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deling of the lowest observed
effect level (LOEL) and no observed effect level
(NOEL) for rat toxicity†

Ankur Kumar, a Probir Kumar Ojha a and Kunal Roy *b

Humans and other living species of the ecosystem are constantly exposed to a wide range of chemicals of

natural as well as synthetic origin. A multitude of compounds exert profound long-term detrimental health

effects. The chronic toxicity profile of chemicals is of utmost importance for long-term risk assessment.

Experimental testing of the chronic toxicity of compounds is not always a feasible option considering the

magnitude of the number of chemicals, resource intensiveness in terms of time, limited availability of

experimental data, and associated cost, which therefore necessitates the use of in silico approaches to

overcome the associated limitations. In this work, QSAR (quantitative structure–activity relationship)

models were developed employing the regression-based PLS method with strict adherence to OECD

guidelines. For this study, chronic and sub-chronic toxicity datasets with LOEL (lowest observed effect

levels) and NOEL (no observed effect level) as endpoints were used for model development. The

validated models are robust, reliable, and predictable. The statistical results of the models are as follows:

R2: 0.6–0.71, QLOO
2: 0.51–0.635, and QF1

2: 0.52–0.658. From the validated models, it was concluded

that lipophilicity, electronegativity, the presence of aromatic ethers or aliphatic oxime groups, the

presence of complexity in structures, the state of unsaturation in molecules, and the presence of

halogen and heavy atoms (phosphate, sulphur, etc.) are responsible for chronic/sub-chronic toxicity. The

QSAR models developed in our study can be utilized for the effective gap-filling of toxicity data sets,

categorization, and prioritization of chemicals, along with chronic toxicity prediction of new synthetic

compounds. Furthermore, we used 2568 approved drugs from the DrugBank and PPDB databases for

screening purposes using the validated models, which further corroborated the developed models based

on the available toxicity data.
Environmental signicance

At present, chemicals are an essential part of our daily life. These chemicals are either of natural or synthetic origin, and they enter the environment and living
beings in different ways. Therefore, there is a chance that these chemicals may have detrimental effects on the environment and human health. The long-term
(chronic), sub-chronic, and short-term (acute) toxicities of environmental chemicals are presently of great concern. Due to the scarcity of information on the
chronic toxicological effects of most of the compounds, it is difficult to evaluate their potential impact on human health. Therefore, it is necessary to develop an
alternative method to identify chemicals that have long-term toxic effects and assess their toxicity.
1. Introduction

In the present era, synthetic chemicals have vast applications in
different elds such as food, healthcare, and the comfort of
mankind. Nowadays, chemicals are an essential part of our
daily life.1 These chemicals are either of natural or synthetic
ratory, Department of Pharmaceutical

0032, India

(DTC) Laboratory, Department of
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tion (ESI) available. See DOI:

6–705
origin, and they enter the environment and living beings
through different ways. Therefore, there is a chance that these
chemicals may have detrimental effects on human health.2 At
present, their long-term (chronic), sub-chronic, and short-term
(acute) toxicities are of great concern. Chronic and sub-chronic
toxicity assessment is a challenge for the food and pharma-
ceutical industries and researchers.1 Several global organiza-
tions, viz. the World Health Organization (WHO), the
Occupational Safety and Health Administration (OSHA), the
Food and Drug Administration (FDA), the United States Envi-
ronmental Protection Agency (EPA), and the Agency for Toxic
Substances and Disease Registry (ATSDR), continuously engage
in the determination of the toxicity of compounds. The NOEL
© 2024 The Author(s). Published by the Royal Society of Chemistry
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(no observed effect level) and LOEL (lowest observed effect level)
were used as endpoints for chronic and sub-chronic toxicity
assessments. NOEL represents the highest concentration asso-
ciated with null adverse effects and LOEL represents the lowest
concentration associated with an adverse effect (mostly
expressed in mg per kg per day). There are around ve million
synthetic compounds, out of which seventy thousand are meant
for daily usage alongside about one million naturally occurring
chemicals.2 Due to the scarcity of information on the chronic
toxicological effects of most of the compounds, it is difficult to
evaluate their potential impact on human health.3 The purpose
of chronic toxicological studies is to assess the potential long-
term toxicity of chemicals.4,5 Despite the sufficient in vitro and
in vivo testing facilities and resources, it is a matter of concern
whether these methods are suitable for unbiased testing.
Therefore, it is necessary to develop an alternative method to
identify chemicals that have long-term toxic effects and assess
their toxicity.4

To minimize animal testing, test duration, and associated
experimental resources, quantitative structure–activity rela-
tionship (QSAR) is an alternative in silico technique for the
efficient estimation of chronic and sub-chronic toxicity of
chemicals.5 QSAR correlates between the response activity/
toxicity and numerical description of molecular structures.6

Some attempts were made earlier to develop in silico models
for chronic and sub-chronic toxicity prediction in
mammals.4,7–12 However, some of the previous studies reported
neither different internal and external validation metrics nor
mechanistic interpretations. Due to the lack of structural
diversity, the generalizability of the models of some previous
studies was also restricted. Some of the previous studies re-
ported different endpoints, duration of the study, different
numbers and types of compounds, different reference species,
and different modeling algorithms.

In the present study, we assessed the chronic (more than 360
days) (pLOEL value: 3.881 to (−1.40); pNOEL value: 4.88 to
(−1.88)), and sub-chronic (180 ± 90 days) (pLOEL value: 3.07 to
(−1.89), pNOEL value: 3.85 to (−1.32)) toxicity of diverse organic
chemicals in rats and mice using the LOEL (lowest observed
effect level) and NOEL (no observed effect level) as the
endpoints. We have taken maximum experimental (chronic and
sub-chronic) toxicity data (NOEL and LOEL value in mg per kg
per day) of rats only (around 98%) and very little data for mice.
These organic chemicals include a range of diverse chemicals
such as pharmaceuticals, industrial waste compounds, food,
and agricultural, natural, and compounds meant for daily use.
Regression-based partial least squares (PLS) models were
developed utilizing only 2D descriptors. Stepwise regression,
genetic algorithm, and the best subset selection (BSS) were used
as the feature selection methods. We also screened the addi-
tional real-world databases, e.g. DrugBank database (https://
go.drugbank.com/) and PPDB (Pesticide Properties DataBase),
for the estimation of chronic and sub-chronic toxicity using
the developed PLS models and checked the quality of the
predictions using the Prediction Reliability Indicator (PRI) tool
(available from http://teqip.jdvu.ac.in/QSAR_Tools)13 for the
developed model. In our present study, the developed QSAR
© 2024 The Author(s). Published by the Royal Society of Chemistry
models are accurate, robust, reliable, validated, predictable,
wide domain of applicability, and mechanistically
interpretable. We introduce here new models for the LOEL
and NOEL endpoints based on the collected data. However,
we may note that the endpoint values depend on the
experimental conditions, inter-laboratory variations, the
number of samples, and the exposure details. Furthermore, the
values depend on the nature of the species in which the
experiment is performed, and the lowest value is usually used in
cases when multiple values are available.7–12
2. Materials and methods
2.1. Dataset selection

