An electrochemical bio-electronic tongue based on borophene/PPy@ITO hybrid for selective caffeine identification

Abstract

Caffeine is a natural stimulant found in various plants. Some individuals are particularly sensitive to caffeine and may experience adverse effects even with minimal intake. In order to address the potential health risks associated with high caffeine use, it is imperative to establish a precise, straightforward, efficient, and cost-efficient approach for measuring caffeine levels in regularly consumed items. This article explores electrochemical techniques for monitoring bitterness induced by caffeine. The fabricated bio-electronic tongue (Bio-ET) comprised a modified electrode made of borophene/PPy@ITO, created by electropolymerizing polypyrrole (PPy) onto indium tin oxide (ITO) and subsequently decorating it with borophene sheets. Cyclic voltammetry (CV) was used to investigate the electrochemical characteristics of caffeine on borophene/PPy@ITO. The findings revealed that the Bio-ET exhibited strong electro-oxidation and reduction activity towards caffeine, indicated by the presence of distinct redox peaks. The Bio-ET demonstrated a linear range from 0.5 to 700 μM with a limit of detection (LOD) of 0.177 μM. The Bio-ET electrode was successfully employed for caffeine quantification in real samples, including coffee, black tea, and regular tea, yielding excellent electrocatalytic performance. Furthermore, the potential of the Bio-ET system could lead to the development of portable, user-friendly devices for on-site analysis, facilitating rapid testing in various settings, such as beverages and pharmaceuticals, and presenting a promising direction for both research and commercial applications.

Graphical abstract: An electrochemical bio-electronic tongue based on borophene/PPy@ITO hybrid for selective caffeine identification

Supplementary files

Article information

Article type
Paper
Submitted
17 Dec 2024
Accepted
27 Jan 2025
First published
07 Feb 2025

Analyst, 2025, Advance Article

An electrochemical bio-electronic tongue based on borophene/PPy@ITO hybrid for selective caffeine identification

S. Ahmed, A. Ansari, B. De, S. Mukherjee, D. S. Negi and P. Ranjan, Analyst, 2025, Advance Article , DOI: 10.1039/D4AN01547A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements