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Abstract
Solid-state nanopores represent a powerful platform for the detection and characterization of a 

broader scope of biomolecules and particles, including proteins, viruses, and nanoparticles, for 
clinical and biochemical applications. Typically, nanopores work by measuring transient pulses of 
the ionic current as translocation events of molecules passing through the pore. In view of the strong 
noise and stochastic fluctuation of ionic current recording in nanopore experiments, the signal 
processing based on the statistical analysis of massive translocation events remains a crucial issue 
for nanopore sensing. Based on parallel computational processing and efficient memory 
management, we have developed a novel signal processing procedure for translocation events to 
improve the signal identification performance of solid-state nanopores in the presence of baseline 
oscillation interference. Obviously, by means of an adaptive threshold in a sliding window, we can 
correct the baseline determination process in real time. As a result, the features of the translocation 
event signals can be identified more accurately, especially for the intermittent occurrence of high-
density complex signals, and the program also shows good signal differentiation. As a ready-to-use 
software, the data program is more efficient and compatible with diverse nanopore signals for more 
complex nanopore applications.
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INTRODUCTION

In recent years, nanopore sensing has been proposed for third-generation sequencing 
technologies and multiple screening applications in precision medicine1-3. Nanopores are inspired 
by the transmembrane transport within cells in biology as a fundamental process in life activities4, 

5 . As nanoscale pores embedded in biological or solid membranes6, 7, the delicate structures with 
high-precision detection capabilities have been applied to various fields, including the detection of 
nucleic acids8-10, proteins11-14, and nanoparticles15, 16. Conceptually, single analyte molecule passing 
through a nanoscale channel is measured by the instantaneous fluctuation of transmembrane ionic 
flow under the voltage and current recording with high-bandwidth sampling, which are involved the 
accumulated noise power at full frequency and unpredictably small-signal frequency response. 
Currently, the biological nanopores at fixed sizes are prevalently employed in sequencing due to the 
balance of the stable signal output and controlled noise amplitude17. Likewise, the solid-state 
nanopores with larger size range and customizable pore shapes are still subject to the signal 
acquisition and recognition with competitive noise performance, although they have been widely 
applied for enzymes18, 19, viruses20, nanoparticles21. Then, the current drift and unavoidable  
background noise are more frequent in solid-state nanopores, making it more challenging to 
recognize signals from solid-state nanopores22. Moreover, considering the transient and random of 
current events, the signal processing is based on the statistical analysis of a large number of 
nanopore events, hence, enhanced throughput and automate processes is required for the 
development of nanopore technology23. 

Over the decades of studies, some typical nanopore signal processing programs have been 
developed, such as AutoNanopore, Open Nanopore, Cavro Nanopore Sensing, Transalyzer, 
NanoAnalyzer, NanoPlex24, EventPro25 and so on23, 26-29. AutoNanopore and Open Nanopore 
employ adaptive threshold methods to detect low SNR events, but their performance may be limited 
in high-noise or temporally attenuating signal conditions. Cavro Nanopore Sensing and 
NanoAnalyzer offer high throughput and parallel analysis capabilities, yet they may struggle with 
noise interference in complex signal environments, especially under high salt concentrations. 
Transalyzer and MOSAIC have high resolution for signal precision, but may encounter challenges 
in event recognition accuracy when dealing with signal attenuation or significant noise effects. 
NanoPlex is characterized by good noise suppression and adaptability to low SNR events; however, 
its moderate flexibility limits its application in diverse experimental setups. EasyNanopore is known 
for its simplicity and low hardware requirements, but it faces challenges in handling baseline drift 

and complex signal environments. In contrast, our “Dynamic Correction Method ”  dynamically 

adjusts thresholds and corrects baselines in real-time, significantly improving the detection of low 
SNR and complex signals. Especially in solid-state nanopore applications, our method effectively 
mitigates noise and overcomes the limitations of traditional methods, enhancing signal detection 
accuracy and reliability. These methods mainly search outliers in the current traces to achieve the 
event recognition and information extraction of nanopore signals with the baseline and threshold 
algorithms. Obviously, the threshold needs to be selected by calculating and truncating the current 
signal changes according to the professional experience of the individual processing the data. And 
the fluctuation and drift of the baseline current over time is even more hard to determine a uniform 
global standard. On this basis, the emerging machine learning methods are used for nanopore signal 

Page 2 of 22Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/2
4/

20
25

 1
0:

23
:4

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4AN01384K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4an01384k


recognition and statistical analysis30-32. Generally, a set of machine learning-based algorithms 
including Hidden Markov models, fuzzy C-means, and Support Vector Machines can be efficiently 
to improve the recognition, feature extraction and cluster analysis of nanopore signals. Meanwhile, 
Neural network algorithm based on deep learning have been employed to continuously optimize the 
prediction results of signal processing33-35. However, these methods necessitate a specifically 
configured operational environment and training database, which may not be user-friendly for non-
professionals engaged in software development. 