Experimental chronic ($360 days) and sub-chronic (180 ± 90
days) toxicity data of various organic compounds of rats and
mice were collected in terms of NOEL and LOEL. NOEL is the
highest tested dose or concentration of a chemical at which no
harmful effect is found in exposed test organisms. Doses higher
than the NOEL value will result in sub-chronic toxic effects. In
contrast, LOEL is the lowest concentration of a contaminant
found from an experiment or observation that causes a chronic
effect or adverse alteration of morphology, function, capacity,
growth, development, or lifespan of a target organism, which is
signicantly different from the control (mg per kg per day).14

Some compounds were omitted from the dataset due to their
high residual values (prediction outlier) and structural outlier
behavior to reduce the biases of the data. We collected chronic
toxicity data with 176 compounds for the LOEL (mg per kg per
day) endpoint and 91 compounds for the NOEL (mg per kg per
day) endpoint. We also collected sub-chronic toxicity data with
174 compounds for LOEL (mg per kg per day) and 90
compounds for NOEL (mg per kg per day) and then converted
the LOEL and NOEL into their negative logarithmic terms (i.e.,
pLOEL (−log(LOEL/MW)) and pNOEL (−log(NOEL/MW))). The
chemical structures and their SMILES were obtained from the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/), and
they were represented in the MarvinSketch (http://
www.chemspider.com/) soware. The explicit hydrogen atoms
were then added to the chemical structures, followed by 2D
cleaning. Chemical curation of compounds was carried out
using the KNIME workow (available at https://
sites.google.com/site/dtclabdc/) to remove salt and duplicate
compounds. Finally, these structures were retrieved in a .sdf
le, a recommended format for the alvaDesc15 soware for the
descriptor calculations.16
2.2. Calculation of descriptors and data pre-treatment

Descriptors are the numerical representation of chemical
structures. They are classied into several sub-categories
according to their origin/procedure of calculation. In this
investigation, we selected a few classes of descriptors, namely,
(i) ring descriptors, (ii) atom-centered fragments, (iii) molecular
properties, (iv) functional group count (number of unlike
functional groups), (v) connectivity index, (vi) constitutional,
(vii) 2D atom pairs, (viii) atom-type E-state indices, and (ix) ETA
Environ. Sci.: Adv., 2024, 3, 686–705 | 687
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(extended topo-chemical atom) descriptors. Aer that, the
descriptors with missing values, redundant values, and high
inter-correlation (jrj > 0.95) were eliminated. We only used the
2D descriptors for the present study to prevent the complexity
associated with 3D descriptors.17

2.3. Division into training and test sets

In the current study, reliable and robust QSAR models were
developed for predicting chronic and sub-chronic chemical
toxicities. The datasets were rationally split into training sets
and test sets, in a 80/20 ratio for the chronic pLOEL, sub-chronic
pNOEL, and sub-chronic pNOEL endpoints, and in 70/30 for the
chronic pNOEL endpoint18,19 by a random division method.20 In
QSAR modeling, the training set was utilized to develop the
model (internal validation) and its predictivity was validated by
a test set (external validation). For chronic studies, 140
compounds were taken in the training set and 36 compounds in
the test set for the pLOEL endpoint, and 71 compounds in the
training set and 20 compounds in the test set for the pNOEL
endpoint. For sub-chronic studies, 139 compounds were used
as the training set and 35 compounds as the test set for the
pLOEL endpoint, and 72 compounds as the training set and 18
compounds as the test set for the pNOEL endpoint.

2.4. Selection of descriptors and model development

Feature selection is an important aspect of the QSAR model
development through which we can remove the noisy and
insignicant input variables from the original variable
spaces.21 For our work, feature selection was done using the
genetic algorithm (GA) tool (available from http://
teqip.jdvu.ac.in/QSAR_Tools/). The GA tool was run
multiple times taking different descriptor combinations
ranging from 6 to 12 descriptors on the training sets of the
four different datasets. The descriptors that occurred
maximum in different models were used to generate
a more rened pool for further best subset selection. We
then obtained a reduced pool of 23 descriptors for the
pLOEL endpoint (chronic), 18 descriptors for the pNOEL
endpoint (chronic), 22 descriptors for the pLOEL endpoint
(sub-chronic), and 25 descriptors for the pNOEL endpoint
(sub-chronic) for further development of the QSAR model.
The nal sets of important features were obtained
using the “Best Subset Selection v2.1” tool (available from
https://dtclab.webs.com/soware-tools). Four PLS models
(namely, IM1–IM4 from datasets 1–4 (given in ESI 1†)
respectively) were developed using a Java-based tool,
‘Partial Least Squares v1.0’ (available at https://
dtclab.webs.com/soware-tools).

2.5. Model validation

Model validation is a vital aspect of QSAR modelling. The QSAR
models were validated based on globally accepted metrics to
prove their reliability, predictivity, quality, and tting
ability.17,22,23 Statistical quality and internal validation metrics
like the determination coefficient (R2), leave-one-out (LOO)
cross-validation (QLOO

2), and mean absolute error (MAEtrain)
688 | Environ. Sci.: Adv., 2024, 3, 686–705
were evaluated for the training set compounds, and external
validation metrics such as Rpred

2 or QF1
2, QF2

2, and MAEtest were
estimated for test set compounds.16,24 The R2 and QLOO

2 values
were utilized to judge the tting ability of a model, whereas
Rpred

2 or QF1
2 and QF2

2 were utilized to judge the predictivity of
the developed models.25

2.6. Applicability domain (AD) assessment and Y-
randomization

The AD is dened as a hypothetical space (biological space,
physicochemical, or structural) indicated by the corresponding
model descriptors providing reliable prediction,25,26 and it
consists of the knowledge of developed training set models.26 In
the present study, we used the DModX27 approach (developed
using the SIMCA-P soware)28 to estimate the AD of the devel-
oped PLS models. The Y-scrambling test (Y-randomization)29

was carried out to check the chance correlation of the developed
models. The randomized models were developed using 100
permutations. The R2 and Q2 values for the random models (Y-
axis) were plotted against the correlation coefficient between
the original Y values and the permuted Y values (X-axis). The
intercepts should be less than the threshold values (RY

2 < 0.3,
QY

2 < 0.05).

