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ng of the potential energy surface
of atmospheric molecular clusters boosted by
neural networks†
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Morten Engsvang, a Haide Wu a and Jonas Elm a

The computational cost of accurate quantum chemistry (QC) calculations of largemolecular systems can often

be unbearably high. Machine learning offers a lower computational cost compared to QC methods while

maintaining their accuracy. In this study, we employ the polarizable atom interaction neural network (PaiNN)

architecture to train and model the potential energy surface of molecular clusters relevant to atmospheric

new particle formation, such as sulfuric acid–ammonia clusters. We compare the differences between

PaiNN and previous kernel ridge regression modeling for the Clusteromics I–V data sets. We showcase

three models capable of predicting electronic binding energies and interatomic forces with mean absolute

errors of <0.3 kcal mol−1 and <0.2 kcal mol−1 Å−1, respectively. Furthermore, we demonstrate that the error

of the modeled properties remains below the chemical accuracy of 1 kcal mol−1 even for clusters vastly

larger than those in the training database (up to (H2SO4)15(NH3)15 clusters, containing 30 molecules).

Consequently, we emphasize the potential applications of these models for faster and more thorough

configurational sampling and for boostingmolecular dynamics studies of large atmospheric molecular clusters.
Environmental signicance

Atmospheric aerosol particles signicantly impact human health, atmospheric chemistry, and climate. Yet, aerosol processes remain poorly understood,
introducing major uncertainties in climate models. New particle formation is a process driven by formation of stable molecular clusters that grow into aerosols.
While theoretical and experimental studies qualitatively agree for simple systems, massive errors are observed in complex systems. Unfortunately, accurate
quantum chemical calculations for these systems are computationally demanding. However, machine learning can replicate those at a fraction of the
computational cost. We trained neural networks on various systems and demonstrated their effectiveness for large molecular clusters. This is a signicant step
toward large-scale, ab initio modeling of atmospheric nucleation that will potentially reduce uncertainties in climate predictions.
1 Introduction

The formation and growth of molecular clusters in the atmo-
sphere drive the gas-to-particle conversion process known as
new particle formation (NPF). These aerosols contribute to a net
cooling effect on the Earth.1 Almost 50% of newly formed
aerosols act as cloud condensation nuclei (CCN), enhancing
cloud formation and the albedo effect.2,3 Additionally, due to
their tiny size, aerosols can transport various molecules,
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viruses, and bacteria deeply into the respiratory system, posing
health risks.4–6

While the exact chemical species relevant to aerosol forma-
tion mechanisms are poorly understood, many studies present
insight into the most relevant components, such as sulfuric
acid, ammonia, dimethylamine, and various oxidation products
of volatile organic compounds.7–10 Other studies have employed
computational quantum chemistry (QC) and modeling to
investigate the rst crucial steps of formation mechanisms;
molecular cluster formation.11–13 One of the main paths is
through stable inorganic acid–base salts. Accurate QC methods
are required to capture the chemistry of common acid–base
clusters, which are stabilized by proton transfer; a bond-
breaking/-formation reaction. However, these methods are
computationally expensive and scale signicantly with molec-
ular size, which oen limits computational studies to small
clusters, typically with less than 10 molecules. To overcome the
computational limitation while maintaining accuracy, alterna-
tive approaches for future practical research are needed.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Machine learning (ML) offers a versatile and powerful solu-
tion for accelerating time-consuming processes characterized
by repeating patterns.14 In chemistry, ML has found applica-
tions in modeling potential energy surfaces (PES), predicting
molecular structures, identifying and classifying molecules,
enhancing molecular dynamics (MD) simulations, predicting
kinetics and other properties, and gaining deeper insights into
molecular behavior.15–20 To date, and to the best of our knowl-
edge, there are few studies utilizing ML for atmospheric
molecular clusters.21–25 Our recent studies focused on using
kernel ridge regression (KRR) models (implemented in
QML26,27) for modeling the cluster binding energies.28–33 Despite
its simplicity, KRR achieved chemical accuracy (<1 kcal mol−1)
when modeling the energies of sulfuric acid–water clusters,
using only a few hundred structures for training and the rest of
the database for testing.28 However, Knattrup et al.34 demon-
strated that the computational costs and accuracy of KRR for
modeling of density functional theory (DFT) binding energies
could be substituted by fast but (compared to DFT) less accurate
DFT-3c35,36 methods with similar results. Moreover, for accurate
modeling, the computational costs of the KRR approach (kernel
construction and Cholesky decomposition) almost reach those
of QC methods. Additionally, enlarging the congurational
space by incorporating more non-equilibrium structures and
increasing system complexity by introducing more atom/mole-
cule types would require very large training databases to
maintain low errors, increasing costs even further.

This work investigates whether neural networks can address
these challenges. We utilize one of the commonly applied NN
Fig. 1 The three databases of molecular cluster structures used in this w
amine (DMA), trimethylamine (TMA), ethylenediamine (EDA), and sulfuric
code: sulfur (yellow), oxygen (red), hydrogen (white), nitrogen (blue), car

© 2024 The Author(s). Published by the Royal Society of Chemistry
architectures, the polarizable atom interaction neural network
(PaiNN),37 implemented in SchNetPack,38,39 to model the ener-
gies and forces of typical atmospheric molecular clusters. We
demonstrate the accuracy and speed of the trained models and
discuss their potential applications in future studies, including
those involving large and complex training databases.
2 Methodology
2.1 Databases

This work uses structures from three molecular cluster data-
bases (cf. Fig. 1 and SI-1†). The rst is the sulfuric acid (SA) and
water (W) system studied in our previous work.28 To sum up, we
had collected ∼1.7k equilibrium structures from other
studies40–48 and used Born–Oppenheimer MD (BOMD) simula-
tions with energies and forces computed at a low QC level (the
PM7 semi-empirical method) starting from each equilibrium
structure in order to expand the database with several non-
equilibrium structures. Thus, overall, this database contains
∼18k structures, which consist of a subset of the SA0–5W0–15

clusters. The system properties are evaluated for each geometry
at the uB97X-D49/6-31++G(d,p) level of theory.

The second SA and ammonia (AM) cluster database has been
taken from Engsvang and Elm.29 They used the GFN1-xTB50,51

level of theory to produce∼4k equilibrium structures and∼7.7k
non-equilibrium structures. In this work, we used the equilib-
rium structures as starting points for BOMD simulations at
300 K while producing an additional ∼6.4k structures. The
overall database thus consists of ∼18k SAnAMn,n±1,n±2 clusters,
ork. Legend: water (W), ammonia (AM), methylamine (MA), dimethyl-
(SA), methanesulfonic (MSA), nitric (NTA), and formic (FA) acids. Color
bon (gray).

Environ. Sci.: Adv., 2024, 3, 1438–1451 | 1439
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where n ˛ 1–9. The GFN1-xTB level cannot provide accurate
binding energies, and using uB97X-D/6-31++G(d,p) would be
too computationally demanding for all cluster sizes. Therefore,
using the same methodology as Engsvang and Elm,29 the ener-
gies and forces were recalculated at the B97-3c35 level.

Although both databases are similar in size, the SA–AM
database contains larger clusters, an extra atom type (nitrogen),
and a more complex scheme of cluster binding patterns than
just O–H interactions, as in the SA–Wdatabase. We additionally
recalculated the SA–W database at the B97-3c35 level. Therefore,
we have three different datasets (SA–WuB97X-D/6-31++G(d,p), SA–
WB97-3c, and SA–AMB97-3c) to compare for the suitability of ML.
As such, we can examine the role of the theory level and data-
base complexity in ML training.

Finally, the third database of structures originates from
Knattrup et al.,32 who compiled small (up to 4-molecule) clusters
composed of various NPF precursors such as (SA, MSA =

methanesulfonic, NTA = nitric, and FA = formic) acids and
(AM, MA = methylamine, DMA = dimethylamine, TMA = tri-
methylamine, and EDA = ethylenediamine) bases. Knattrup
et al. combined the Clusteromics I–V databases12,52–55 consisting
of equilibrium structures optimized at uB97X-D/6-31++G(d,p).
Furthermore, they employed MD simulations at GFN1-xTB50,51

to greatly expand the database to ∼221k structures, denoted
Clusterome. Ultimately, the system properties (single-point
energies) were evaluated for each geometry at r2SCAN-3c.36 The
entire Clusterome database offers an opportunity to examine
the capability of NN for learning on structurally complex
(clusters composed of nine different molecules) and large
databases or appropriately reduced databases.56

We emphasize the importance of consistency during data
preparation. For instance, a mismatch of quantum chemistry
(QC) program versions or methods could cause great errors in
the modeling. Therefore, to deal with the database and the QC
evaluations systematically, we have used the JK framework, a set
of computational tools for handling molecular clusters.33 The
following QC programs were used for QC calculations: xtb 6.4,57

Gaussian 16 B.01,58 and ORCA 5.0.3.59,60

2.2 Data properties

Each cluster structure (XYZ Cartesian coordinates) in the data-
bases has an associated electronic energy and, in some cases,
also forces derived from electronic energy gradients. For ML
modeling, the structure must have a suitable molecular repre-
sentation (explained in Section 2.3) since different XYZ coordi-
nates can correspond to the same structure when translated,
mirrored, or atom-wise permuted since XYZs are translation/
rotation/atom-permutation noninvariant. Furthermore, relative
energies (e.g., atomization or binding energies) are preferable to
absolute electronic energies, as they exhibit a lower spread of
the modeled values between different clusters, which simplies
the data tting. Therefore, we use the electronic binding ener-
gies DE, i.e., the energies released upon cluster (C) formation
from its monomers (M) at energy-minimum conguration

DE ¼ EC �
X

i˛M

Emin
i : (1)
1440 | Environ. Sci.: Adv., 2024, 3, 1438–1451
The gradient of EC is the same as for DE, i.e., still corresponding
to intramolecular forces. When evaluating the ML model
quality, we use mean absolute errors (MAEs) and root mean
squared errors (RMSEs) between the predicted and true prop-
erties. In the case of interatomic forces ð~FÞ, we compare all force
components separately.

In our previous work,28 we demonstrated that the D-ML
approach61–65 could enhance the accuracy of predictions by
a factor of four compared to direct-ML. Here, direct learning
refers to modeling the high-level binding energy (here denoted
as DEhigh). D-ML models the difference (DDE) between a slow,
high-level theory (DEhigh) and a fast, low-level theory (e.g., GFN1-
xTB,50,51 here denoted as DElow),

DDE = DEhigh − DElow. (2)

If the low- and high-level methods correlate, the model does not
need to learn as much chemistry, as the fast method captures
most of it. While the combination of D-ML and NN is
uncommon as the improvement is not marginal and D-ML is
less practical for nal application (e.g., MD simulations), we
only use it for consistency and eventual comparisons with our
previous studies. Therefore, when D-ML is used, we used GFN1-
xTB as the ‘low’ method.