To solve the massive signal processing, a configuration-free translocation event detection 
software named “Easynanopore” has been developed in our research group29. The method employs 
an adaptive thresholding approach based on low-frequency variance (utilizing local mean and local 
variance) to define the commencement and conclusion of an event. The Dynamic Correction 
Method is particularly effective in detecting low signal-to-noise ratio (SNR) events, which are often 
challenging to identify using traditional static threshold methods. By dynamically adjusting based 
on the characteristics of the signal, it is able to more accurately capture events that might be 
overlooked by fixed-threshold methods, especially in cases where noise or signal variations are 
subtle. Furthermore, when considering events that exhibit temporal attenuation or decay, the 
Dynamic Correction Method offers significant advantages. Temporal attenuation refers to the 
gradual decrease in signal amplitude over time, which can be an important characteristic of certain 
events, such as the translocation of larger molecules through nanopores. In such cases, the Dynamic 
Correction Method can more effectively track and detect events that experience a slow decay in 
signal, ensuring that these events are not missed. This capability is crucial for maintaining the 
accuracy and reliability of signal detection in experiments with complex signal profiles, such as 
those involving nanopores.

To better illustrate the strengths of the proposed method, we have compared its performance 
with that of several commonly used nanopore signal detection platforms. The following table 
summarizes key performance metrics, including sensitivity, accuracy, computational speed, and 
hardware requirements. This comparison highlights the advantages of the proposed method, 
particularly in terms of its efficiency and suitability for use with limited computational resources.

Table 1：Comparison of Signal Detection Methods

Platform Noise 

Managemen

t

Low 

SNR 

Event

Baseline 

Drift 

Handling

Flexibilit

y

High Salt 

Condition

s

Complex 

Signals

Hardware 

Requirement

s

AutoNanopor

e

Moderate Moderat

e

Moderat

e

Good Low Moderat

e

Good

NanoAnalyzer Good Moderat

e

Moderat

e

Low Moderate Good Moderate

Cavro 

Nanopore 

Sensing

Low Low Moderat

e

High Good Low Low

Kleiner Lab 

Software

Low Moderat

e

Moderat

e

Moderate Low Moderat

e

Moderate

EasyNanopore Moderate Moderat Moderat Good Moderate Moderat Moderate
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e e e

NanoPlex Good Good Moderat

e

Moderate Good Good Moderate

EventPro Good Moderat

e

Moderat

e

Good Good Moderat

e

Moderate

Dynamic 

Correction 

Method

Moderate Good Good Good Moderate Good Good

 
Additionally, a multi-threaded algorithm is employed to partition the file and adapt to low-end 

CPU configurations. The parallel computation method for file partitioning enhances the speed of 
event detection during the recognition process. However, the parameters of baseline and thresholds 
are determined based on the local mean variance of each point in this algorithm. As a cumulative 
calculation model, this model is undeniably accurate, whereas a similar error cumulative pattern 
will become more serious when baseline calculation deviation occurs. Especially for solid-state 
nanopores, where the signal output is more diverse and complex, and the baseline fluctuation 
situation is more drastic, persistent deviations tend to occur silently. This effect is especially 
pronounced in the case of dense signal fragments and mixed signal fragments. This is a principal 
factor contributing to the significant discrepancies and lack of reproducibility observed in the signal 
data obtained from solid-state nanopores.

Therefore, an improved signal processing program in our present study has been proposed 
based on a novel baseline and threshold correction computation model in real time during the 
document recognition process. This method integrates the determination of the threshold and 
baseline with the current recognition area of the signal, and corrective measures are implemented in 
accordance with the baseline conditions in the vicinity of individual signals, thereby effectively 
mitigating the impact of baseline fluctuations and dense signal areas. Furthermore, the conventional 
baseline scanning mode has been retained, allowing the user to select it freely according to the type 
of signal file in question. This effective corrective measure markedly enhances the identification 
and precision of solid-state nanopore signals, constituting a valuable contribution to the efficient 
and accurate classification and deployment of nanopore signals.

We refer to this signal processing program as the Dynamic Correction Method. Among various 
nanopore signal detection platforms, Dynamic Correction Method stands out with several unique 
advantages, especially in key aspects such as noise management, low signal-to-noise ratio (SNR) 
event detection, baseline drift handling, flexibility, high salt concentration adaptability, complex 
signal processing, and hardware requirements (Table 1). Compared to other platforms, Dynamic 
Correction Method offers significant benefits in these critical areas.

Firstly, in terms of noise management, Dynamic Correction Method effectively suppresses 
noise, ensuring the reliability of signals, particularly when the signal environment is complex or the 
noise level is high. While other platforms (such as AutoNanopore and NanoAnalyzer) also employ 
noise management techniques, these platforms often face challenges in environments with high salt 
concentrations or other complex factors, which can lead to misdetection or missed events in 
complicated signal backgrounds. In contrast, Dynamic Correction Method dynamically adjusts the 
threshold and baseline in real time, making it more resilient in noisy conditions and low-SNR 
environments.
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While EventPro and NanoPlex employ adaptive baseline options to mitigate baseline 
fluctuations, their reliance on global fitting or fixed time-window updates may lead to delayed 
baseline adaptation and misclassification of weak signals in low SNR environments. In contrast, our 
Dynamic Correction Method introduces event-driven baseline updates and dynamic threshold 
adjustments, allowing it to track rapid fluctuations more effectively and enhance the accuracy of 
signal detection even under severe noise conditions.

For low-SNR event detection, the Dynamic Correction Method demonstrates a clear advantage 
over traditional approaches that rely on fixed thresholds. By dynamically adjusting the threshold 
based on real-time signal variations, our method can accurately capture low-SNR events that might 
otherwise be overlooked. This is particularly crucial in cases where signal fluctuations are subtle, 
ensuring the precise identification of weak signals while minimizing false positives.

To comprehensively evaluate the performance of different methods under these conditions, we 
compared several common signal processing approaches. The table 2 presents the performance of 
NanoPlex, EasyNanopore, NanoAnalyzer, and Dynamic Correction Method in key metrics such as 
baseline noise, event detection rate, and signal integrity. Other methods were not included in the 
comparison mainly because their performance under low SNR conditions is either similar to that of 
the methods included in this study or due to resource and testing limitations. Additionally, we 
focused on methods optimized for solid-state pore signal characteristics, ensuring the relevance of 
the comparison results. This comparison highlights the advantages of the Dynamic Correction 
Method, particularly in terms of event detection rate and signal integrity, in complex signal 
environments.

Table 2: Comparison of Signal Processing Methods for Low SNR
Metric RMS Noise (pA) Peak Noise (pA) Event Detection 

Rate (%)

Signal Integrity (R)

NanoPlex 15.3±1.2 50.2±2.8 85.4±2.1 0.86±0.02

EasyNanopore 18.7±1.5 65.4±3.0 78.6±3.0 0.82±0.03

NanoAnalyzer 16.5±1.4 55.3±2.5 83.1±2.7 0.84±0.02

Dynamic 

Correction Method

12.8±1.0 40.5±2.3 92.8±1.5 0.91±0.01

In baseline drift handling, many platforms, such as AutoNanopore, use fixed baseline 
correction methods. While effective in some cases, these methods struggle when the signal exhibits 
significant fluctuations or complex baseline drift. Dynamic Correction Method, on the other hand, 
uses a dynamic baseline correction algorithm, which adjusts the baseline in real time based on the 
signal’s characteristics, effectively managing complex signal fluctuations and drift and avoiding 
misjudgments caused by baseline shifts in traditional methods.

When it comes to high salt concentration conditions, particularly during nanoparticle detection, 
Dynamic Correction Method excels. High salt concentrations often lead to aggregation of analytes, 
introducing noise and affecting experimental results. Compared to traditional methods, Dynamic 
Correction Method maintains high sensitivity even under high salt conditions, minimizing the 
impact of noise on the experimental outcome.

In complex signal processing, Dynamic Correction Method demonstrates strong flexibility, 
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capable of handling a wide variety of signal types and complex signal patterns. In comparison, some 
platforms, such as Kleiner Lab Software, perform well with single-type signals but may struggle 
with overlapping signals or complex backgrounds. Dynamic Correction Method, however, is able 
to maintain stable performance under various complex signal conditions, ensuring accurate 
recognition of all target signals.

Finally, Dynamic Correction Method requires low hardware specifications. In contrast to other 
platforms, such as Cavro Nanopore Sensing, which typically require higher-end equipment, 
Dynamic Correction Method runs efficiently on low-end devices, reducing the experimental costs 
and technical barriers, making it suitable for a wider range of laboratory environments.