2.7. Toxicity assessment of approved drugs from DrugBank
and PPDB database

The DrugBank database30 was utilized for screening and
ranking the compounds based on their predicted chronic and
sub-chronic toxicity toward rats from the developed models.
The database includes the following subcategories of the
drugs: approved (2568), withdrawn (243), investigational
(3660), nutraceuticals (108), illicit (202), and experimental
(6221) compounds. Here, we used only approved categories of
drugs from the DrugBank database and 1903 pesticides from
the PPDB database for toxicity screening with our developed
models. The chemical structures of these compounds were
downloaded from the DrugBank website (https://
go.drugbank.com/) and PubChem, followed by the curation
through KNIME data curation platform to remove salts,
duplicate compounds, etc., and then the alvaDesc soware
was employed for the descriptor calculation (https://
www.alvascience.com/alvades).15 Finally, we get 1694
compounds from the PPDB database and 2568 approved
drugs from the DrugBank database. The prediction reliability
indicator (PRI) tool (available at http://teqip.jdvu.ac.in/
QSAR_Tools) was utilized to evaluate the toxicity (chronic
and sub-chronic) of the approved class of compounds from
DrugBank and PPDB databases through validated QSAR
models. We screened the approved drugs from the DrugBank
database for their chronic and sub-chronic toxicities
assessments when these drugs will be exposed to rats via
food, water, air, or other ways on a long-term basis. Since
any new drug before coming to the market for human/
animal use, preclinical toxicity studies are mainly done on
rats and mice, these reference species (rats and mice) are
considered quite related to humans. Therefore, rats and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Workflow of the developed QSAR models.
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mice are generally used as model species for chemical toxicity
assessment purposes.31 Therefore, if humans/animals are
exposed to these drugs or chemicals directly (prescribed for
Fig. 2 Scatter plot of the developed PLS models (IM1–IM4).

© 2024 The Author(s). Published by the Royal Society of Chemistry
medical purposes for long-term usage (lifetime)) or indirectly
(via food, water, air, or other ways) in the long term, they
may also show toxicities (chronic and sub-chronic) to the
Environ. Sci.: Adv., 2024, 3, 686–705 | 689
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living species. A schematic diagram of the developed QSAR
models is presented in Fig. 1.
3. Results and discussion

The current work aimed to develop QSAR models which can
assess and predict the chronic and sub-chronic toxicities of
chemicals towards rats. We have developed four PLS (PLS model
reduces the intercorrelation between the descriptors through
LVs) models (IM1–IM4) for which the scatter plots, i.e., the
experimental versus the predicted value of all four models, are
depicted in Fig. 2. The statistical results of the models are as
follows: R2: 0.6–0.71, QLOO

2: 0.51–0.635 and QF1
2: 0.52–0.658,

which show that the developed models are robust and predic-
tive. The internal and external metrics for all the models pass
the threshold values (R2 = 0.6, QLOO

2 = 0.6, and QF1
2 = 0.5),

proving the reliability and predictive ability of the models. The
developed models are given below (IM1–IM4) and their valida-
tion metrics are given in Table 1.

IM1: pLOEL chronic toxicity

pLOEL = −17.04182 + 0.18387 × nHM + 39.64332 × Eta_epsi_3

− 0.13193 × nCb − −0.90898 × nArCOOH − 0.58155 × nOHp

− 0.37378 × C − 007 + 0.53198 × B01[N–O] + 0.47263 × B06[C–

N] + 0.79515 × B06[C–Cl] + 1.71437 × B01[S–P] − 0.45704 ×

nArCOOR + 0.88359 × nRSR

IM2: pNOEL chronic toxicity

pNOEL = 0.7256 + 0.26063 × nHM + 0.63801 × C − 019 −
0.36212×O − 058 + 1.5621× B03[C–P] + 0.86576× B04[C–N] +

0.60945 × nArOR

IM3: pLOEL sub-chronic toxicity

pLOEL = −1.81023 − 0.15185 × nO + 0.55685 × nCsp + 0.18064

× X4v + 2.50839 × nRCNO + 0.10683 × H − 048 − 0.37199 ×

MaxdssC + 0.54049 × MaxssssC + 2.97984 × B01[C–F] −
0.89772 × B05[O–S] + 0.5201 × SAscore + 0.08844 × C − 026 +

0.18375 × nCconjX

IM4: pNOEL sub-chronic toxicity

pNOEL = −2.04357 + 0.98599 × nCrq − 0.25671 × H − 051 −
1.09359 × minssCH2 + 1.84276 × B01[C–C] − 0.71667 × B03[C–
Table 1 Validation metrics of the PLS models

Model Latent variables

Training set

Model R2 Model QLOO
2

IM1 2 0.673 0.604
IM2 2 0.711 0.635
IM3 4 0.607 0.547
IM4 5 0.634 0.518

690 | Environ. Sci.: Adv., 2024, 3, 686–705
C] + 0.76782 × B04[N–N] + 0.81005 × B05[C–O] + 1.10367 ×

F01[S–P] − 0.32873 × F02[O–O] + 0.36323 × B07[C–C] +

3.75617 × Eta_alpha_A − 0.69496 × nRCONR2
3.1. Chronic toxicity assessment

We developed the nal QSAR model by the PLS method for
chronic toxicity using pLOEL and pNOEL as the endpoints.
The developed models are reliable and validated, with good
predictivity. The models' statistical validation metrics are
given in Table 1. From the VIP plots (Fig. S1 and S2 in ESI 2†),
the importance of the descriptors is in the following order:
nHM, B01[S–P], B06[C–Cl], Eta_epsi_3, nOHp, nArCOOR,
nCb, B06[C–N], nRSR, nArCOOH, C-007, and B01[N–O] in
case of nal the pLOEL model (IM1) while the importance of
the six descriptor model for the pNOEL endpoint is in the
following order: nHM, B03[C–P], B04[C–N], O-058, C-019, and
nArOR. According to the regression coefficient plot (Fig. S3
and S4 in ESI 2†), descriptors nHM, Eta_epsi_3, B01[N–O],
B06[C–N], B06[C–Cl], B01[S–P] and nRSR contribute posi-
tively, whereas nCb-, nArCOOH, nOHp, C-007, and nArCOOR
contribute negatively to pLOEL, while nHM, B03[C–P], B04
[C–N], C-019, and nArOR contribute positively and O-058
contributes negatively to the pNOEL endpoint model. The
loading plot shows the effects of descriptors on the toxicity;
the descriptor nHM has the maximum impact on the toxicity
for the pLOEL and pNOEL endpoint models (Fig. S5 and S6 in
ESI 2†). The score plot explains the distribution of dataset
compounds in the latent variable space as dened by
scores.17,26,27 In our study, compounds 124 (mirex) and 133
(oxadiazon) are situated outside the ellipse of the score
plot (outside of AD) for the pLOEL endpoint, and all
compounds are inside the ellipse of the score plot (inside the
AD) for the pNOEL endpoint model, as shown in Fig. S7 and
S8 in ESI 2.†
3.2. Sub-chronic toxicity assessment

The sub-chronic toxicities, i.e., pLOEL and pNOEL datasets,
were modeled by taking an initial pool of important features
through the genetic algorithm, followed by the selection of
best features by the best subset selection method. The nal
model was a 12-descriptor PLS model for both endpoints. The
statistical results of the validated, robust, and predictive QSAR
models are provided in Table 1. The VIP plots (displayed in
Fig. S9 and S10 in ESI 2†) of the models (IM3 and IM4) show
the contribution of descriptors in the descending order of
Test set

