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Decoding allosteric landscapes: computational
methodologies for enzyme modulation
and drug discovery
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Allosteric regulation is a fundamental mechanism in enzyme function, enabling dynamic modulation

of activity through ligand binding at sites distal to the active site. Allosteric modulators have gained

significant attention due to their unique advantages, including enhanced specificity, reduced off-target

effects, and the potential for synergistic interaction with orthosteric agents. However, the inherent

complexity of allosteric mechanisms has posed challenges to the systematic discovery and design of

allosteric modulators. This review discusses recent advancements in computational methodologies for

identifying and characterizing allosteric sites in enzymes, emphasizing techniques such as molecular

dynamics (MD) simulations, enhanced sampling methods, normal mode analysis (NMA), evolutionary

conservation analysis, and machine learning (ML) approaches. Advanced tools like PASSer, AlloReverse,

and AlphaFold have further enhanced the understanding of allosteric mechanisms and facilitated the

design of selective allosteric modulators. Case studies on enzymes such as Sirtuin 6 (SIRT6) and MAPK/

ERK kinase (MEK) demonstrate the practical applications of these approaches in drug discovery. By

integrating computational predictions with experimental validation, this review highlights the

transformative potential of computational strategies in advancing allosteric drug discovery, offering

innovative opportunities to regulate enzyme activity for therapeutic benefits.

1. Introduction

Allosteric regulation is a pivotal mechanism through which
cellular systems integrate external signals and fine-tune bio-
logical processes, enabling the dynamic modulation of meta-
bolic pathways in response to environmental changes.1 Jacob
and Monod first discovered that allosteric effectors attach to
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specific sites on proteins, distinct from the active site, thus
modifying their functional properties.2 Such regulation is con-
sistent with established models like cooperativity and induced
fit, where the binding of an effector leads to conformational
changes or adjustments in protein dynamics, often without
significant structural alterations. Allosteric regulation can be
classified into K-type, which affects ligand-binding affinity, and
V-type, which alters the catalytic rate of enzyme. This form of
regulation is critical for maintaining cellular homeostasis and
coordinating complex biological functions.1

Allosteric drugs present distinct advantages over traditional
orthosteric drugs, including enhanced specificity and reduced
adverse effects. By targeting allosteric sites—typically less con-
served across protein families—these drugs allow for selective
modulation of specific protein subtypes, offering greater preci-
sion in therapeutic interventions. Allosteric regulation, which
modulates enzyme activity through conformational changes
induced by effector binding at non-active sites, is central to
this process (Fig. 1). Additionally, allosteric modulators can act
synergistically with orthosteric agents to enhance treatment
efficacy, as demonstrated by the combination of GNF-2 and

imatinib in the treatment of chronic myelogenous leukemia.3

This selective and complementary action underscores the growing
appeal of allosteric drugs in contemporary drug development.4

2. Computational approaches for
allosteric site identification
2.1 Dynamic and collective motion analysis for allosteric site
detection

2.1.1 Molecular dynamics simulations: unveiling dynamic
allosteric mechanisms. Molecular dynamics (MD) simulations
serve as a powerful computational tool widely employed to
investigate the dynamic behavior of biomolecules, including
proteins and nucleic acids, at the atomic level.5 Based on
Newton’s law, MD simulations compute interatomic forces

Fig. 1 Allosteric regulation in enzymes. The substrate (green) interacts
with the active site of the enzyme, while an allosteric modulator (orange)
binds to a separate allosteric site (indicated by the red star). This binding
event induces conformational changes that modulate the catalytic activity
of the enzyme, either enhancing or inhibiting substrate affinity and thereby
regulating overall enzymatic function.
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and track atomic movements, thereby providing detailed insights
into conformational changes and molecular dynamics.5 Typically,
MD simulations commence with experimentally determined three-
dimensional structures, followed by energy minimization and
equilibration to approximate physiological conditions. The
strength of MD simulations lies in their ability to reveal conforma-
tional changes over various timescales, providing dynamic infor-
mation that is difficult to obtain through traditional experimental
methods, especially in the context of enzyme allosteric regulation.

