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Sensing cholesterol-induced rigidity in model
membranes with time-resolved fluorescence
spectroscopy and microscopy†
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Here, we report the characterization of cholesterol levels on membrane

fluidity with a twisted intramolecular charge transfer (TICT) membrane

dye, namely DI-8-ANEPPS, using fluorescence lifetime techniques such

as time-correlated single photon counting (TCSPC) and fluorescence

lifetime imaging microscopy (FLIM). The characterized liposomes com-

prised a 3 : 1 ratio of POPC and POPG, respectively, 1% DI-8-ANEPPS,

and increasing cholesterol levels from 0% to 50%. Fluorescence lifetime

characterization revealed that increasing the cholesterol levels from 0%

to 50% increases the fluorescence lifetime of DI-8-ANEPPS from 2.36 ns

to 3.65 ns, a 55% increment. Such lengthening in the fluorescence

lifetime is concomitant with reduced Stokes shifts and higher quantum

yield, revealing that localized excitation (LE) dominates over TICT states

with increased cholesterol levels. Fluorescence anisotropy measure-

ments revealed a less isotropic environment in the membrane upon

increasing cholesterol levels, suggesting a shift from liquid-disorder (La)

to liquid-order (LO) upon adding cholesterol. Local electrostatic and

dipole characterization experiments revealed that changes in the zeta-

potential (f-potential) and transmembrane dipole potential (Wd)

induced by changes in cholesterol levels or the POPC : POPG ratio play

a minimal role in the fluorescence lifetime outcome of DI-8-ANEPPS.

Instead, these results indicate that the cholesterol’s effect in restricting

the degree of movement of DI-8-ANEPPS dominates its photophysics

over the cholesterol effect on the local dipole strength. We envision

that time-resolved spectroscopy and microscopy, coupled with TICT

dyes, could be a convenient tool in exploring the complex interplay

between membrane lipids, sterols, and proteins and provide novel

insights into membrane fluidity, organization, and function.

Introduction

Cholesterol plays a key role in modulating the fluidity and dipole
potential in mammalian cell membranes,1–4 which are fundamen-
tal physico-electrochemical properties associated with cellular com-
munication, signaling, dysfunction, and trafficking.5–11 Therefore,
developing appropriate analytical methods and tools for character-
izing cholesterol levels and its homeostasis is important. Tradi-
tional optical methods for sensing cholesterol include steady-state
fluorescence spectroscopy coupled with membrane-intercalating
molecular probes sensitive to such physico-electrochemical
properties.1,7,12 Of relevance is the visualization of voltage transi-
ents in membranes upon external stimuli, possible by a fluores-
cence ratiometric method.3,13–15 This approach correlates the
dye’s fluorescence intensity ratio, R, with transmembrane dipole
potential (Cd).1,16 Using this approach, it is recommended that the
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overall excited state of the dye possess a mono-exponential
decay with a lifetime o2 ns to minimize anisotropic contribu-
tions of the membrane and obtain a correct R estimation.17

An alternative method to study the fluorescence of a mole-
cular probe is by characterizing the probes’ lifetime using bulk
time-resolved spectroscopic and microscopic techniques.18–23

Note that the fluorescence lifetime is a concentration-independent
property that could also be sensitive to changes in biological
microenvironments.24,25 The fluorescence lifetime imaging micro-
scopy (FLIM) technique, which produces an image based on the
differences in the fluorescence lifetime of a dye, has been used for
characterizing cholesterol biophysics.26–29 For example, subtle
changes in the fluorescence lifetime of a molecular probe were
associated with a steady increase in membrane fluidity observed in
cancer cells during treatment.30 Also, FLIM resolved subtle fluores-
cence lifetime variations from molecular probes accompanied by
membrane lipid modification upon treatment.31 These examples
serve as seminal findings and accentuate the potential for using
time-resolved techniques to extract information about the impact
of cholesterol levels on the physico-electrochemical properties of
biological membranes.32 However, benchmark studies using time-
resolved techniques to understand such properties are needed. To
this end, we used DI-8-ANEPPS (Fig. 1A), which resides in parallel
orientation with the lipids (Fig. 1B), as the molecular probe to
systematically study how changing cholesterol levels influence the
fluidity and transmembrane potential of biological membranes.
Liposomes (100 nm) and giant multilamellar vesicles (GMLVs)
composed of a 3 : 1 ratio of POPC : POPG, which are in fluid phase
at room temperature, with cholesterol levels from 0% to 50%, were
used for bulk time-resolved fluorescence spectroscopy and FLIM

characterization, respectively. Complementary steady-state fluores-
cence techniques were also used for contextualization and further
analysis. The technical details for liposome formulation and
fluorescence characterization can be found in the ESI.†