MAELOO Rpred
2 or Q(F1)

2 Q(F2)
2 MAEtest

0.575 0.618 0.606 0.559
0.545 0.658 0.598 0.542
0.464 0.562 0.537 0.546
0.639 0.523 0.500 0.730
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Table 2 Description and interpretation of the different structural motifs responsible for chronic and sub-chronic toxicities

Descriptor
with its
contribution
given in
bracket Description

Type of
descriptor Fragment Mechanistic interpretation

The pLOEL model (IM1)
nHM (+ve) Number of heavy atoms Constitutional

index
P, Br, S, Cl Heavy atoms (P, Br, S, Cl) in a chemical

structure are associated with chronic
chemical toxicity chemicals towards rats, as
explained by Kar et al.32 & Singh et al.33 The
effect can be observed in compounds 1
(Allura red AC) (given in Fig. 3) and 4 (dibutyl
phthalate)

Eta_epsi_3
(+ve)

ETA electronegativity measure 3 ETA descriptor — This descriptor is related to the
electronegativity of the compound. A
compound's toxicity can be attributed to its
electronegativity,34,35 as evidenced in
compounds 9 (ethylphthalyl ethyl glycolate)
(given in Fig. 3) and 10 (FD & C blue no. 2)

nCb- (−ve) Number of substituted benzene C (sp2)
Functional
group count
descriptor

The toxicity of substituted benzenes is
related to their ability to penetrate the cell
through the cell membrane, and the
electronic interactions of the chemicals with
the active site. In our case, substituted
benzenes with hydrophilic groups (prevalent
in the present data set) may enhance the
tendency of hydrogen bonding of
a compound with water which in turn might
impart hydrophilicity, reducing compounds'
toxicity.36,37 The negative regression
coefficient of this (nCb-: the number of
substituted groups) descriptor indicates here
that it has an inverse correlation with toxicity
endpoints as observed in compounds 117
(metalaxyl) and 124 (mirex) (demonstrated in
Fig. 3)

nArCOOH
(−ve)

Number of carboxylic acids (aromatic)
Functional
group counts
descriptor

The existence of carboxylic acid may be
crucial for increasing the compound's
hydrophilicity.36,38 Thus, it reduces the
toxicity as displayed in compounds 121
(methyl-4-chlorophenoxyacetic acid, 2)
(displayed in Fig. 3) and 104 (g-
hexachlorocyclohexane)

nOHp (−ve) Number of primary alcohols Functional
group count

The occurrence of a higher number of
hydroxyl groups in compounds increases the
solubility of chemicals, thus increasing the
excretion rate of these chemicals.39 Phase II
metabolism (conjugations) requires primary
hydroxyls for chemical detoxication.40 This
phenomenon can be explained by
compounds 91 (diquat) (provided in Fig. 3)
and 97 (ethyl methyl phenyl glycinate), where
the presence of more primary alcohols makes
the compounds less toxic

C-007 (−ve) CH2X2
Atom-centered
fragment

This descriptor indicates the linkage between
the number of methylene groups to
electronegative atoms like phosphorus,
nitrogen, sulphur, oxygen, and various
halogens.41 In our study, an inverse
correlation was found between this
descriptor and the chronic toxicity of
compounds against rats, as evidenced by the
least toxic compounds 133 (oxadiazon) (given
in Fig. 3) and 140 (phenformin)

© 2024 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Adv., 2024, 3, 686–705 | 691

Paper Environmental Science: Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
1/

19
/2

02
4 

5:
32

:1
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3va00265a


Table 2 (Contd. )

Descriptor
with its
contribution
given in
bracket Description

Type of
descriptor Fragment Mechanistic interpretation

B06[C–N]
(+ve)

Presence/absence of C–N at topological
distance 6

2D atom pair
descriptor

The descriptor is associated with molecular
size, and higher values of the same will
escalate the compound's lipophilicity.42 The
occurrence of nitrogen atoms may also
enhance the chronic toxicity of the
compounds towards rats by imparting
electronegativity (the presence of nitrogen
will make the compound more
electronegative)16,24,43 as shown in
compounds 22 (propyl gallate) (presented in
Fig. 3) and 26 (1-naphthyl) ethylene-diamine
dihydrochloride, N–)

B06[C–Cl]
(+ve)

Presence/absence of C–Cl at topological
distance 6

2D atom pair
descriptor

Generally, the presence of a Cl atom
(halogen) increases the lipophilicity of
chemical compounds. Thus, it can easily
cross the cell membranes, resulting in high
chronic toxic.44,45 This phenomenon is
demonstrated in compounds 43 (aspartame)
(demonstrated in Fig. 3) and 20 (methyl
salicylate)

B01[S–P]
(+ve)

Presence/absence of S–P at topological
distance 1

2D atom pair
descriptor

The presence of phosphorus and sulphur
atoms may be responsible for the
enhancement of chronic toxicity,46,47 as
shown in compounds 14 (p-hydroxybenzoic
acid methyl ester) (given in Fig. 3), and 19
(methyl methacrylate)

nArCOOR
(−ve)

Number of esters (aromatic)
Functional
group count
descriptor

The nArCOOR group is polar (hydrogen
bonding of oxygen of nArCOORwith water) in
nature. Polarity and toxicity are inversely
related to each other.42 A functional group
with a polar fragment like nArCOOR reduces
the toxicity16,24,43 of chemicals in rats as
demonstrated in compounds 101
(uvalinate) (given in Fig. 3), and 105
(hexahydro-1,3,5-trinitro-1,3,5-triazine)

nRSR (+ve) Number of suldes Functional
group count
descriptor

The presence of a higher number of sulphurs
in molecular structure enhances the toxicity
of compounds.48 With the increase in the
numerical value of nRSR, the chronic toxicity
of a compound is increased, as evidenced in
compounds 35 (acitluorin sodium)
(illustrated in Fig. 3) and 24 (styrene)

B01[N–O]
(+ve)

Presence/absence of N–O at topological
distance 1

2D atom pair
descriptor

The presence of two electronegative atoms in
this descriptor may contribute to the chronic
toxicity of chemicals in rats, as suggested by
Toropov et al.34 in 2008. Notably, this feature
amplies the toxicity of chemicals, as
evidenced in compounds 36 (alachlor) (given
in Fig. 3) and 17 (lithocholic acid)

The pNOEL model (IM2)
nHM (+ve) Number of heavy atoms Constitutional

index
P, Br, S, Cl The presence of heavy atoms ((P, Br, S, Cl)) in

chemical structure is associated with chronic
heavy metal toxicity in rats,33 as shown in
compounds 21 (chlordane) (given in Fig. 4)
and 65 (mirex)

692 | Environ. Sci.: Adv., 2024, 3, 686–705 © 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 (Contd. )

Descriptor
with its
contribution
given in
bracket Description

Type of
descriptor Fragment Mechanistic interpretation

C-019 (+ve)

]CRX where R signies the attachment
of any group through a carbon atom,
while X represents the occurrence of
heteroatoms