In summary, Dynamic Correction Method outperforms existing platforms in several areas, 
including noise management, low-SNR event detection, baseline drift handling, complex signal 
processing, high salt concentration adaptability, and hardware requirements. It demonstrates unique 
advantages, particularly in noisy environments and complex experimental conditions, ensuring high 
signal recognition accuracy and stability.

EXPERIMENT SECTIONS

Nanopore experiment
Nanoscale channels were created on typical SiNx membranes via piercing the nanopores with 

an electron beam. Chips were prepared and cleaned in a piranha solution (concentrated sulfuric acid 
with hydrogen peroxide in a volume ratio of 3:1) at 80°C for 30 minutes to enhance their surface 
hydrophilicity. The nanopore chips were firmly sealed with rubber pads and assembled into 
polydimethylsiloxane (PDMS) microfluidic channels.

 The gold nanoparticles used in the experiment were obtained by the reduction reaction of 
sodium citrate with chloroauric acid. The polymerases used in the experiments were ordered from 
Sangon Biotech (Shanghai) Co. For nanopore sensing, silver chloride electrodes with bias voltages 
were placed on both sides of the device, and analogue current signals captured using the Axopatch 
200B patch clamp (Molecular Devices, Inc. Sunnyvale, CA), filtered with a low-pass Bessel filter 
with a corner frequency of 10 kHz (To effectively suppress noise and preserve the signal, we chose 
a 10 kHz low-pass filter. This filter is suitable for both the polymerase and gold nanoparticle signals, 
effectively removing high-frequency noise while retaining key signal features.Since the nanopores 
are fabricated through dielectric breakdown, which can result in higher noise levels compared to 
other fabrication methods, the 10 kHz low-pass filter is employed to reduce baseline noise and 
minimize the interference of high-frequency noise, thereby improving the efficiency of signal 
extraction while maintaining the integrity of the signal characteristics.), and then digitized with a 
Digidata 1550B converter at a sampling frequency of 100 kHz. The translocation of analytes across 
the nanopore was primarily driven by an applied transmembrane voltage, which generates an 
electric field that induces the movement of charged particles through the pore.Data were recorded 
by using the PClamp software.
Conductance Calculation

To offer a more comprehensive analysis, we utilized a composite model that takes both bulk 
conductance and double-layer conductance into account. The model allows us to consider both the 
ionic conductivity of the bulk solution and the contribution of the electric double layer near the pore 
surface, offering a more thorough understanding of the total conductance.

The bulk conductance Gbulk primarily comes from the ion concentration and ion mobility in the 
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solution, σbulk is the conductivity of the solution in S/m (4.2 S/m for 1M LiCl); r is the radius of the 
pore in meters (25 nm); L is the length of the nanopore in meters (30 nm). The formula is:

G𝑏𝑢𝑙𝑘 = σ𝑏𝑢𝑙𝑘 ⋅
𝜋𝑟2

𝐿
The double layer conductance GDL is related to the charge distribution and interaction between 

the surface of the nanopore and the electrolyte solution, σDL is the conductivity of the double layer, 
typically dependent on surface charge density, ion type, and solution conditions; LDL is the effective 
thickness of the double layer, which for a 1M LiCl solution is around 0.77 nm. It is calculated as:

G𝐷𝐿 = σ𝐷𝐿 ⋅
𝜋𝑟2

𝐿𝐷𝐿

After calculating both contributions, we found that the bulk conductance is significantly larger 

than the double-layer conductance. The bulk conductance, calculated as 2.6×10−8S, is the dominant 

factor in determining the total conductance of the nanopore. While the double-layer conductance 

does play a role, its contribution is comparatively smaller, with a calculated value of 4.16×10−11 S.

G𝑡𝑜𝑡𝑎𝑙 ≈ G𝑏𝑢𝑙𝑘 + G𝐷𝐿=σ𝑏𝑢𝑙𝑘 ⋅ 𝜋𝑟2

𝐿 + σ𝐷𝐿 ⋅ 𝜋𝑟2

𝐿𝐷𝐿

By considering both factors in our model, we gained a more complete picture of the overall 
conductance, confirming that the primary influence comes from the bulk ionic conductivity, while 
the effect of the double layer is minimal, particularly at high salt concentrations such as 1M LiCl. 
This comprehensive approach ensures that the model used in our analysis is more robust and 
accurate in predicting the total conductance of the system.
Signal file acquisition suggestions

The resolution of the signal files has a certain impact on data extraction performance, and this 
limitation primarily arises from the combination of sampling rate and filter settings. While these 
settings optimize noise suppression and signal clarity, they limit the resolution required for ultra-
fast event detection. The following strategies can be employed to improve temporal resolution and 
capture faster translocation events:

Appropriate Voltage: By reducing the voltage applied across the nanopore, the speed of 
molecules passing through the pore can be slowed, thereby increasing the duration of the events. 
This allows more complete signal features to be captured at higher temporal resolution.