2.3 Neural network model

In this work, we use the polarizable atom interaction NN
(PaiNN37) model, the successor to the SchNet66 model. Based on
Liao et al.,67 other NN models (e.g., TorchMD-NET,68 NequIP,69

and Equiformer67) can achieve better accuracy when modeling
energies and forces. However, these models require longer
training times while the accuracy (MAEs) is only improved by
a factor of two or less.

PaiNN employs message passing for 3D-embedded graphs,
where the molecular representation is constructed on the y for
each graph node (atom) based on its surrounding environment
(by default 5 Å). Atomic features are updated through
a sequence of interaction layers, which, followed by an atom-
centered neural network, allows modeling of the nal property
of interest (e.g., energy). For a more detailed description, we
recommend consulting the original reference.37

The PaiNN model is implemented in the SchNetPack38,39

program. Communication with SchNetPack is also performed
via the JK framework.33

2.3.1 Model hyperparameters. Hyperparameters investi-
gated in this work include molecular representation, neural
network, and training settings that can signicantly impact the
model accuracy and performance. For PaiNN, some crucial
hyperparameters are the initial learning rate (LR), number of
epochs (EPOCHS; training length), batch size (BS), number of
interaction layers (INT), number of atom basis features (AB),
and number of radial basis functions (RB) within a cutoff
distance (CUTOFF).

2.3.2 Model training. The quality of training is determined
by MAE between the modeled and true values. Typically, the
majority (we use 90%) of the training database is used as the
training subset, and through a sequence of batch iterations/
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Mean absolute errors (MAEs) of electronic binding energies (DE)
for the training SA–W database with different training set sizes (1k/16k)
and different numbers of NN fitting parameters (NN-small/NN-big).
Dots show the training MAE from each epoch, and lines show the MAE
of the best model found so far.
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epochs, the MAE is minimized. The remaining portion (10%) of
the database is used for validation to prevent overtting of the
training database. In such cases, the training is oen stopped
when the validation MAE consistently increases. However, there
are two other cases when the training is typically stopped: (1)
when the validation MAE has reached a plateau, i.e., no
improvement occurred for a certain number of epochs (early
stopping, ES, threshold), or (2) the validation MAE has reached
the desired accuracy.

When training a model with multiple properties, it is
common to use a loss function combining the MAEs of all the
model properties. In the case of energies and forces, our loss
function is

L ¼ x$
���DEtrue

C � DEmodel
C

���þ ð1� xÞ$���DF true
C � DFmodel

C

���; (3)

where hj$ji corresponds to MAE and x to trade-off between the
two modeled properties. This work sets the trade-off to 1%
when training on both energies and forces.

Training on the full database can become computationally
demanding in the case of very large databases. Smith et al.56

suggested selecting a small subset of the full database (e.g., 2%)
and training several models, each initiated with a different
random seed. The largest deviations (or deviations greater than
a certain cutoff) between the models' predictions on the
remaining part (98%) of the database can be used to identify
and select the problematic structures for expanding the training
database. This process is iteratively repeated until the nal
trained models consistently predict properties of the full data-
base within the desired accuracy. We test this database reduc-
tion in Section 3.5.

3 Results
3.1 Understanding the NN training

3.1.1 Training curves. We will rst investigate the training
behavior before moving towards the NN-model training on the
full databases. Here, we used two NN models (NN-small and
NN-big) dened by choosing suitable hyperparameters based
on intuition. The NN-small model (BS = 100, LR = 10−4, AB =

64, INT = 3, RB = 15, and CUTOFF = 5 Å) contained 154k
trainable parameters and NN-big (BS = 100, LR = 10−4, AB =

256, INT = 5, RB = 30, and CUTOFF = 5 Å) contained 3.8 M
trainable parameters. The other hyperparameters were the
same as for the nal model (see section 3.1.2). The models have
been separately trained on electronic binding energies (DE) for
random samples of 1k and 16k structures from the SA–W
database.

Fig. 2 shows the training MAE evolutions for the four
training cases. Due to the model complexity, the NN-big models
reached training MAEs of 0.05 kcal mol−1 [16k] and 0.3 kcal
mol−1 [1k], an order of magnitude lower MAEs than their NN-
small counterparts, which reached MAEs of 0.3 kcal mol−1 [16k]
and 2.5 kcal mol−1 [1k]. Aer a few hundred to several thousand
epochs, only ne-tuning of the accuracy occurs, except for the
case of NN-big [1k], where the tting accuracy is still signi-
cantly improved. It should be noted that in the case of NN-big
[1k], the nal improvement might already be overtting the
© 2024 The Author(s). Published by the Royal Society of Chemistry
training database, and validation should be examined simul-
taneously (see Section 3.1.3). Yet, these results do not show
a clear trend between the NNmodel complexity and the number
of epochs required to reach the ne-tuning regime. The larger
training datasets [16k] converge approximately 16 times faster
to similar values compared to the small datasets [1k] because we
use 16 times more training batches within each epoch. To sum
up, the training MAEs of NN-small [1k] can be lowered by ∼2
orders magnitude by greater variation in the training datasets
[1k / 16k] and by enlarging the model [NN-small / NN-big].