Atom-centered
fragment
descriptor

The presence of halogens or heteroatoms
(generally electronegative) like oxygen,
nitrogen, phosphorus, and various halogens
may enhance the toxicity of chemicals to
rats.33,44 This can be notably demonstrated
by compounds 30 (dieldrin) (provided in
Fig. 4) and 21 (chlordane)

O-058 (−ve) ]O (presence of oxygen) Atom-centered
fragment
descriptor

This descriptor is related to hydrophilicity
(high potential to form H-bonding).49 There
exists an inverse relationship between
hydrophilicity and toxicity.50 Thus, the
occurrence of this fragment in the backbone
structures does not inuence the toxicity, as
shown by compound 14 (asulam) (illustrated
in Fig. 4)

B03[C–P]
(+ve)

Presence/absence of C–P at topological
distance 3

2D atom pair
descriptor

The presence of the phosphate group may
inuence the toxicity of the chemicals.42,51

B03[C–P] is directly correlated with
compound toxicity as demonstrated by
compound 29 (dichlorvos) (displayed in
Fig. 4)

B04[C–N]
(+ve)

Presence/absence of C–N at topological
distance 4

2D atom pair
descriptor

The presence of highly electronegative atoms
like nitrogen may inuence the compounds'
toxicity, as shown in compounds 71
(phosmet) (displayed in Fig. 4) and 68
(oxamyl)42

nArOR (+ve) Number of ethers (aromatic)
Functional
group count
descriptor

Generally, aromatic ethers are toxic in
nature.52 Thus, the compound containing
such fragments has high pNOEL values
(chronic toxicity value), as illustrated in
compounds 69 (oxyuorfen) (displayed in
Fig. 4) and 54 (isoxaben)

The pLOEL model (IM3)
SAscore (+ve) Synthetic accessibility score Molecular

property
— SAscore signies the synthetic accessibility

score and is linked to the complexity of
molecules. The higher value of this
descriptor shows that the synthesis of such
compounds is complex.42 This, in turn,
increases the toxicity of compounds, as
shown in compounds 116
(hexachlorobutadiene) (demonstrated in
Fig. 5) and 117 (hexachlorocyclopentadiene)

nO (−ve) Number of oxygen atoms Constitutional
descriptor

The presence of oxygen in the structure
makes it more hydrophilic by the formation
of H-bonding.49 This observation can be
demonstrated by compounds with low
toxicity, like compounds 25 (isomaltitol)
(illustrated in Fig. 5) and 138 (oxytetracycline
hydrochloride)

nCsp (+ve) Number of sp hybridized carbon atoms
Constitutional
index
descriptor

This feature is related to unsaturation in
chemical compounds due to the presence of
sp hybridized carbon atoms. Unsaturated
compounds are more toxic due to their high
reactivity53 as demonstrated in compounds
151 (pronamide) (shown in Fig. 5) and 154
(pydrin)

© 2024 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Adv., 2024, 3, 686–705 | 693
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Table 2 (Contd. )

Descriptor
with its
contribution
given in
bracket Description

Type of
descriptor Fragment Mechanistic interpretation

X4v (+ve) Valence connectivity index of order 4 Connectivity
index
descriptor

— This descriptor is related to the molecular
size and shape of the compounds.54 The high
numerical value of this descriptor makes the
compound more toxic, as shown in
compounds 135 (octabromodiphenyl ether)
(given in Fig. 5) and 165
(tetraethyldithiopyrophosphate)

nRCNO (+ve) Number of oximes (aliphatic)
Functional
group count

The presence of an aliphatic oxime group in
the molecular structures might be
responsible for the toxicity enhancement.55

This phenomenon is demonstrated by
compounds 60 (aldicarb) (shown in Fig. 5)
and 61 (aldicarb sulfone) with higher toxicity

H-048 (+ve) H attached to C2(sp3)/C1(sp2)/C0(sp) Atom-centered
fragment
descriptor

— This type of hydrogen atom is very reactive in
nature56 and may exhibit toxicity towards
rats, as shown by compounds 166
(tetrakis(hydroxymethyl)phosphonium
chloride (THPC)) (displayed in Fig. 5) and 167
(tetrakis(hydroxymethyl)phosphonium
sulphate (THPS))

MaxdssC
(−ve)

MaximumdssC (maximum atom-type E-
state: ]C)

Atom-type E-
state
descriptor

The negative regression coefficient of this
descriptor explains its inverse relationship
with toxicity as observed in compounds 91
(1,3-dichloro-2-propanol) (given in Fig. 5) and
147 (phenylbutazone)

MaxssssC
(+ve)

Maximum ssssC (maximum atom-type
E-state: pC)

Atom-type E-
state
descriptor

This descriptor is responsible for structure
complexity,57 leading to the enhancement of
the toxicity as seen in compound 47 (thujone)
(given in Fig. 5)

B01[C–F]
(+ve)

Presence/absence of C–F at topological
distance 1

2D atom pair
descriptor

Fluorine (halogen) atoms in the compound
tend to increase the toxicity prole of
molecules (due to the high electronegativity
of uorine)58 as shown in compounds 158
(sodium uoroacetate) (illustrated in Fig. 5)
and 112 (uometuron)

B05[O–S]
(−ve)

Presence/absence of O–S at topological
distance 5

2D atom pair
descriptor

The presence of oxygen and sulfur increases
the hydrophilicity of compounds due to
hydrogen bonding,59 resulting in a reduction
of toxicity of the chemical compounds. This
phenomenon is depicted in compounds 59
(acetoacetamide-N-sulfonic acid)
(demonstrated in Fig. 5) and 79 (carmoisine)

nCconjX
(+ve)

Number of X on exo-conjugated C
Functional
group count
descriptor

This fragment enhances the electronegativity
of molecules due to the presence of a halogen
atom (X), thus enhancing toxicity.16,24,43 This
can be explained by compounds 120
(isopropalin) (illustrated in Fig. 5) and 14
(dodecyl gallate)

C-026 (+ve) R-CX-R where X represents the existence
of an electronegative atom

Atom-centered
fragment
descriptor

The occurrence of an electronegative atom (P,
O, S, N, Se, halogens) makes the compound
more electronegative,16,24,43 which in turn
enhances the toxicity of compounds as seen
in compounds 135 (octabromodiphenyl
ether) (given in Fig. 5) and 150 (promethazine
hydrochloride)
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Table 2 (Contd. )

Descriptor
with its
contribution
given in
bracket Description

Type of
descriptor Fragment Mechanistic interpretation

The pNOEL model (IM4)

nCrq (+ve) Number of ring quaternary C (sp3)
Functional
group count

This group is associated with the lipophilic
prole of molecules,16,24,43 enabling easy
penetration across the cell membrane, thus
causing toxicity. This descriptor contributes
positively towards the sub-chronic toxicity
against rats, which is explained by
compounds 32 (thujone) (provided in Fig. 6)
and 29 (isobornyl acetate) and vice versa in
compounds 12 (ethylbenzene) and 13 (2-
ethylbutyric acid)

H-051 (−ve)
Hydrogen atom attached to alpha-C
atom

Atom-centered
fragment
descriptor

This fragment is associated with the polarity
of the compounds.24 This descriptor has
a negative correlation with the sub-chronic
toxicity of compounds, as inferred from the
negative value of the regression coefficient.
This was evidenced in compounds 2
(acetone) (displayed in Fig. 6) and 35
(acetoacetamide)

minssCH2

(−ve)
Minimum ssCH2 (–CH2–)

Atom-type E-
state
descriptor

The negative regression coefficient
associated with minssCH2 (the minimum E-
state value of a specic group associated with
two single bonds (ss) in a hybrid group (CH2))
indicates a negative correlation with sub-
chronic toxicity, as observed in compounds
12 (ethylbenzene) (given in Fig. 6) and 34
(acenaphthene)

B01[C–C]
(+ve)

Presence/absence of C–C at topological
distance 1

This fragment is correlated with the size
(long chain) of molecules. Thus, the presence
of these fragments may enhance the
lipophilicity of themolecules (easily cross the
cell membrane),16,24,43 ultimately increasing
toxicity. This observation can be explained by
compounds 41 (bentazon) and 68 (merphos)
(displayed in Fig. 6)

B07[C–C]
(+ve)

Presence/absence of C–C at topological
distance 7

2D atom pair
descriptor

B07[C–C] fragment is directly correlated with
the lipophilicity of the molecules (easily
crossing the cell membrane),16,24,43

ultimately increasing toxicity. This
phenomenon can be shown in compounds
41 (bentazon) and 68 (merphos) (displayed in
Fig. 6)

B03[C–C]
(−ve)

Presence/absence of C–C at topological
distance 3

2D atom pair
descriptor

The presence of such fragments in the
molecules reduces the toxicity,49 as shown in
compounds 13 (2-ethylbutyric acid)
(demonstrated in Fig. 6) and 34
(acenaphthene)

B04[N–N]
(+ve)

Presence/absence of N–N at topological
distance 4

2D atom pair
descriptor

Electronegative atoms (presence of two
nitrogen atoms), if present in the structure,
may enhance the toxicity of compounds.60

This phenomenon is described in
compounds 77 (m-phenylenediamine)
(demonstrated in Fig. 6) and 73 (olaquindox)

B05[C–O]
(+ve)

Presence/absence of C–O at topological
distance 5

2D atom pair
descriptor

As discussed in the above section (B04 [N–N]
section). This phenomenon is described in
compounds 74 (paclobutrazol) and 32
(thujone) (shown in Fig. 6)

© 2024 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Adv., 2024, 3, 686–705 | 695
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Table 2 (Contd. )

Descriptor
with its
contribution
given in
bracket Description

Type of
descriptor Fragment Mechanistic interpretation

F01[S–P]
(+ve)

Frequency of S–P at topological distance
1

2D atom pair
descriptor

As discussed in the above section (B04 [N–N]
section). This phenomenon is described in
compounds 88
(tetraethyldithiopyrophosphate) (illustrated
in Fig. 6) and 68 (merphos) and vice versa in
48 (cyclodextrin, beta) and 67 (maleic
anhydride)

F02[O–O]
(−ve)

Frequency of O–O at topological
distance 2

2D atom pair
descriptor

The presence of two electron-rich atoms may
be responsible for electrostatic repulsion,61

thus can reduce compound toxicity. This
feature is inversely related to the toxicity of
compounds as explained by the compounds
40 (azorubine) (presented in Fig. 6) and 48
(beta cyclodextrin)

Eta_alpha_A
(+ve)

ETA average core count 2D atom pair
descriptor

— The positive regression coefficient of this
feature shows that with an increase in the
numerical value of this descriptor, the
endpoint (pNOEL value) of compounds will
also be increased. For example, compound
nos. 49 (1,4-dibromobenzene) (shown in
Fig. 6)

nRCONR2
(−ve)

Number of the tertiary amides
(aliphatic) in molecular structure

ETA descriptor

The existence of this group may reduce
chemical toxicity (due to hydrophilic
interaction since there may be a chance of
formation of H-bonding with N, O), as
evidenced in compounds 69 (metolachlor)
and 79 (propachlor) (shown in Fig. 6)
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magnitude: SAscore, nO, nRCNO, MaxssssC nCconjX, X4v, B01
[C–F], B05[O–S], nCsp, H-048-, MaxdssC, and C-026 for the
pLOEL endpoint and F01[S–P], Eta_alpha_A, H-051, B07[C–C],
minssCH2, F02[O–O], B05[C–O], B01[C–C], B04[N–N], B03[C–
C], nCrq, and nRCONR2 for the pNOEL endpoint model. The
descriptors exhibiting negative contributions are nO,
MaxdssC, and B05[O–S], and the positively contributing
descriptors are SAscore, nRCNO, MaxssssC, nCconjX, X4v, B01
[C–F], nCsp, H-048, and C-026 for the pLOEL endpoint model,
while nCrq, B04[N–N], F01[S–P], B05[C–O], B01[C–C], B07[C–
C], and Eta_alpha_A are positively contributing and H-051,
minssCH2, B03[C–C], F02[O–O] and nRCONR2 are negatively
contributing descriptors for the pNOEL endpoint models,
which are demonstrated in regression coefficient plots (shown
in Fig. S11 and S12 in ESI 2†). The loading plots of the devel-
oped PLS models are illustrated in Fig. S13 and S14 in ESI 2.†
The score plots (provided in Fig. S15 and S16 in ESI 2†) of the
developed models suggested that compound nos. 60, 61, 85,
108, and 116 of the pLOEL endpoint model and compound
nos. 68 (merphos) and 88 (tetraethyldithiopyrophosphate) of
the pNOEL endpoint model are outside of the applicability
domain.
696 | Environ. Sci.: Adv., 2024, 3, 686–705
4. Mechanistic interpretation

An attempt has been made to interpret the modeled descriptors
for chronic toxicity prediction in a mechanistic approach,
catering to principle 5 of OECD guidelines which are given in
Tables 2, 3 and Fig. 3–6.

5. Applicability domain assessment

To comply with OECD guideline 3, a developed QSAR model
must have a dened chemical domain of application. The
applicability domain (AD) of the models was determined by the
distance to model in the X space method (DModX).27 The
DModX variable represents the unexplained variation (resid-
uals), which corresponds to the X residual standard deviation at
some distance from the model X space. A DModX algorithm
uses the residuals of Y and X as diagnostic features for ensuring
model quality. The SIMCA-P soware was used to conduct the
applicability domain analysis for DModX, with a 99% con-
dence level (threshold D-Crit = 0.009999).

DModX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSEi

K � A

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSE

ðN � A� A0ÞðK � AÞ

s ;
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Mechanistic interpretation of the modeled descriptors against chronic toxicity (pLOEL) in rats.

