within the surface of the catalyst and
resulting in the formation of HCOOH.34 Therefore, regarding
the splitting condition at node vi, it can be concluded that
accumulation of data within node xvi can be credited to the use
of noble metal doping, while aggregation in node xvii is con-
nected with the choice and amount of polar solvent. In other
words, the former classication is based on photocatalyst
properties, whereas the latter is related to reaction conditions.
(It is imperative to emphasize that the visualization does not
preclude or prohibit the possibility of CO generation from the
EXCH type or HCOOH production from the COMP type as
dominant outcomes; it serves as a method for classication.)

As an added point, data points associated with nodes xi, xii
and xiii are separated based on differences in synthesis pressure
and temperature. Simply put, the node separation related to
synthesis temperature stems from the utilization of different
types of photocatalysts as we discussed in the gas phase. The
division based on the pressure on the other hand, can be clar-
ied with an experimental study of Wang et al.,47 in which low-
pressure conditions (0.1 atm CO2) in their experiment resulted
in the production of two different types of gases, H2 and CO. In
their study, ve different photocatalysts, namely MAF-X27-OH,
MAF-X27l-OH, MAF-X27-Cl, MAF-X27l-Cl, and MOF74-Co are
utilized. MAF-X27-OH and MAF-X27l-OH exhibited signicantly
higher CO production, whereas MAF-X27-Cl, MAF-X27l-Cl, and
MOF74-Co displayed predominant production of H2 at 0.1 atm
pressure. It can be justied that the use of hydrogen ligands
5756 | J. Mater. Chem. A, 2024, 12, 5748–5759
enhanced the photocatalytic activity towards the production of
CO. In other words, this study underscores the signicance of
using a specic ligand type and its inuence on the product type
in CO2 photoreduction. An essential point concerning the study
of Wang et al.47 is that, when the experiments were conducted
under 1 atm pressure, all photocatalysts predominantly gener-
ated CO. More precisely, an increase of pressure from 0.1 atm to
1 atm causes a shi for MAF-X27-Cl, MAF-X27l-Cl, and MOF74-
Co, resulting in higher CO production compared to H2 (data
outputs of this study are stored in node xi). The signicance of
the increased production of CO is not an unforeseen nding: it
has been reported that an elevation in CO2 pressure in aqueous
media leads to improved product selectivity.48

It is essential to address another aspect concerning
production of CO in node xi and node xii. Data points accu-
mulated in these nodes share a common characteristic:
employing a limited quantity of MeCN solvent relative to the
TEOA sacricial agent (usually 3 : 1 or 4 : 1). On the other hand,
data points gathered in node xvii exhibit a vast amount of MeCN
utilization compared to TEOA (there are instances of ratios such
as 30 : 1, 50 : 1, and 20 : 1). An interesting point to underline is
that; not only the amount of MeCN, but also the ratio (MECN/
TEOA) is remarkably high. These ndings further reveal that
reaction conditions (MeCN/TEOA ratio in the feed and total
solvent amount) can have a substantial inuence on the type of
product formed.

Data points accumulated within node x characterize a study
of Wang et al.,49 who examined photocatalytic activity of iron-
based MOFs. As is evident from Fig. 7, the region of interest
does not include the entire UV-vis spectrum; rather, only the
visible region is utilized for photocatalytic experiments. This is
an anticipated pathway given that MOFs containing iron could
be directly activated by visible light, owing to the presence of
oxo-ion (Fe–O) clusters.27 In light of the ndings of Wang et al.,49

it is proved that a series of MOFs containing Fe (MIL-101(Fe),
MIL-53(Fe), MIL-88(Fe), NH2-MIL-101(Fe), NH2-MIL-53(Fe),
and NH2-MIL-88(Fe)) can lead to prevalent generation of
HCOOH. Therefore, the particular classication in node x holds
signicance for illustrating the effect of the type of base metal
(photocatalyst properties) on the resulting product type.

In contrast to node x, node ix contains the entire UV-vis
spectrum and indicates the category where CH3OH is the
predominant gas product. Relevant data points for this category
are linked with a study conducted by Liu et al.50 According to
their research ndings, the use of a composite type of MOF
(such as incorporation of ZIF-8 into Zn2GeO4) could lead to
a shi in the spectrum and the overall modication could
enhance the catalytic performance. In their study, they also
mention that there could be the presence of methane, ethanol,
and other types of hydrocarbons in trace amounts; however,
CH3OH remains the major gas output both before and aer the
incorporation process. Accordingly, it can be established that
through adjusting reaction conditions and selecting appro-
priate MOF characteristics, it is possible to promote the
production of CH3OH.