Nanopore Modification: Modifying the nanopore surface can further adjust the interaction 
between molecules and the nanopore, controlling the speed at which molecules pass through. 
Appropriate modifications help slow down the molecules’ flow, enabling translocation events to be 
captured and analyzed at higher temporal resolution.

Optimizing acquisition parameters: By adjusting filter cutoff frequencies and increasing the 
sampling rate, we can improve temporal resolution while maintaining an acceptable signal-to-noise 
ratio. This will enhance the detection of fast translocation events.

These optimization strategies can improve the detection of fast translocation events, providing 
more complete and reliable raw data for the signal extraction algorithm, thereby enhancing the 
accuracy and effectiveness of the algorithm.
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Program coding
Qt designer platform was used to design the visual interface of the software, Python was used 

to develop the back-end function of the software, and the key libraries used by the software included 
pyabf, pyqt5, matplotlib, etc.

RESULTS AND DISCUSSION

Signal model and program algorithm
In this paper, the many aspects of nanopore data analysis has been described in our nanopore 

signal model. During the recognition of the signal, the event detection thresholds (start and end 
thresholds determine the start and end points of the event, respectively) are determined based on the 
magnitude of the change in the current pulse with respect to the baseline; in other words, the 
accuracy of the value of the baseline determines the outcome of the nanopore signal recognition. To 
identify the translocation event, the signal recording is segmented in slidable windows, and the local 
mean and local variance for each window are computed as a means of dynamically assessing 
baseline drift and determining the event detection threshold. Thus, a nonlinear threshold curve is 
generated according to the statistical characteristics of the signal in the window, which can flexibly 
adapt to the dynamic changes of the signal. Especially in the case of large fluctuations of baseline 
current and mass dense pulse signals. Consequently, the baseline and threshold in real time can be 
dynamically corrected to resist the disturbance effect to improve the accuracy of event detection. 
The procedure is split into a series of successive stages, with each stage utilizing parameters 
determined in the previous stage, as shown in Figure 1.

Figure 1. The flow chart of Dynamic correction method.

Step 1: Window Initialization. First, three concepts are clarified. Window size (W) refers to the 
number of sample points considered at one time when processing the signal. Sampling frequency 
(f) refers to the number of sample points collected per second in Hz, and the sampling frequency 
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determines the time resolution of the signals. Time (t) is the actual time covered by the window, 
which can be calculated from the window size and sampling frequency. The mathematical 
relationship between the three parameters is expressed as:

 𝑡 =
𝑊
𝑓  (1)

Next steps are to set the appropriate window size (W), step size (S) and buffer size (B) and scan 
the entire signal file by sliding the window. During each movement of batch windows, the data 
within the window and (the contextual components in the front and rear areas) the buffer before and 
after it are further adjusted and processed based on cascade feedback. Set the signal as x and the 
length as N, then a sliding window function f(k) can be defined with k denoting the index of the 
window and i denoting the signal point index as follows.

𝑓(𝑘) =  {𝑥[𝑖] | (𝑘 ― 1)𝑆 <=  𝑖 <  𝑘𝑆 +  𝑊}, 𝑓𝑜𝑟 𝑘 = 1,2,...,𝑁/𝑆 (2)
For each index k, the sliding window function f(k) returns a collection of consecutive data 

points of number W that are signals x from position (k-1) S to kS+V-1. This formula assumes that 
the step size S is less than or equal to the window size W, ensuring the overlap between the windows. 
If the step size S is greater than the window size W, there will be no overlap between the testing 
windows. This formula also assumes that the signal length N is an integer multiple of the step size 
S, which ensures that the last data point of the signal is exactly at the end of a window. If the signal 
length N is not an integer multiple of the step size S, then the last window may contain fewer data 
points, or the signal may need to be filled or truncated accordingly. The window is then scrolled 
through the entire signal according to the selected step size. After each sweep, the working data 
within the window and the connected data near to the windows are ready for next processing.

Step 2: Preliminary Threshold Initialization. The mean variance within the window is the primary 
part of calculating the preliminary threshold. Here a first-order digital low-pass filter is used to 
calculate the local mean and variance at each point of the original signal with the following formula.

𝑚𝑙(0) = 1
𝑁∑𝑁―1

𝑖=0 𝑆𝑟𝑎𝑤(𝑖) (3)

𝑚𝑙(𝑖) = 𝛼 ∗ 𝑚𝑙(𝑖 ― 1) + (1 ― 𝛼)𝑆𝑟𝑎𝑤(𝑖),𝑖 = 1,2,... (4)

𝑣𝑙(0) = 1
𝑁∑𝑁―1

𝑖=0 [𝑆𝑟𝑎𝑤(𝑖) ― 𝑚𝑙(0)]2 (5)

𝑣𝑙(𝑖) = 𝛼 ∗ 𝑣𝑙(𝑖 ― 1) + (1 ― 𝛼)[𝑆𝑟𝑎𝑤(𝑖) ― 𝑚𝑙(𝑖)]2,𝑖 = 1,2,... (6)

𝑇𝑢𝑠(𝑖) = 𝑚𝑙(𝑖) + 𝛽𝑠 ∗ 𝑣𝑙(𝑖) (7)

𝑇𝑑𝑠(𝑖) = 𝑚𝑙(𝑖) ― 𝛽𝑠 ∗ 𝑣𝑙(𝑖) (8)

Here 𝑆𝑟𝑎𝑤(𝑖) is the i-th point of the original signal. ( )ml i and ( )vl i are the local mean and local 

variance of the original signal at the i-th point, respectively. ( )usT i and ( )dsT i are the global mean 

and the global variance of the original signal, respectively, and α are the coefficients of the filter. 
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( )usT i and ( )dsT i represent the start thresholds for amplitude increase and decrease, respectively. 

The parameter sb is used to calculate a preliminary threshold for event detection by setting a 

distance between a signal point and the local mean (baseline level), where the value of this distance 
is s times the local standard deviation, and signal data with current fluctuations greater than this 
distance are filtered. the larger the value of s, the higher the preliminary threshold for event detection 
and the less sensitive the algorithm is to the event.

Step 3: Data Filtering. Filter out some points that are significantly below the current threshold. The 
filtering action of signals will traverse the entire window and the new thresholds derived from step 
2 are constantly set depending on the correction process. If the sudden-change of the current data 
are more than the specified threshold, an event is considered to be identified and the starting points 
are recorded in a list.

Step 4: Event Detection Threshold Correction. The Dynamic correction method (Figure 2a) 
calculates the mean and variance within a localized window and obtains a baseline (red dashed line) 
and an event detection threshold (blue dashed line). A user-configurable yellow pane is displayed 
within the signal file. Upon the detection of a recordable event, the window initiates a baseline 
correction. This involves replacing the mean and variance values within the baseline calculation for 
the specified area with the mean and variance values at a number of points located prior to and 
subsequent to the event's start and end points. The number of points included in this replacement is 
also adjustable. This dynamic adjustment process brings the event detection thresholds of the pane-
formatted file closer to the baseline, thereby ensuring greater accuracy in the values of each feature 
of each recorded event. Concurrently, this process is tantamount to circumventing the interference 
occasioned by the fluctuating current of the event in question with each instance of its 
documentation, thus ensuring that the event detection threshold remains unimpaired. In contrast, the 
baseline scanning method illustrated in Figure 2(b). As events are detected, the cumulative changes 
in the mean and variance of the entire window can shift the event detection threshold, which may 
affect signal recognition accuracy. This shift can lead to small signals being masked or the 
characteristics of detected signals becoming inaccurate. In contrast, the Dynamic Correction Method 
dynamically adjusts the threshold in real time, mitigating the impact of such shifts. By localizing 
the threshold change curve, this method better fits the local signal characteristics, enhancing 
detection sensitivity. Additionally, it allows for more precise extraction of event features, such as 
duration and amplitude, improving the accuracy and reliability of signal detection, especially in 
complex or low signal-to-noise ratio environments.
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Figure 2: The identification of transition events by different methods. (a) Dynamic correction method; (b) Baseline 

scanning method.

Step 5: Event identification. As above, the end threshold will be determined based on the local mean 
and local variance to detect the events in the current traces. While the data between the start and the 
end of the events are checked back and forth according to the upward and downward threshold to 
reaches its optimal results. The formula for the event end threshold is shown as below.