Fig. 4 Mechanistic interpretation of the modeled descriptors against chronic toxicity (pNOEL) in rats.
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For the observation i, SSE is the squared sum of the residuals, in
a model with A components, K variables, and N observations. A0
is 1 if the model was centered and 0 otherwise. It is claimed that
© 2024 The Author(s). Published by the Royal Society of Chemistry
DModX is approximately F-distributed, so it can be used to
check if an observation deviates signicantly from a normal PLS
model.26,27,43
Environ. Sci.: Adv., 2024, 3, 686–705 | 697
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Fig. 5 Mechanistic interpretation of the modeled descriptors against sub-chronic toxicity (pLOEL) in rats.

Fig. 6 Mechanistic interpretation of the modeled descriptors against sub-chronic toxicity (pNOEL) in rats.

698 | Environ. Sci.: Adv., 2024, 3, 686–705 © 2024 The Author(s). Published by the Royal Society of Chemistry

Environmental Science: Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
1/

19
/2

02
4 

5:
32

:1
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3va00265a


Paper Environmental Science: Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
1/

19
/2

02
4 

5:
32

:1
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
5.1. AD of chronic toxicity models

From the DModX plots (shown in Fig. S17–S20 in ESI 2†), it was
found that compounds 2, 24, 35, 38, 67, 77, 91, 101, 104, 121, 133,
and 140 from the training set and compound number 168 from
the test set for the pLOEL endpoint model and compounds 33
and 80 from the training set and 5, 55, and 74 from the test set for
the pNOEL endpoint model are outside the domain of applica-
bility due to their molecular structural dissimilarity.26,27,43

5.2. AD of sub-chronic toxicity models

For the pLOEL sub-chronic toxicity, compound nos. 45, 60, 61,
88, 112, 117, 116, 151, 158, 166, and 167 of the training set are
outliers and compound nos. 125 and 136 in the test set are
outside the domain of applicability. For the pNOEL sub-chronic
endpoint, compounds nos. 29 (isobornyl acetate), 68 (merphos),
69 (metolachlor), and 79 (propachlor) from the training set were
outside the AD due to their molecular structural dissimi-
larity,26,27,43 as shown in Fig. S21–S24 in ESI 2.†

6. The Y-randomization plot

The Y-randomization plot (shown in Fig. S25 and S26 in ESI 2†)
shows that the model was not obtained by chance correlation.
The randomized model was developed using 100 permutations.
Table 3 List of the top 64 (chronic and sub-chronic toxicity) screened a

Sl. no. DrugBank ID Generic name

1 DB11768 Zytron
2 DB12267 Brigatinib
3 DB00845 Clofazimine
4 DB00882 Clomifene
5 DB09397 Technetium Tc-99m sulfur collo
6 DB09225 Zotepine
7 DB00251 Terconazole
8 DB09366 Propyliodone
9 DB00239 Oxiconazole
10 DB01007 Tioconazole
11 DB01110 Miconazole
12 DB01153 Sertaconazole
13 DB08943 Isoconazole
14 DB14201 2,20-Dibenzothiazyl disulde
15 DB11691 Naldemedine
16 DB00373 Timolol
17 DB00539 Toremifene
18 DB00925 Phenoxybenzamine
19 DB01403 Methotrimeprazine
20 DB14881 Oliceridine
21 DB01127 Econazole
22 DB06708 Lumefantrine
23 DB01167 Itraconazole
24 DB00431 Lindane
25 DB00756 Hexachlorophene
26 DB00295 Morphine
27 DB00844 Nalbuphine
28 DB06230 Nalmefene
29 DB11952 Duvelisib
30 DB08604 Triclosan
31 DB00555 Lamotrigine
32 DB00629 Guanabenz

© 2024 The Author(s). Published by the Royal Society of Chemistry
It was found that the RY
2 and QY

2 values of both the chronic
models for pLOEL and pNOEL were much lower than the
threshold values (RY

2 < 0.3 and QY
2 < 0.05). Similarly, in the case

of sub-chronic toxicity (Fig. S27 and S28 in ESI 2†), the RY
2 and

QY
2 values followed the same trend (i.e., lower than the

threshold values).
7. Toxicity prediction of the true
external dataset

We predicted DrugBank database compounds (approved drugs
only) and 1692 compounds from the PPDB database to under-
stand the predictive ability of the models. The predicted
response was then segregated into toxic and non-toxic
compounds based on the training set mean response (for
chronic toxicity, pNOEL $ 1.82 and pLOEL $ 0.82, and for sub-
chronic toxicity, pNOEL $ 1.20 and pLOEL $ 0.20) for all the
datasets.14 We then checked the reliability of prediction and
domain of applicability using the Prediction Reliability Indi-
cator tool (https://sites.google.com/site/dtclabpri/). From this
prediction, we found that most of the compounds (99.99% for
chronic studies and 75–95% for sub-chronic studies) showed
good prediction quality and lie within the applicability domain
of the model. A list of approved drugs (from the DrugBank
pproved drugs that are highly toxic in rats

Sl. no. DrugBank ID Generic name

33 DB00697 Tizanidine
34 DB00878 Chlorhexidine
35 DB01243 Chloroxine
36 DB06234 Maribavir

id 37 DB11327 Dipyrithione
38 DB11632 Opicapone
39 DB01149 Nefazodone
40 DB01233 Metoclopramide
41 DB06237 Avanal
42 DB06480 Prucalopride
43 DB06155 Rimonabant
44 DB11155 Triclocarban
45 DB09063 Ceritinib
46 DB11995 Avatrombopag
47 DB00235 Milrinone
48 DB00360 Sapropterin
49 DB04864 Huperzine A
50 DB00242 Cladribine
51 DB00257 Clotrimazole
52 DB00475 Chlordiazepoxide
53 DB00557 Hydroxyzine
54 DB00613 Amodiaquine
55 DB00678 Losartan
56 DB00730 Thiabendazole
57 DB00748 Carbinoxamine
58 DB00800 Fenoldopam
59 DB01131 Proguanil
60 DB01215 Estazolam
61 DB01608 Periciazine
62 DB00327 Hydromorphone
63 DB00704 Naltrexone
64 DB06800 Methylnaltrexone

Environ. Sci.: Adv., 2024, 3, 686–705 | 699
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database) and 1692 compounds from the PPDB database with
predicted toxicity from the developed models is given in ESI 1.†
We have provided the top 10 toxic pesticides (chronically) pre-
dicted from our developed models in Table S1 in ESI 2.† Their
toxicity predictions are also justied by the literature support62