Generation of CH3OH is important because it represents
a forefront in future green chemistry and a valuable compound
This journal is © The Royal Society of Chemistry 2024
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Table 3 Confusion matrix for the predominant gas type in liquid-phase processes

Accuracy # Of data points Actual class

Predicted class

RecallCH3OH CO H2 HCOOH

Training 0.94 24 CH3OH 21 3 0 0 0.87
127 CO 0 126 0 1 0.99
75 H2 2 5 63 5 0.84
71 HCOOH 0 0 0 71 1.00

Precision 0.91 0.94 1.00 0.92
Testing 0.77 12 CH3OH 11 1 0 0 0.91

42 CO 0 37 1 4 0.88
36 H2 0 5 21 10 0.58
24 HCOOH 0 0 5 19 0.79

Precision 1.00 0.86 0.77 0.58
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for industry.51 Unfortunately, it has not been observed in our
gas phase dataset. The absence can be explained by the fact that
in a gaseous medium, CO2 is more likely to undergo reduction
to CH4 rather than CH3OH.34 In contrast, CO2 photoreduction
in the liquid phase, CH3OH production is foreseen to be higher
than CH4; due to the growth of carbonic acid, carbonate, and
bicarbonate products which result in HCOOH generation.34

Accordingly, one can explore pathways, leading to widespread
production of CH3OH (or any type of desired output) via
examining decision tree models.

Lastly, it is imperative to underscore the notable prevalence
of H2 formation. As mentioned earlier, in CO2 photoreduction
by H2O, there exists a simultaneous water splitting process that
results in the generation of H2.34 It has been reported that the
formation of H2 as the prevalent product is highly common.52

The reason can be ascribed to several factors: (1) the transfer
process of H2O to H2 requires 2-electrons; while the reduction of
CO2 to hydrogenated compounds usually necessitates 4–8
electrons.34 (2) the utilization of H2O as a hydrogen source is
widespread, given that it is a cost-effective and abundant
substance,34 (3) H2O can be reduced to H2 without the neces-
sitation of any supplementary reagents52 and (4) the standard
reduction potential of H2O to H2 is zero, whereas that of CO2 to
cCO2

− is −1.9 V, indicating that water splitting is thermody-
namically more encouraging.34 In essence, the dominance of H2

aligns with our research ndings; H2 is the leading gas in 90
instances in the liquid dataset.

The confusion matrix related to liquid phase processes is
provided in Table 3. Signicant patterns are spotted for classi-
cation of CH3OH as it is able to accumulate in a single leaf
node with 100% accuracy and precision. The accuracy for the
other products is also quite good indicating that the change in
predominant product type as a result of changing the photo-
catalyst properties and operational conditions is also predict-
able. Compared to the gas phase, it is noticeable that the
accuracy values for both training and testing are slightly
decreased in the liquid phase; nevertheless, the model still
displays a high degree of effectiveness. Although the number of
data points utilized for the creation of a model for liquid
medium processes is greater, reductions in accuracy and
precision values are totally expectable because the classication
is performed on four distinct classes (instead of two in the gas
This journal is © The Royal Society of Chemistry 2024
phase). It is justiable to suggest that a robust classication
model is achieved for the liquid phase dataset as well.
Conclusions

Through implementing the optimized hyperparameters of ntree
(as 120) and mtry (as 14) resulting from the 5-fold cross vali-
dation strategy, our regression model was able to demonstrate
its ability to make accurate and successful predictions for the
total gas production rate as also supported by the low RMSE
scores of 0.15, 0.16 and 0.48 for training, validation and testing,
respectively with the corresponding R2 values of 0.96, 0.94 and
0.60. The reactor volume and amount of catalyst per reaction
volume are discovered to be the most important variables for
total gas production rate prediction. Additionally, our decision
tree models, which are developed to classify the predominant
product type in the gas and liquid phase separately (because the
products are different), were quite successful in predicting the
major product that can be obtained under specic photocatalyst
and reaction conditions. The overall testing accuracy was 87%
for the gas phase and 77% for the liquid phase. For the model
concerning the gas phase, CO and CH4 were the major products
in most of the cases while CO2 pressure, band gap and MOF
types (show itself as synthesis time) were used as the decision
criteria; the relation of CO2 pressure, CO2 concentration, and
CO2/H2O ratio was also examined with the help of related
literature studies. In the liquid phase on the other hand, four
product types (CH2OH, CO, H2 and HCOOH) were the major
type in a sufficiently large number of cases with an apparently
more complex reaction network.

One of the most important implications of this work for
future studies is that it shows the predictability of the perfor-
mance using various variables and relative contribution of these
variables, providing an opportunity for improvement. The
predictive power of the models is expected to be much higher in
the future with the use of larger datasets curated continuously
using the increasing number of experimental studies published
in the literature. Such models will also provide more informa-
tion for the effects of individual variables so that both photo-
catalyst and reaction conditions can be optimized further for
better performance. The results also showed that the heuristic
rules and pathways to determine the predominant product type
J. Mater. Chem. A, 2024, 12, 5748–5759 | 5757
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can be identied. The models developed with larger datasets in
the future not only allow more accurate determination of the
major product type, but also provide more information about
the feature combinations that can serve as pathways for product
distribution. By examining routes leading to desired or unde-
sired (if there are any) product types, one can pinpoint partic-
ular paths that should be followed or bypassed. These routes
could characterize potential strategies to reach distinct
outcomes and are highly benecial for optimization purposes.
Author contributions
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