( ) ( ) * ( )ud eT i ml i vl ib= +   (9)

( ) ( ) * ( )de eT i ml i vl ib= -   (10)

( )udT i  and ( )deT i  represent the thresholds with upward and downward amplitude for 

independent event recognition, respectively. eb  is a parameter used to compute the end threshold. 

It controls the distance between the end threshold and the local mean, which is e times the local 
standard deviation. The larger the value of e, the lower the end threshold, and the more stringent the 
algorithm is in determining the end of the event. By adjusting the values of s and e, it is possible to 
regulate the sensitivity of the algorithm to events, as well as its requirement for the duration of 
events. The application of larger values of s will result in a reduction of the number of events that 
are identified, although this may result in the omission of some true events. Conversely, the 
application of larger values of e will increase the duration of events, yet this may result in the 
misclassification of certain noise as part of the event. In practice, the values of s and e should be set 
according to the specific characteristics of the signal and the requirements of the application in order 
to achieve the optimal results in event detection.

Step 6: Screening of Events. The detected events are subjected to screening according to preset 
conditions with the objective of eliminating possible false positives. 
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Step 7: Feature extraction. Save the current event information and calculate its features. Output the 
relevant information of the filtered events into the result array.

Step 8: Slide the window to subsequent data processing. Perform the detection of the translocation 
event in the next window.

Event characterization for nanopore sensing for polymerase
In order to assess the efficacy of the Dynamic correction method, we conducted experiments 

using polymerase as the target for detection. The concentration of polymerase used was 50 µM, and 
the experiments were performed on solid-state nanopores with a pore size of 25 nm and an applied 
voltage of 400 mV. The nanopore blockage current signal of these experiments are presented in 
Figure 3 a.

To evaluate the improvement brought about by our algorithm, we analyzed the signal 

distributions by applying the Dynamic correction method(counts ： 865)and Baseline scanning 

method(counts：841).The signal amplitude and width distributions were fitted using a Gaussian 

function model, and the fitted curves are depicted as dashed lines in the Figure 3. The goodness of 
fit was assessed using the R-Square values, which were found to be 0.827, 0.877, 0.905, and 0.988 
for Figures 3 b-e, respectively. Our analysis revealed that the time of the signals in relation to the 
bar graph of the blockage current of the half-peak width became narrower after applying the 
improved algorithm. This indicates that the data became more concentrated. Additionally, the fitted 
peaks in Figures 3 b-e were determined to be 0.135ms, 0.161ms, 8991.4pA, and 9003.2pA, 
respectively. The consistency of these peaks suggests that our algorithm optimizes the identification 
process while maintaining the accuracy of the data. Figure 3f compares the signal data obtained 
using Dynamic correction method(red) with the data obtained using Baseline scanning method 
(black). The data points derived from our algorithm are concentrated in the center region, which is 
crucial for the classification of solid-state nanopore signals. This observation suggests that we can 
obtain various features of the sample using a smaller sample size. Overall, our findings demonstrate 
the effectiveness of our algorithm in improving the analysis of solid-state nanopore signals.
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Figure 3. Enhancement of data accuracy after using the Dynamic correction method and Baseline scanning method. 

(a)The nanopore blockage current signal graph of polymerase. (b) Duration distribution of the nanopore signal by 

Baseline scanning method; (c)Blockage current distribution of the nanopore signal by Baseline scanning method; 

(d) Duration distribution of the nanopore signal by Dynamic correction method; (e) Blockage current distribution of 

the nanopore signal by Dynamic correction method; (f) Scatter plot of the signals by two methods.

Dynamic correction method for classification of signals from gold nanoparticles
Due to the limitations of the micro- and nanofabrication process, the baseline current of solid-

state nanopores often fluctuates to a large extent, which can affect the accuracy of signal recognition. 
At the same time, the extent of such fluctuations is also related to the substance to be measured. For 

Page 13 of 22 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/2
4/

20
25

 1
0:

23
:4

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4AN01384K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4an01384k


example, proteins are more likely to cause baseline fluctuations compared to DNA, and the larger 
the spatial volume of the substance, the more likely it is to form a collision process during the pore 
entry process, thus causing baseline fluctuations. The more rigid metal nanoparticles are more likely 
to cause irregular oscillations of the nanopore baseline currents because they tend to form clusters 
in the salt solution. As shown in Figure 4(a), we detected two kinds of gold nanoparticles with 
particle sizes of 10 nm versus 15 nm (both with a concentration of 20 nM) using a solid nanopore 
with a pore size of 20 nm, and the mixed samples of metal particles made the nanopore baseline 
fluctuation very unstable.In this study, the term "ionic current fluctuations" refers to variations in 
the ionic current signal caused by multiple factors. These fluctuations can be classified into two 
types: slow fluctuations and fast fluctuations. Slow fluctuations primarily arise from 
electrochemical reactions occurring near the nanopore orifice, leading to gradual changes in the 
baseline current. In contrast, fast fluctuations are typically caused by the dynamic oscillatory 
motions of particles at the nanopore orifice, resulting in rapid and short-lived changes in the ionic 
current. Notably, the nanopore chips used in this study were fabricated using a dielectric breakdown 
method, which differs from traditional approaches involving high-energy electron or ion beam 
drilling. This method offers advantages such as low cost and rapid pore formation. The process 
involves initially creating a small pore via breakdown and then gradually enlarging it, resulting in a 
more loosely configured pore structure. This structural characteristic makes ionic current 
fluctuations, particularly those caused by particle motion, more likely to occur. Figure 4(b) shows 
the signal counting using Baseline scanning method to count the signals, and the number of signals 
for the two kinds of particles is 128(red) and 405(green), respectively, and Figure 4(c) shows the 
signal counting graph after using Dynamic correction method, and the number of signals for the two 
kinds of particles is elevated to 418 (red) and 691 (green), respectively, and it can be clearly seen 
from the graphs that, at the same time of elevating the number of signals recognized, the aggregation 
and distribution of signals are basically have not changed significantly. In particular, it should be 
noted that the concentration of 10nm and 15nm gold nanoparticles is 20nM, and theoretically the 
capture probability of the two is not much different, but the capture frequency ratio under the 
Baseline scanning method is only 31% (128/405). This means that baseline fluctuations and signal 
complexity will affect the acquisition of small signals. However, when we use the Dynamic 
correction method to process the same batch of files, the capture frequency ratio increases to 60% 
(418/691), which reflects the improvement of threshold adjustment for complex sample signal 
acquisition, especially when the baseline fluctuation is obvious.
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Figure 4. (a) Signal recognition of nanopore signals at fluctuating baseline (test sample is a mixture of 10nm and 

15nm gold nanoparticles); (b) Distribution of nanopore signals detected by Baseline scanning method; (c) 

Distribution of nanopore signals detected by Dynamic correction method.

We have counted the signal distributions obtained by the Baseline scanning method and 
Dynamic correction method, and the results are shown in Figure 5, where (a)(b) shows the 
distribution of blocking current versus pore time for 10 nm gold nanoparticles, and (c)(d) shows the 
distribution of blocking current versus pore time for 15 nm gold nanoparticles. The most significant 
difference is 0.041 ms in Figure 5(b) (1.028 ms and 1.069 ms for the Baseline scanning method and 
Dynamic correction method, respectively), while the difference in blocking current is much smaller, 
with 86.45 pA and 53.70 pA for 10 nm and 15 nm gold nanoparticles, respectively. This 
demonstrates that Dynamic correction method can significantly improve the signal recognition rate 
while maintaining the signal characteristics, especially for smaller current signals that are missed 
due to baseline fluctuations.
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Figure 5：Signal distributions obtained by Baseline scanning method and Dynamic correction method, (a)(b) for 

current versus transit time for 10 nm gold nanoparticles, (c)(d) for current versus transit time for 15 nm gold 

nanoparticles.

CONCLUSION

Overall, we developed a software program to perform baseline correction in real time using 
Dynamic correction method, overcoming the interference of baseline fluctuations of solid-state 
nanopores and solving the problem of difficult detection of small and medium signals in signal-
dense regions. This improves the acquisition rate and accuracy of nanopore signals. The data 
obtained from biomolecules, including enzymes and nanoparticles, after the application of our 
dynamic correction method to solid-state nanopores demonstrates effective signal recognition. This 
study encompasses a range of topics related to biochemical experiments, signal processing, and data 
analysis. Furthermore, it offers valuable insights into solid-state nanopore signal research by 
employing the technique of dynamic correction of event detection thresholds to address the current 
challenges in solid-state nanopore signal analysis.

ASSOCIATED CONTENT

The clients for Windows, Linux, and MacOS operation systems are available and can be 
downloaded from https://github.com/eventdetector/Event-Detector. 
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The clients for Windows, Linux, and MacOS operation systems are available and can be 
downloaded from https://github.com/sujinmeng/Event-Detector. 

The source code can be downloaded from https://github.com/sujinmeng/Event-Detector-Code.
All data included in this article is available from the authors on request.
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