(https://wwwn.cdc.gov/and https://www3.epa.gov/pesticides/). A
list of 1692 compounds from the PPDB database with predicted
toxicity from the developed models is given in ESI 1.† The top 64
screened drugs belonging to the approved category of the
DrugBank database, which are also experimentally known to
be highly toxic (chronic and sub-chronic toxicities) in rats
exposed to the drugs via food, water, air, or other ways for
a long term, are provided in Table 3, and the references are
also provided. Since for any new drug before coming to the
market for human/animal use, preclinical toxicity studies are
mainly done on rats and mice, these reference species (rats
and mice) are considered quite related to humans. Therefore,
rats and mice are generally used as model organisms for
chemical toxicity assessment.31 Therefore, if humans/animals
are exposed to these drugs or chemicals directly (prescribed
for medical purposes for long-term usage (lifetime)) or
indirectly (via food, water, air, or other ways) for the long
term, the chemicals may also show toxicities (chronic and
sub-chronic) to the living species. These drugs of different
classes are reported to be toxic in various literature studies.
We have identied a diverse class of toxic chemicals falling
under diverse groups: (a) organophosphorus class: Zytron;63 (b)
organochlorine class: lindane (EPA (https://www.epa.gov/) has
classied lindane as a Class B2/C, possible human
carcinogen) and hexachlorophene;64 (c) imidazole class:
terconazole, oxiconazole, thiabendazole, tioconazole,
maribavir, clotrimazole, tizanidine, econazole, itraconazole,
miconazole, sertaconazole, and isoconazole;65 (d)
radiopharmaceuticals: propyliodone and technetium Tc-99m
sulfur colloid;66 (e) antipsychotic and anti-depressant:
zotepine, propericiazine, hydromorphone methotrimeprazine.
Morphine,67 and nefazodone;68 (f) beta-blocker: timolol;69 (g)
phenanthrene series: nalbuphine,70 polychloro phenoxy phenol
class: triclosan,71 disinfectant and antiseptic: chlorhexidine,72

triclocarban, and chloroxine;73 (h) benzodiazepine class:
estazolam, fenoldopam, and chlordiazepoxide;74 (i)
barbiturates: hydroxyzine;75 (j) antimalarials: proguanil,
lumefantrine, and amodiaquine;76 (k) biphenyl tetrazole class:
losartan;77 and (l) heteropentacyclic compound: naltrexone78 and
other drugs such as lamotrigine79 and carbinoxamine.80

8. Comparison to the related studies

Although a strict comparison is not possible due to the different
test species, different durations of the study, different compo-
sitions of the internal and external sets, different validation
metrics reported, and different endpoints as well as the
modeling algorithms employed, we attempted to compare the
current results to those from earlier reported research work.

Mazzatorta et al.7 reported a predictive model of 445
compounds employing multivariate analysis (multiple linear
regression or MLR and linear discriminant analysis or LDA)
700 | Environ. Sci.: Adv., 2024, 3, 686–705 © 2024 The Author(s). Published by the Royal Society of Chemistry
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based on two-dimensional physicochemical descriptors. Gada-
leta et al.8 reported a study based on the k-NN algorithm for
predicting oral sub-chronic toxicity in rats using a training set of
254 chemicals and an external set comprising 179 chemicals.
Julian-Ortiz et al.9 reported MLR and LDA models using
a diverse set of 234 chemicals (LOAEL values) by using graph-
theoretical indices as molecular descriptors. A regression-
based model was reported by Mumtaz et al.10 using rat
chronic toxicity data and LOAEL as the endpoint. Hisaki et al.11

reported several QSAR models using environmental chemical
toxicity data (repeated dose, developmental, and reproductive
toxicities) for the NOEL predictions. Toropova et al.4 reported
a few regression-based QSAR models for the NOAEL (chronic
toxicity) calculation using the Monte Carlo technique. Pradeep
et al.12 reported several machine learning-based models (mainly
k-nearest neighbors, support vector machine, random forest,
and gradient boosting regression) using chronic, sub-chronic,
and sub-acute toxicity data. Comparisons with previously re-
ported studies (models) with validation metrics are provided in
Table 4.

In this current study, we developed different QSAR models
for risk assessment of chronic toxicity (more than 360 days) and
sub-chronic (180 ± 90 days) toxicity data using a large available
curated dataset of diverse chemicals such as pharmaceuticals,
industrial waste compounds, food, agricultural, natural, and
compoundsmeant for daily use in rats andmice using the LOEL
and NOEL as the endpoints and strictly following the OECD
guidelines. We considered a higher number of compounds than
those considered in previously reported models. We used the
genetic algorithm as the descriptor thinning method to extract
the vital structural features that are important for the
endpoints. We have interpreted the models and found the
structure–toxicity relationships that are responsible for chronic
toxicity and vice versa. The internal and external validation
metrics of the predicted PLS models suggest that the models are
reliable, predictive, and mechanistically interpretable with
a wide domain of applicability representing diverse groups of
chemicals compared to the previous works. It can be inferred
that lipophilicity, electronegativity, aromatic ethers or aliphatic
oxime groups, the complexity of structures, unsaturation in
molecules, and the presence of halogen and heavy atoms
(phosphate, sulphurs, etc.) are responsible for the chronic or
sub-chronic toxicity, whereas the presence of polar and hydroxyl
group in molecules (hydrophilic properties) can reduce the
chronic and sub-chronic toxicities. Therefore, this information
should be useful for the development of safer and greener
chemicals that will maintain bio-diversity. The validated
models may be employed for screening, and prioritization of
chemicals, pharmaceuticals, and other compounds inside the
chemical space of the developed models and can be used for
screening of chemical databases and data-gap lling.

9. Conclusion

In this work, we assessed the chronic ($360 days) and sub-
chronic (180 ± 90 days) toxicity proles of chemicals
including a wide range of pharmaceuticals, drugs, and daily
© 2024 The Author(s). Published by the Royal Society of Chemistry
use chemical products. Several regulatory agencies,
researchers, and organizations are deeply concerned about the
chronic/sub-chronic toxicity of chemicals. Since there is a large
gap in chronic/sub-chronic toxicity data owing to limited
experimental data, QSAR modeling can be used as an alter-
native. The GA-PLS models were validated through globally
accepted validation metrics and strictly following the OECD
guidelines. From the developed PLS models (valid, accurate,
robust, and predictive model), it can be inferred that lip-
ophilicity, electronegativity, aromatic ethers or aliphatic oxime
groups, the complexity of structures, unsaturation in mole-
cules, and the presence of halogen and heavy atoms (phos-
phate, sulphurs, etc.) are responsible for chronic or sub-
chronic toxicity, whereas the presence of polar and hydroxyl
groups in molecules (hydrophilic properties) can reduce
chronic and sub-chronic toxicity. Therefore, this information
is benecial for the development of safer and greener chem-
icals that will maintain bio-diversity. The validated models
may be employed for screening and prioritization of chem-
icals, pharmaceuticals, and other compounds inside the
chemical space (AD) of the developed models. These developed
models were utilized for the prediction of chronic and sub-
chronic toxicity of the approved category drugs of the Drug-
Bank database and the PPDB database. These validatedmodels
enable the assessment of long-term chemical toxicity prior to
their synthesis and evaluation. Thus, the developed model will
help reduce the time, cost, resources, and frequency of animal
testing strictly catering to the “RRR” (reduction, renement,
and replacement) principles.
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