Results revealed that increasing the cholesterol level within
the lipid bilayer of the liposomes increases the fluorescence
lifetimes of DI-8-ANEPPS, see Fig. 1C. The fluorescence lifetime
as a function of cholesterol levels fits a Boltzmann sigmoidal
distribution; see Fig. 1D and Fig. S1 (ESI†). Interestingly, a bi-
exponential decay characteristic of chromophores with twisted
intramolecular charge transfer (TICT) character better represented
the fluorescence lifetime of DI-8-ANEPPS, see ESI.† 17,32–34 Note
that the first decay component is short and close to the instru-
ment response function (IRF), so the analysis was based on the
second decay component. For context, the fluorescence lifetime of
DI-8-ANEPPS systematically increased from 2.36 ns to 3.65 ns, a
55% fluorescence lifetime increment, when the cholesterol levels
were systematically increased from 0% to 50%, respectively, see
Table S1 (ESI†). Of relevance is evaluating the changes in the
fluorescence lifetime of DI-8-ANEPPS in biologically relevant
cholesterol levels (24% and 40%).9,35 Note that when the choles-
terol levels in the lipid bilayer were gradually increased from 24%
to 40%, the fluorescence lifetime of DI-8-ANEPPS-intercalated
liposomes gradually increased from 2.70 ns to 3.52 ns, see
Fig. S2 (ESI†). These results were further corroborated with
GMLVs using FLIM, see Fig. 2. Note that the fluorescence lifetimes
captured by FLIM followed a similar trend to those obtained by
bulk time-resolved spectroscopy, see Fig. S3 (ESI†), suggesting
that the local microenvironment of DI-8-ANEPPS is similar at
different membrane sizes. These results are important, as subtle

Fig. 1 (A) Molecular structures of DI-8-ANEPPS and cholesterol. (B) Both of these compounds reside perpendicular to the membrane surface.
(C) Fluorescence lifetime profiles of the DI-8-ANEPPS-intercalated 100 nm extruded liposomes composed of a 3 : 1 ratio of POPC : POPG with
cholesterol levels from 0% to 50%. (D) Boltzmann sigmoidal fit curve of the fluorescence lifetime in function of cholesterol levels.
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changes in cholesterol levels at physiological conditions can be
detected, resolved, and analyzed using time-resolved spectro-
scopy and microscopy techniques.

The TICT nature of DI-8-ANEPPS makes it an excellent candi-
date for evaluating anisotropic mediums, which means that the
restrictions imposed by the microenvironment (membrane’s fluid-
ity) on the dynamic properties of the molecule could be character-
ized with fluorescence methods.36 In the context of these
experiments, an increment in fluorescence anisotropy (Fanisotropy)
can represent a higher degree of structural order or low membrane
fluidity.37 The excitation wavelength for the analysis was the same
used for the fluorescence lifetime characterization (456 nm), and
the collection wavelength was the fluorescence lMAX of each sample
(see ESI† for more information). Fig. S4 (ESI†) shows a positive
correlation between cholesterol levels and Fanisotropy, which could
explain the fluorescence lifetime trends, revealing that increasing
cholesterol levels reduce the membrane’s fluidity. Notably, the
transition temperature for POPC (�2 1C) and POPG (�2 1C), the
lipids used for creating the liposomes, is contextualized.38 Lipo-
somes composed of such lipids are in the fluid phase at room
temperature (liquid-disordered phase – La), and increasing the
cholesterol levels within their lipid bilayer could increase the
membrane’s rigidity (liquid-ordered phase – LO).5,39 This becomes
more apparent when complementary fluorescence features of DI-8-
ANEPPS are considered. Note that this lengthening in the fluores-
cence lifetime of DI-8-ANEPPS upon increasing the cholesterol
levels is concomitant with an increase in its fluorescence intensity
(quantum yield), see Fig. S5 (ESI†). In addition, increasing choles-
terol levels induced a hypsochromic shift with reduced full width
at half maxima (FWHM) in the fluorescence spectrum of
DI-8-ANPPES. Hypsochromic shifts in TICT are often associated
with loss in the rotational freedom of the TICT state.20 More
importantly, a reduction in Stokes shifts was obtained upon

increasing the cholesterol levels within the membrane, accentuat-
ing that localized excitation (LE) becomes dominant over TICT
states. These fluorescence spectral features indicate that DI-8-
ANEPPS is motion-restricted due to confinement within lipid
domains, namely POPC and POPG, upon increasing cholesterol
levels.40–42 Such photophysical features indicate that increasing the
cholesterol levels in liposomes composed of POPC:POPG results in
membranes with more LO phase character than La character.

Increasing the cholesterol levels in the membrane may affect
its dipole potential, influencing the membrane microenviron-
ments where DI-8-ANEPPS resides and possibly convoluting the
contributions from rigidity and dipole-induced fluorescence
lifetimes.2,13,14,17 Therefore, we investigated how cholesterol-
induced changes in electrostatic interactions within the
membrane may affect the fluorescence lifetime lengthening
of DI-8-ANEPPS. The first parameter considered was the Zeta-
potential (z-potential) of the investigated liposomes. Lipids are
polyelectrolytes in a suspension that attract different ions to
their surface, potentially changing the membrane dipole micro-
environment upon excitation.43–45 It is important to note that
DI-8-ANEPPS is expected to reside in parallel with the lipids, the
sulfonated group near the membrane-solution interface, while
the non-polar hydrocarbon tails are localized within the hydro-
phobic core of the bilayer (Fig. 1B).14 As shown in Fig. 3A,
increasing the cholesterol levels in the investigated mem-
branes minimally impacts their z-potentials. For example, the
z-potential for the investigated liposomes with 0%, 15%, 30%,
and 50% cholesterol levels are �59.4 mV, �52.9 mV, �59.4 mV,
and �62.6 mV. No correlation between the z-potentials and any
cholesterol-dependent photophysics was found.

Next, we designed liposomes with sizable differences in
z-potential s. POPC has a zwitterionic lipid head group, while
PG has a negatively charged lipid head group (Scheme S1, ESI†).

Fig. 2 Representative FLIM images for DI-8-ANEPPS-intercalated POPC:POPG GMLVs with different cholesterol levels. The scale bar is 10 mm.
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Therefore, it is possible to modify the z-potentials of the
liposomes by altering the equimolar concentration between
such lipids relative to that of the original liposomes (POPC :
POPG – 3 : 1). To that end, liposomes with fixed cholesterol
levels (15%) but with different lipids ratios (7 : 1, 3 : 1, 1 : 1, and
1 : 7) were generated. As expected, increasing the POPG ratio
content in the liposomes relative to POPC resulted in liposomes
with a more negative z-potential, see Fig. 3B. Changing the
POPC : POPG ratios from 1 : 7 to 7 : 1 decreased the z-potential
from �72.4 mV to �43.0 mV. This decrease in z-potential was
concomitant to an increase in the fluorescence lifetime of
DI-8-ANEPPS (from 2.52 ns to 2.60 ns), see Fig. 3C, highlighting
the importance of electrostatic charges on the photophysics of
DI-8-ANEPPS. However, the z-potential of the liposomes has
minimal impact on the fluorescence lifetime of DI-8-ANEPPS
compared to the influence that cholesterol-induced rigidity has
on the lipid bilayer.

Cholesterol levels can impact Cd of the liposomes, affecting
the photophysics of DI-8-ANEPPS. While directly measuring Cd

is difficult, it can be estimated by its linear relationship with
the fluorescence intensity ratio (R) of DI-8-ANEPPS when
detected at the edge of its fluorescence spectra (l670 nm) after
excitation at the blue edge (l420 nm) and red edge (l510 nm) of its
absorption spectrum, see eqn (1).15

Cd ¼
ðRþ 0:3Þ
4:3� 10�3

(1)

It is believed that selecting these wavelengths minimizes
membrane fluidity effects on R, which is further described in
the ESI.† 1 As shown in Fig. 4A and Fig. S6 (ESI†), increasing the
cholesterol levels in the membrane proportionally increases
Cd. For example, Cd increases from 405 mV to 663 mV when
cholesterol was increased from 0% to 50%, a 64% increment,
suggesting that Cd might contribute significantly to lengthen-
ing the fluorescence lifetime of DI-8-ANEPPS.

To address this proposition, we evaluated the influence of
the POPC : POPG ratios on Cd, see Fig. 4B and Fig. S7 (ESI†).
Interestingly, liposomes with lower POPG content possess a
higher Cd. For example, systematically changing the POPC :
POPG ratios from 1 : 7 to 7 : 1 increases Cd from 432 mV to
495 mV. This Cd increment is 15%, like that for those

liposomes when cholesterol levels are increased from 0% to
15%, see Table S1 (ESI†). However, the fluorescence lifetime
increments by modulating the POPC : POPG ratios are minimal
compared to the impact of increasing cholesterol levels, see
Fig. 1A and 3C. For example, there is a 0.08 ns increment in the
fluorescence lifetime when the ratio of POPC : POPG is changed
from 1 : 7 to 7 : 1, while the fluorescence lifetime increment
when the cholesterol levels are increased from 0% to 15% is
three times larger at 0.24 ns. These results suggest that a
cholesterol-induced reduction in membrane fluidity might

Fig. 3 (A) z-potential for the investigated liposomes with 3 : 1 POPC : POPG ratios but different cholesterol levels. (B) z-potential for the investigated
liposomes with the same cholesterol level (15%) but different POPC : POPG and (C) their respective fluorescence lifetimes.

Fig. 4 Fluorescence intensity ratio, R, for estimating the transmembrane
dipole potential (Cd). (A) Liposomes with 3 : 1 POPC : POPG ratios but
different cholesterol levels and (B) liposomes with the same cholesterol
level (15%) but different POPC:POPG.
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influence the fluorescence lifetime of DI-8-ANEPPS to a greater
extent than changes in Cd. This becomes more apparent when
the fluorescence spectra of the mentioned samples are further
contextualized. The changes in the Stoke shifts (B119 nm) and
quantum yield of the liposomes when the POPC:POPG are
modulated are minimal. In comparison, a sizable difference
in the Stokes shift and quantum yield was obtained when
cholesterol was increased from 0% (126 nm) to 15% (119 nm),
see Table S1 (ESI†). In addition, these results align with previous
studies where DI-8-ANEPPS is used to probe the impact of
cholesterol levels on the orientational polarizability in relatively
fluid membranes.4,17 In that study, it was concluded that the
cholesterol’s effect in restricting the degree of movement (i.e.,
increasing LO character) dominates over its effect on the local
dipole strength.

In conclusion, it is possible to use the fluorescence lifetime
DI-8-ANEPPS, a TICT dye, to inform about membrane fluidity.
In the case of liposomes composed of POPC:POPG, increasing
the cholesterol levels resulted in decreasing membrane fluidity,
which manifested by a lengthening in the fluorescence lifetime
of DI-8-ANEPPS concomitant with a quantum yield enhance-
ment and a reduction in Stokes shifts due to LE dominating
over TICT states. Note that increasing cholesterol levels in the
membrane also resulted in increasing Cd. However, changing
the POPC:POPG ratios revealed that Cd has minimal impact on
the fluorescence lifetime of the DI-8-ANEPPS in comparison
with the impact that membrane-rigidification has upon
increasing cholesterol levels. Altogether, such photophysical
response indicates that increasing the cholesterol levels in
model membranes composed of POPC:POPG results in mem-
branes with more LO phase character than La character, which
can be sensed by coupling DI-8-ANEPPS with time-resolved
fluorescence techniques.
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