Training a moderately complex neural network from scratch
on a large dataset boosted by a GPU takes from several hours to
a few days. However, this can vary widely depending on the
specic circumstances: model complexity in the form of the
number of ttable parameters, training dataset size and
complexity (e.g., 1k/16k data of SA–W/SA–AM will differ), hard-
ware (number and speed of CPUs/GPUs), optimization tech-
nique (e.g., Adam or stochastic gradient descent (SGD70)),
learning strategy (e.g., learning rate or transfer learning =

adaptive learning), and number of epochs. Training is the
bottleneck of NN modeling, as predicting properties of thou-
sands of structures takes a couple of minutes when employing
a single CPU. Table 1 illustrates the training times required for
one epoch of different datasets. Various commonly-used
hyperparameters can alter the computational time by a factor of
0.5–2. The main conclusions from Table 1 are that the training
on larger databases (16k vs. 1k) is proportionally slower (i.e., 16
times), training on more complex databases (SA–AM vs. SA–W)
is slightly slower (by ∼25%), and training more properties
(ðDE;~FÞ vs. DE) doubles the times in our case. While utilizing
GPUs make the training faster by more than an order of
magnitude, we typically only have access to a few GPUs but can
utilize thousands of CPUs. Therefore, the wide range of training
runs required for hyperparameter optimization is performed
using only CPUs with fewer epochs.

3.1.2 Hyperparameter optimization. Non-surprisingly, the
previous section illustrates that model complexity and training
set size have an impact on the accuracy of the nal model. Using
Environ. Sci.: Adv., 2024, 3, 1438–1451 | 1441
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Table 1 Approximate computational times for training cases and hardware setups. Here, x CPU = x Intel Xeon Platinum cores, and 1 GPU + 4
CPUs = Nvidia V100-16GB + 4 Intel Xeon Gold cores

System Training on Train size 1 CPU 4 CPUs 1 GPU + 4 CPUs

SA–W DE 1k ∼4 min per epoch ∼2 min per epoch ∼8 s per epoch
SA–W DE 16k ∼1 h per epoch ∼0.5 h per epoch ∼50 s per epoch
SA–W DE + forces 1k ∼8 min per epoch ∼4 min per epoch ∼16 s per epoch
SA–AM DE 1k ∼6 min per epoch ∼3 min per epoch ∼10 s per epoch
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the same training database, it is clear aer a few (10–100 s)
epochs which set of hyperparameters performs better in
training (see Fig. 2). Such an assumption is not universally valid
as some setups could converge slower but to more accurate
values. Nevertheless, with this approach, we should be able to
nd the model that most rapidly converges to low MAEs.
Therefore, in this section, we seek hyperparameters that reach
the lowest validation MAEs aer 200 epochs.

Taking into account the most important hyperparameters
(AB, INT, RB, LR, and BS), we used an in-house numerical
optimization script to nd optimal hyperparameters for the NN-
model trained on DE of 1k SA–Wdata. However, as the outcome
of NN training is not predictable and depends on the initial
seeding of the network, the optimizer was continuously cycling.
It could not converge even when we averaged the results over
three independent trainings. Consequently, we performed
a simpler brute-force grid search, where the grid consisted of AB
= (32, 128, 512), INT = (3, 4, 5), RB = (10, 20, 30), LR = (10−3,
10−4, 10−5), and BS = (2, 5, 10, 50, 100). For simplicity, we kept
the remaining hyperparameters at the default values. Many of
the training runs reached validation MAEs down to 0.6–2 kcal
mol−1 for the 1k SA–W data. Subsequently, we performed the
same grid search for training on ðDE;~FÞ of 1k SA–W data, on DE
of 16k SA–W data, using D-learning on DE of 1k SA–W data, and
also on DE of 1k SA–AM data. While the larger (16k) and more
complex (SA–AM) dataset preferred more complex NN models,
in the overall ranking, themodel presented in Table 2 seems the
most suitable for all the studied systems, and we will use this
Table 2 The final hyperparameters used for all the followingmodels in
this work. The optimized hyperparameters are highlighted in bold

Category Hyperparameter Value

Representation AB = atom basis 128
Representation INT = interaction layers 5
Representation RB = radial basis 20
Representation CUTOFF = cut off 5 Å
Model Properties DE or ðDE; ~FÞ
Model Loss function Eqn (3)
Model DE vs. ~F trade off x 100% or 1%
Model Data used for validation 10%
Optimization Optimizer AdamW
Optimization LR = learning rate 0.0001
Optimization Learning rate scheduler OFF
Optimization Epochs Varies between ∼102–103

Optimization Early stopping OFF
Optimization BS = batch size 2
Initiation RNG seed 42 or (7, 42, 69)

1442 | Environ. Sci.: Adv., 2024, 3, 1438–1451
setup for the training of the following NNs. Although additional
hyperparameter optimizations will likely not reach signicantly
more accurate models, they should be performed on new
systems, as some of the ‘optimal’ hyperparameters are on the
edge of the grid search values. The rankings are presented in the
SI-2.†

The nal model comprises nearly 1 M trainable parameters,
where this number is primarily dened by AB, INT, and RB.
While we did not vary the CUTOFF, it is another crucial
parameter to consider, especially for the dynamics of molecular
cluster formation. Although the interaction of distant atoms
within a cluster will be propagated viamessage-passing through
other atoms,71 studying cluster evaporation or collisions using
molecular dynamic simulations might be inaccurate due to the
lack of long-range interactions. However, this is beyond the
scope of the current manuscript. At the same time, using a large
CUTOFF parameter makes the NN more complex and compu-
tationally more expensive, i.e., more difficult to train. Another
option for properly incorporating long-range interactions would
be using a different ML model (e.g., PhysNet72 or SpookyNet73)
that combines short-ranged interaction modeling with small
CUTOFF and long-range/dispersion corrections calculated, e.g.,
from atomic positions and partial charges.74,75 Further, for
minimizing the loss function, we utilize the Adam optimizer
with weight decay (AdamW) and L2 regularization.76 The
learning rate (LR) affects the step size of the gradient descent
algorithm during training. An excessively high rate may cause
overshooting or overtting, whereas a very low rate may result in
slow convergence. Although the LR of 10−3 has reached the best
ranking in our grid search, we reduced the LR to 10−4 to reduce
instabilities during training. Ideally, an LR scheduler should be
used to progressively lower the learning rate. However, we
disabled it for consistency, with the schedule multiplier set to 1.
We use a very small batch size of 2 compared to the typical 100
or 200. This size represents the number of training samples
used in one optimization iteration. Smaller batch sizes can lead
to faster convergence as more iterations are performed within
one epoch. Conversely, larger batch sizes (typically limited by
computer memory) can provide more accurate iteration during
optimization and, thus, can be used for ne-tuning.