Allosteric regulation refers to the process of modulating
enzyme activity through conformational changes, often invol-
ving dynamic adjustments in key intermolecular interactions.
Since these transitions occur on sub-nanosecond to millise-
cond timescales, they are challenging to observe directly using
traditional experimental techniques. MD simulations, however,
provide high temporal resolution, enabling the characterization
of regulatory mechanisms. By tracking enzyme conformational
changes and internal molecular dynamics, MD simulations facili-
tate the identification of allosteric sites that govern enzyme activity
and signal transduction—information that is often difficult to
obtain from static structural analyses alone.6

In the study of enzyme allosteric regulation, MD simulations
have proven particularly effective in identifying cryptic allo-
steric sites. For instance, in research on branched-chain a-keto-
acid dehydrogenase kinase (BCKDK), static X-ray crystallography
failed to reveal certain allosteric sites, whereas MD simulations
successfully captured their conformational changes.7 By integrat-
ing MDpocket algorithms with statistical coupling analysis (SCA)
and druggability scoring, researchers further mapped potential
druggable allosteric sites.7 Similarly, in the study of thrombin,
S. Bowerman et al. employed MD simulations to analyze the
conformational impact of the antagonist hirugen, uncovering
cryptic allosteric sites and delineating the underlying dynamic
pathways.8 Furthermore, Moroni et al. utilized MD simulations
to investigate the allosteric regulation of mitochondrial Hsp90
(Trap1), revealing that its asymmetric structure plays a critical
role in modulating molecular chaperone activity.9 Their findings
demonstrated how environmental factors induce conformational
changes in Trap1, influencing its function, particularly in cancer
cells that rely on Trap1 for survival—thus providing a rationale for
developing Trap1-targeted therapeutics.

MD simulations have also been instrumental in elucidating
the allosteric regulation of membrane-associated proteins. In the
study of K-Ras4B, researchers employed MD simulations in con-
junction with other computational techniques to investigate its
allosteric mechanisms in the membrane-bound state, identifying
key sites that regulate GTP-binding activity and interactions with
downstream effectors.10 Moreover, MD simulations have been
applied to various allosterically regulated enzymes, such as LFA-1,
p38-a, GR, and MAT2A, revealing crucial dynamic changes
that are often overlooked by conventional static experimental
methods.6 These studies not only enhance our understanding of
enzyme function but also provide critical computational insights
for structure-based drug design targeting allosteric regulation.

In summary, MD simulations have emerged as a powerful
approach for investigating enzyme allosteric regulation,

offering dynamic insights beyond the limitations of static struc-
tural analyses. As computational power continues to advance
and algorithms become more sophisticated, MD simulations
will play an increasingly pivotal role in molecular biology and
drug discovery, providing essential insights into biomolecular
function and the identification of novel therapeutic targets.

2.1.1.1 Enhanced sampling techniques: accelerating the explora-
tion of allosteric sites. MD simulations, when integrated with
enhanced sampling techniques and advanced energy analysis,
are essential for accurately identifying and characterizing allos-
teric sites in enzymes.11–13 These approaches help overcome the
limitations of traditional MD simulations, which may fail to
capture rare conformational events critical to allosteric regula-
tion. Enhanced sampling techniques, such as metadynamics and
umbrella sampling, accelerate the exploration of conformational
space by surpassing energy barriers, thereby revealing hidden
allosteric sites that remain inaccessible through conventional
MD alone. Collective variable (CV)-based approaches, such as
metadynamics (MetaD) and umbrella sampling, are widely
employed because they facilitate the exploration of conforma-
tional spaces by overcoming energy barriers that can obscure the
detection of rare conformational events linked to allosteric
regulation. MetaD introduces bias potentials to accelerate sam-
pling along specific CVs, such as those involved in allosteric
transitions or effector binding events. By applying a time-
dependent bias to the CV space, MetaD enables the system to
escape local energy minima, thereby facilitating the reconstruc-
tion of the free energy surface and revealing new conformational
states where potential allosteric sites may emerge. Variational
Enhanced Sampling (VES) further refines this approach by opti-
mizing a function to determine the optimal bias potential,
promoting more efficient exploration of the free energy landscape
and aiding in the identification of cryptic allosteric sites.11

Umbrella sampling, another CV-based method, introduces har-
monic potentials to guide sampling toward regions where allo-
steric sites are likely to form.14 By dividing the conformational
space into windows along a selected CV, umbrella sampling
overcomes energy barriers and facilitates the convergence of free
energy calculations, thereby uncovering hidden conformations
and transition states associated with allosteric regulation.