3.1.3 Training and validation. Using the optimal hyper-
parameters, we separately trained the NN model on DE and
ðDE;~FÞ of 1k of SA–W data. We initiated three separate training
runs for each model to eliminate any randomness, using
random-number-generator (RNG) seeds of 7, 42, and 69. Fig. 3
shows training and validation errors for all the runs. All models
reach validation MAEs of ∼1 kcal mol−1. Smaller variations in
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Training and validation error evolution with epochs for 1k of the SA–W system with three times differently initiated training. RNG =
random number generator.
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validation MAEs among differently initiated models are
observed when training on both energies and forces, as the loss
function variation is signicantly reduced by averaging over 3N
+ 1 times more values (i.e., 3N ~F components and 1 DE). In all
cases, only ∼300 epochs are required to converge the model.
Aer 200–300 epochs, further training appears redundant as it
only overts the training database and, in some cases, even
increases the validation MAE. Due to low variations with
different RNG seeds, we further only use seed 42. Note that
variations among differently initiated models would become
more apparent when the training database is also altered (see
Section 3.4 and 3.5).

3.1.4 Learning curve. To investigate the learning curve, we
used the SA–W database of 18k clusters calculated at uB97X-D/
6-31++G(d,p). The same data were used in our previous work28

employing kernel ridge regression (KRR), implemented in the
QML program.26,27 For consistency, we also use 520 largest
SA4W5 clusters for testing and the rest for training and valida-
tion. The data sampling and simulations are repeated three
times for statistics. Each model uses 1000 epochs for training.
Fig. 4 The learning curves for training on the SA–W clusters while
testing on the largest SA4W5 clusters excluded from the training.
Different lines correspond to direct-/D-learning of KRR/NN model
trained on ðDE=DE;~FÞ. The kernel-ridge-regression (KRR) results are
taken from Kubečka et al.28 The error bars represent the standard
deviation. Note the logarithmic axes.

© 2024 The Author(s). Published by the Royal Society of Chemistry
We model the electronic binding energies (DE). However,
separate models are also trained on DE, ðDE;~FÞ, and D-learning
with GFN1-xTB used as the low method (see eq. (2)).

We use the same NN model for all systems and database
sizes. Fig. 4 presents all the KRR28 and our new NN learning
curves. KRR performs better with small (<∼200) training data
sizes compared to NN. For both KRR and NN, D-learning
improves the accuracy by a factor of 2–3. When training solely
on energies, this NN model achieves ∼1.2 × MAE of the corre-
sponding KRR model with the same training set size, reaching
the MAE of 0.7 kcal mol−1 at 16k training data. Therefore, this
model reaches below the chemical accuracy of 1 kcal mol−1. The
NN trained on both ðDE;~FÞ outperforms others with MAE of DE
lower than 0.3 kcal mol−1. Note that for NN, the mean absolute
errors (MAEs) are slightly greater than the validation MAEs
presented in the previous section, as the testing is performed on
the largest SA4W5 clusters while validation is performed on the
10% of the data cut from the training databases.

Interestingly, direct learning of the NN model appears to be
more susceptible to initialization and data choice. The large
variations in the direct learning of the NN model on energies
(red line) for large training sizes indicate that this choice of
hyperparameters makes the model very sensitive to the initial
conditions, and a search for more suitable hyperparameters at
these sizes would be benecial. Chen et al.18 also demonstrated
variation in their NN modeling (with NN model termed as
VSpecNN) and suggested averaging over three independent NN
models reduces MAEs of energies and forces by ∼30%.

Most importantly, NN computational times for larger
training sizes signicantly outperform the KRR times. Also,
predictions of the NN model are orders of magnitude faster
than for KRR, which scales quadratically with the training set
size or even cubically for large sets.
3.2 The model performance

We trained three NN models on the full SA–WuB97X-D/6-31++G(d,p),
SA–WB97-3c, and SA–AMB97-3c databases, while training on both
energies and forces. Fig. 5 shows the evolutions of the loss
function, which are mainly dependent on the model and system
complexity and the learning rate. Both SA–W cases behave
Environ. Sci.: Adv., 2024, 3, 1438–1451 | 1443
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Fig. 5 Training (blue) and validation (red) evolution of loss function for the full databases (∼18k) of the SA–W and SA–AM systems.
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similarly as expected due to a high correlation between the B97-
3c and uB97X-D/6-31++G(d,p) binding energies. The SA–AM
system also performs similarly to the SA–W cases as the SA–AM
database complexity (cluster sizes and number of atom types)
appears proportionally compensated by the NN model exten-
sion with one additional atomic feature set. All training runs
clearly reached a plateau aer 600 epochs. Each training took
nearly three days using 1 GPU and 4 CPUs. All training and
validations achievedmean absolute errors below 0.1 kcal mol−1.
The best model (i.e., the model with the lowest validation loss)
from each of the three training runs was subsequently used for
testing.

For testing, we used the largest clusters in the database
which were excluded from the training, i.e., SA4W5 for the SA–W
Fig. 6 The correlation between the NN-modeled and the QC-calcula
studied cases. MAE = mean absolute error, RMSD = root mean squared

1444 | Environ. Sci.: Adv., 2024, 3, 1438–1451
systems and (SA8AM10, SA9AM10, and SA9AM11) for the SA–AM
system. Fig. 6 shows the correlation of the NN-modeled and the
QC-calculated energies and forces across all systems. For
chemical predictions, these models are quite accurate with
RMSD and MAE < 1 kcal mol−1, and with a very high correlation
with the target method (PCCz 1). The same applies to the force
component predictions with RMSD andMAE < 1 kcal mol−1 Å−1

and force directions from angle deviation analysis with mean
error < 1° (see SI-3†). In the case of SA–W, there is almost no
apparent difference when modeling the two QC methods
(uB97X-D and B97-3c) due to their high correlation (see SI-4†).
The SA–AMmodeling shows only slightly larger MAE and RMSD
than the SA–W modeling, likely for the same reasons as
mentioned before, i.e., the SA–AM database complexity appears
ted electronic binding energies and force components for the three
difference, and PCC = Pearson correlation coefficient.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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proportionally compensated by the NN model expansion.
Similar to the previous section, note that all MAEs are slightly
greater than the validation MAEs (see Fig. 5) as the testing is
performed on the largest clusters while validation is performed
on 10% of the data cut from the training database.
Fig. 8 SA–AM cluster size dependence of the computational times for
the optimization and vibrational frequency calculations at the B97-3c
level of theory compared to the short times required for NN (pre-)
optimization.
3.3 Application to large clusters

Here, we expand the above examination of the SA–AM model to
even larger clusters and show the trend of MAEs with increasing
cluster size. We took 25–50 random non-equilibrium clusters
from the work of Wu et al.77 for each SAnAMn cluster size, where n
˛ 2–15. Note that we only used clusters smaller than SA10AM10 for
the training. In Fig. 7, we observe that the MAEs of the electronic
binding energies and force components are almost linearly
increasing with cluster size. This proportionality to cluster size
arises from the sum of atomic contributions, with each atom
likely contributing with a similar error. Additionally, the mole-
cules are differently polarized within the large clusters, which
might not be well-captured by the NN model, resulting in
increasingMAE of the force components as well slightly increased
growth of MAEs of the energies for the SA10–15AM10–15 clusters.
Nevertheless, the MAEs consistently remain below the chemical
accuracy threshold of 1 kcal mol−1 or 1 kcal mol−1 Å−1.

We have a fast method that quite accurately learns the
reference QC method. Fig. 8 shows the typical computational
times required for optimization and vibrational-frequency
calculations for the SA–AM clusters during congurational
sampling.77 Note that the times are multiplied by a factor of 8 as
8 CPUs were used even though the scaling of QC methods with
the number of CPUs is not exactly linear. The frequency calcu-
lations take up approximately 15–50% of the computational
time for the large clusters and up to 80% for the small. The
scaling behavior of the B97-3c method is relatively moderate,
exhibiting an almost linear trend in contrast to the poor scaling
of other QC methods (e.g., uB97X-D or even the coupled-cluster
methods). Regardless, many such calculations must be per-
formed during thorough congurational sampling, which is
computationally demanding. Utilizing the above-trained NN
model for SA–AM, we also show the times required for geometry
optimization with the same optimization criteria as for the QC
Fig. 7 Absolute error distributions of the modeled energies and force
components for the SAnAMn clusters trained at the B97-3c level. The
error bars show the standard deviation.

© 2024 The Author(s). Published by the Royal Society of Chemistry
optimization (see Fig. 8). The nal geometry will be close to the
true minimum, but post-optimization at the target QC level has
to be applied to reach the same geometry. For example, we
performed congurational sampling and took one SA7AM7

structure optimized at GFN1-xTB. Subsequent optimization of
this molecule at B97-3c (within ORCA) lasted 10 CPU-hours and
required ∼80 iteration steps. The RMSD of the initial and nal
structure is 0.28 Å. Performing optimization (within ASE) with
the trained NN takes 1 min per 100 iterations and approx. 100
iterations are required to reach the same optimization criteria
as in the default settings of the ORCA program. The RMSD
between both nal structures is 0.04 Å, and with more iterations
used in the NN optimization (300), the RMSD improvement is
already negligible (lowered to 0.03 Å). When taking the NN-
optimized structure, less than an extra 2 CPU-hours were
required for B97-3c optimization to reach the minimum struc-
ture, which differs from the fully QC-optimized structure by
∼0.01 Å in RMSD (considered as the same geometry). Although
there is already a 5-fold speed-up in a single optimization, there
will be a massive overall speed-up by omitting numerous
energetically high-lying congurations aer the NN pre-opti-
mization. This clearly underlines that NN techniques will play
an important role in future studies of large molecular clusters.
3.4 Molecular-cluster dynamics via neural network

With an NN that can model forces, we can mimic Born–
Oppenheimer molecular dynamics (BOMD) simulations of
clusters at a signicantly lower computational cost. We used the
NN model from the previous section trained on SA–AMB97-3c to
demonstrate this on a 100 ps long MD simulation. The simu-
lations are performed using the Atomic Simulation Environ-
ment (ASE78,79), with a timestep of 0.1 fs, the Nosé–Hoover
thermostat with friction frequency of 0.01 fs−1 and target
temperatures (T) of 300 and 450 K. The entire 100 ps simulation
only took ∼9 hours on 1 CPU. With reduced data dumping and
a well-optimized simulation script, 1 ns simulation could be
achieved within 1–3 CPU-days. Although the choice of thermo-
stat or other parameters might not be ideal for real applications,
Environ. Sci.: Adv., 2024, 3, 1438–1451 | 1445
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Fig. 10 The power spectrum for SA7AM7 at 300 K obtained from ML-
boosted MD simulation (blue) and spectrum of harmonic-vibrational
frequencies for the lowest found energy-minimum configuration at
B97-3c level (black lines). All peaks are normalized according to the
highest intensity.
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this work aims to demonstrate the NNmodel's ability to quickly
simulate large molecular clusters at the accuracy of a QC level of
theory. Clearly, for MD simulations longer than a few picosec-
onds, the whole process of data generation, QC single-point and
gradient calculation, NN training, and NN-boosted MD will
become computationally faster than running BOMD at the QC
level itself.

Fig. 9a illustrates the time evolution of the electronic binding
energy. 100 uniformly sampled (every 1 ps step) structures were
recalculated at the B97-3c level to further validate the model.
Fig. 9b shows a high correlation between NN-modeled and QC-
re-calculated energies. A similar satisfactory correlation is
observed for the force components (see SI-5†). At the low
temperature (300 K), the MAE of 0.24 kcal mol−1 is similar to
errors observed during the comparison for structures from Wu
et al.77 (see Fig. 7). With higher temperature (450 K), the model
performance is decreased and the MAE of 0.46 kcal mol−1 is
almost twice as large as the MAE at the lower temperature. This
can be attributed to the difference in data generation, and
higher accuracy can be gained by expanding the database with
appropriate structures. In other words, the training database
was constructed by extracting structures from a short MD
simulation at 300 K at GFN1-xTB (see Section 2.1), but MD
simulations on the B97-3c potential energy surface and even at
the higher temperature of 450 K will visit untrained parts of the
congurational space. When we experimented with simulations
at temperatures of 500 K or more, we experienced frequent
simulation failures due to molecule fragmentation caused by
inaccurate NN modeling. Nevertheless, below 500 K, the
molecular cluster integrity remains unchanged during these
simulations.

Even though the NN model maintains energy and force
accuracy during the MD simulation, we also recommend
examining whether other dynamics properties, such as radial
distribution function and diffusivity, have been preserved (e.g.,
see the work of Fu et al.80). MD simulations can enhance our
understanding of many cluster properties. For instance, we
Fig. 9 Molecular dynamics simulations of a SA7AM7 cluster with energie
correlation of NN-modeled and QC-re-calculated energies of 100 unifo
error, RMSD = root mean squared difference, and PCC = Pearson corre

1446 | Environ. Sci.: Adv., 2024, 3, 1438–1451
used the TRAVIS program81,82 to analyze the vibrations stored in
the MD trajectory at 300 K. Fig. 10 demonstrates the analyzed
power spectrum and compares it to the equilibrium harmonic
vibrational frequencies of the lowest free energy SA7AM7

conformer. The QC harmonic interpretation of the vibrational
frequencies is insufficient for these weakly bound clusters,
crowded with many anharmonic and low-frequency vibra-
tions.83 Hence, MD simulation becomes important for inter-
preting some cluster behaviors. PaiNN was also designed to
model directional properties such as dipole moments and
polarizabilities. Modeling these properties along the generated
trajectory allows calculating IR or Raman molecular spectra
from molecular dynamics simulations. However, we omit them
as this is beyond the scope of the current work.
3.5 Large database reduction

To construct a large database, we utilize the Clusteromics I–V
databases (see Fig. 1). Electronic binding energies (DE) of these
data were calculated at the r2SCAN-3c36 and GFN1-xTB50,51 levels,
making them suitable for D-ML. Knattrup et al.32 used 5-fold
s and forces predicted via the NN model. The right graph presents the
rmly sampled structures from the MD trajectory. MAE = mean absolute
lation coefficient.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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cross-validation and showed that the KRR model could reach
MAEs lower than 1 kcal mol−1 for each Clusteromics separately
when trained on very few data (∼50–100). Note that the KRR-
model error is low (compared to KRR modeling in Fig. 4) as the
test/validation is also performed on small clusters, i.e., not only
the largest clusters in the database. Knattrup et al.32 reported
difficulties related to computational times for their large (>1k)
training databases. Here, we performed similar training of the
NN model (training for 1000 epochs) for each training set size
and evaluated the model on the entire corresponding Clus-
teromics dataset. In Fig. 11, we demonstrate that the NN model
again does not outperform the KRR model but consistently
reaches the chemical accuracy of 1 kcal mol−1 for each Clus-
teromics set, with a training set requiring at least 2k of random
data. We used the same ‘optimal’ hyperparameters of the NN
model as in the previous sections, i.e., optimized for slightly
different systems, which is likely why the NN model reaches
MAEs of 1 kcal mol−1 for 2k training dataset while the KRR
model reaches 0.2 kcal mol−1. The KRR has a large advantage
when tested on data similar to the training data. Testing on
structures that are different from the training database would
potentially make the KRR and NN performance more compa-
rable for large training sets. Nevertheless, training and valida-
tion times for NN modeling again outperform KRR and are no
longer the main bottleneck of ML model applications. For
instance, predicting 1000 energies with the trained NN model
takes a few minutes using 1 CPU, outperforming KRR by orders
of magnitudes, which requires days andmany CPUs for training
databases with more than 1k structures.

The Clusteromics I–V database combined into one ∼221k
large Clusterome database32 offers a playground for data
ltering/reduction. Fig. 11 demonstrates our ability to train the
NN model for signicantly larger training sizes than the KRR
model. Despite only performing one training for each training
Fig. 11 The learning curves for the KRR and NNmodels trained on separa
deviation over the Clusteromics I–V modelings. No error bars are ass
modeling on full Clusteromics are only extrapolated estimates based on

© 2024 The Author(s). Published by the Royal Society of Chemistry
set size, we see a smooth decrease in MAE down to ∼0.3 kcal
mol−1 for the 64k training dataset. Due to computational times,
we have added the 128k and full Clusteromics MAE only based
on the 100-epoch performance relative to the 64k database.
Surprisingly, the MAEs are not much worse than in the case of
separate Clusteromics modelings, likely due to the fact that the
accuracy of electronic binding energies is mainly driven by the
description of hydrogen bonds across all the Clusteromics
datasets.

Finally, we applied the database reduction/active learning
(AL) procedure presented by Smith et al.56 We took 0.25k data,
trained the NN model, and used the predictions on the full
Clusteromics database to identify the next potential candidates
for training. Here, we use the terms supervised AL, where we
obtain the errors by comparing the predicted DE value to the
true r2SCAN-3c value, and unsupervised AL, where we obtain the
errors as the standard deviation of the predicted DE values
between three NNmodels (also known as ‘query by committee’),
initiated with different RNG seeds. The worst performing 0.25k
data are added to the training set for the next iteration, where
the NN model is again fully trained from scratch. Fig. 11 shows
that the two methods (red and brown lines) are sensitive to the
choice of the rst 0.25k data but perform quite similarly aer
a few iterations. Unfortunately, they do not seem to perform
better than the random sampling (green line). We even tested
a random sampling of 0.25k data from the worst-performing
systems (e.g., with error threshold >1 kcal mol−1) and continued
training the NN model from the previous step (i.e., no training
from scratch) with no signicant differences. We believe the
database reduction will not signicantly reduce MAEs for
systems with similar chemical features. The driving mechanism
of cluster formation is hydrogen bonding. The more training
data, the more accurate the NN model. However, perhaps no
particular outliers introduce hard-to-model hydrogen bonds or
te/full Clusteromics I–V datasets. The error bars represent the standard
igned for the full Clusteromics modeling. The last two points of NN
100-epoch training.
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offer a signicantly greater improvement when introduced to
the training set. In SI-6,† we used KRR and tested the active
learning on a small database (0.25k). There, active learning
reduces the MAE by a factor of <1.5 compared to random
sampling. However, active learning even reduces the maximum
error by a factor of ∼2. Another option to test in the future
would be selecting the worst MAEs per atom.

To conclude, although active learning appears to offer only
a small MAE improvement for molecular clusters, it can help to
eliminate outliers.

4 Conclusion

We used several databases of quantum chemistry (QC) data for
typical atmospheric molecular clusters and showed that
machine learning could easily substitute the computationally
demanding QC calculations. Specically, we used the polariz-
able atom interaction neural network (PaiNN) to model the
cluster's binding energies, both with or without interatomic
forces. We show that hyperparameter variation (e.g., reducing
batch size) leads to faster converging NN training without
compromising accuracy. We demonstrate that NNs do not
outperform the accuracy of the KRR modeling by Kubečka
et al.,28 but the computational times for NNs are signicantly
lower. Similar to the case of KRR modeling, we nd that D-
learning improves the accuracy ∼4-fold. We use the energies
and interatomic forces to train NN models for sulfuric acid–
water clusters and sulfuric acid–ammonia clusters with quite
reliable performance compared to the trained QCmethods even
when tested on larger structures excluded from the training:
mean absolute errors of <0.26 kcal mol−1 for energies and <0.18
kcal mol−1 Å−1 for force components, and root mean squared
displacements of <0.34 kcal mol−1 and ∼0.30 kcal mol−1 Å−1,
respectively.

Furthermore, we show that these NN models will be very
useful for application in congurational samplings of larger
molecular clusters, as the atomic error contribution remains
constant with increasing cluster size. While single-point energy
evaluation at a high-level QC level for large clusters, with ten or
more molecules, takes hours and oen more than a day, the
same evaluation with NN is nearly instant (∼seconds). We
demonstrated this by comparing B97-3c and the NN model and
showed the model's ability to optimize geometries and repro-
duce the B97-3c close-to-equilibrium structures.

Finally, we tested database reduction methods employing
supervised and unsupervised active learning. The data reduc-
tion slightly improves the NN model performance for the same
data sizes compared to random selection. We speculate that this
could be caused by the fact that the driving mechanism of
cluster binding is hydrogen bonding, which gets better
described with more data, but there is no particular data that
would introduce hard-to-model hydrogen bonds. Nevertheless,
active learning appears to be a suitable tool for eliminating
outliers. Furthermore, we nd that the NN model trained only
on energy, using D-learning, is able to utilize signicantly more
data than our previous KRR model.32 While we again conrm
that KRR performs better for smaller sizes, NNs also can reach
1448 | Environ. Sci.: Adv., 2024, 3, 1438–1451
MAEs lower than chemical accuracy of 1 kcal mol−1, while
outperforming KRR with respect to the computational times
required for both training and predictions. We envision
utilizing NN models for a better understanding of cluster
dynamics. This includes cluster rigidity, reorganization aer
formation, reorganization before fragmentation, or even reac-
tions within the cluster or on its surface. Overall, we believe that
NN modeling will play a pivotal role in future studies of atmo-
spheric molecular clusters.
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32 Y. Knattrup, J. Kubečka, D. Ayoubi and J. Elm, Clusterome: A
Comprehensive Data Set of Atmospheric Molecular Clusters
for Machine Learning Applications, ACS Omega, 2023, 8,
25155–25164.
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