When the identification of suitable CVs is challenging,
accelerated MD (aMD), replica exchange MD (REMD), and
Steered MD (SMD) become invaluable. The aMD modifies the
potential energy surface by introducing a boost potential,
allowing the system to cross high energy barriers and explore
a broader conformational space.15 This approach can capture
millisecond-timescale events within hundreds of nanoseconds
of simulation, effectively revealing transient allosteric pockets
that would otherwise remain inaccessible. REMD involves
simulating multiple replicas of the enzyme at different tem-
peratures, with periodic exchanges between replicas to facil-
itate conformational transitions.16 This multiscale sampling
technique enables the system to overcome energy barriers and
explore a wider range of conformational states, aiding in the
discovery of allosteric sites hidden in high-energy conformations
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and providing deeper insights into the functional dynamics of
enzymes. SMD offers a complementary approach by applying an
external force to the system along a predefined pathway, often
by ‘‘pulling’’ specific atoms or molecules through the conforma-
tional space.17 Inspired by experimental techniques such as
atomic force microscopy, SMD drives the system from one state
to another, exploring transitions that may reveal hidden allosteric
sites or provide insight into the pathways leading to allosteric
regulation.18 By applying an external bias potential, SMD probes
the free energy landscape and identifies key regions associated
with allosteric transitions, offering a detailed mechanistic under-
standing of enzyme dynamics.19

Beyond CV-based methods, non-Boltzmann sampling tech-
niques such as multicanonical sampling, entropy sampling,
and Wang–Landau sampling adjust sampling probabilities to
uniformly explore the energy landscape of enzymes without
requiring prior knowledge of allosteric transitions.20–22 Through
the use of these methods, it is possible to enhance the detection
of rare conformations by reweighting the exploration of system
conformational space. The Wang–Landau sampling, in particular,
constructs iterative estimates of the density of states, enabling a
more uniform sampling process and thereby uncovering elusive
allosteric sites.23 Free energy calculations play a pivotal role
in elucidating the thermodynamics underlying allosteric site
formation, offering critical insights into the stability and
feasibility of these sites for drug targeting.24 Methods such as
thermodynamic perturbation, thermodynamic integration, and
non-equilibrium approaches provide insights into the stability
and feasibility of these sites.25 By calculating changes in energy
between different conformations, thermodynamic perturbation
estimates differences in free energy. Alternatively, thermo-
dynamic integration gradually alters the system state variables
to compute changes in free energy along pathways that may
involve the opening or closing of allosteric sites.26 Non-
equilibrium methods, such as the Jarzynski equality, estimate
equilibrium free energy differences by analyzing work distri-
butions from non-equilibrium processes, offering a detailed
view of the energetic landscape associated with allosteric site
formation.27 By integrating these advanced sampling techniques
with MD simulations, researchers can more effectively identify
and characterize allosteric sites in enzymes.28 This comprehen-
sive approach offers a deeper understanding of the structural and
dynamic features underlying allosteric regulation, providing
novel insights into potential therapeutic targets for modulating
enzyme activity through allosteric mechanisms. The combination
of these methodologies enables a more nuanced exploration of
the dynamic landscape of enzyme, capturing the transient and
often elusive nature of allosteric sites that are crucial for under-
standing and manipulating enzyme function.

2.1.1.2 Structural analysis methods: integrating MD simulations
for allosteric site identification. In addition to MD simulations
and enhanced sampling techniques, structural analysis methods
are crucial for identifying allosteric sites, particularly when they
are not apparent in static structures. Several energy-based com-
putational tools, Q-SiteFinder,29 FTMap,30 and its web-based

extension FTMove31 are prominent tools based on energy analysis
(Table 1). have been prominent in the identification of ligand-
binding hotspots. These methodologies can be effectively coupled
with MD simulations to refine the identification of allosteric sites
by incorporating protein conformational dynamics.

FTMap41 facilitates the identification of potential allosteric
regions by mapping the binding of small organic probe mole-
cules across the enzyme surface, thus delineating energetically
favorable binding pockets. Similarly, Q-SiteFinder determines
ligand-binding sites by computing interaction energies between
the protein and a van der Waals probe, highlighting energetically
privileged regions for ligand interactions.29 However, these tools
traditionally focus on single static protein structures. To over-
come this limitation, FTMove extends the capability of FTMap
by incorporating ensemble-based structural analyses, leveraging
multiple protein conformations derived from experimentally
resolved structures in the Protein Data Bank (PDB) or MD simu-
lations. By systematically mapping allosteric hotspots across a
diverse set of conformational states, FTMove enables a more
dynamic characterization of allosteric sites, thus providing
insights into the structural plasticity of binding pockets. This
approach is particularly advantageous for detecting cryptic allo-
steric sites, which only become transiently accessible during
specific conformational states observed in MD simulations. In
a study introducing FTMove, the tool successfully identified
binding sites in 22 proteins with known allosteric sites,
elucidating the structural mechanisms underlying the for-
mation of transient binding pockets and conformationally
dynamic allosteric regulation.31 By integrating MD-generated
structural ensembles, FTMove can provide a more physio-
logically relevant approach for allosteric site prediction,
advancing both rational drug design and structural biology
research.

Complementing energy-based methods like FTMap,41

Q-SiteFinder,29 FTMove31 and AlloSigMA 2,35 several geometry-
based tools offer a complementary strategy for refining allosteric
pocket prediction and can be seamlessly integrated with MD
simulations to improve accuracy.29,31,41 Among these tools,
Fpocket has been widely employed for its efficiency in rapidly
detecting binding pockets through the analysis of surface
topology, cavity depth, and hydrophobicity patterns.42 Its cap-
ability to analyze multiple conformational states makes it
particularly well-suited for integration with MD simulations,
enabling the identification of dynamically accessible allosteric
sites that are not observable in static structures. Notably,
Fpocket has successfully identified allosteric sites in enzymes
such as Uridylate Kinase, uncovering a GTP-binding central
cavity, as well as in Pyruvate Kinase M2, where it predicted a
regulatory pocket linked to tumor suppression.50 Additional
geometric pocket-detection tools, including LIGSITEcsc, which
integrates solvent contact analysis with residue conservation
scoring,51 and CASTp, which provides comprehensive geo-
metric descriptors such as pocket volume and solvent-
accessible surface area, serve as valuable enhancements when
coupled with MD-derived conformational ensembles.52 Simi-
larly, SURFNET,49 using three-dimensional contour generation,
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excels in identifying large binding pockets, while GHECOM43

employs mathematical morphology to reveal complex, hidden
pockets.

The integration of MD simulations with both energy-based
and geometry-based computational methodologies establishes
a robust and multi-faceted framework for allosteric pocket
identification. This synergistic approach not only enhances
the predictive accuracy of computational models but also
provides structural insights into allosteric mechanisms,
thereby facilitating the rational design of allosteric modulators
and contributing to the broader field of computational drug
discovery.

2.1.2 Normal mode analysis: identifying large-scale con-
formational changes. Normal mode analysis (NMA) is a valu-
able computational method for investigating protein dynamics,
particularly in identifying large-scale collective motions.53 How-
ever, its reliance on harmonic approximations limits its ability
to model non-linear dynamic processes, which may reduce its
accuracy in complex biological systems. NMA typically relies on
the elastic network model (ENM), which simplifies protein
structures by representing residues as nodes connected by har-
monic springs, allowing efficient calculation of low-frequency

vibrational modes. These modes often correspond to large
conformational changes between different protein states and
are crucial for understanding protein flexibility and global
motions.54

A notable application of NMA is its effectiveness in predict-
ing the global dynamic behavior of enzymes and identifying
their active sites. For example, the EXPOSITE technique uses
NMA to capture the open-close movements of enzymes in low-
frequency vibrational modes and analyze solvent accessibility
changes during these movements, particularly around the
active site residues.55 By calculating the solvent accessibility
changes of different pocket regions during dynamic deforma-
tion, EXPOSITE accurately predicts the locations of active sites
and ranks these pockets accordingly. Unlike traditional meth-
ods that rely on static geometric features, EXPOSITE integrates
dynamic exposure changes, significantly improving prediction
accuracy across multiple enzyme datasets. This example illus-
trates the potential of NMA in identifying enzyme active sites,
uncovering protein functions, and guiding drug design. Com-
pared to MD simulations, NMA offers a significant computa-
tional efficiency advantage. Although MD can capture detailed
time evolution and microscopic motions of proteins, its high

Table 1 Methodologies for Methodologies for computational allosteric site identification and prediction

Name Ref Web server available Methods and applications

AlphaFold2 32 https://alphafoldserver.com/ High-accuracy 3D protein structure prediction based on sequence data,
useful for allosteric site prediction

AlloPred 33 No Predicts allosteric sites using a combination of structural and
evolutionary features

AlloReverse 34 https://mdl.shsmu.edu.cn/AlloReverse/ Predicts allosteric communication based on reversed allosteric
communication theory

AlloSigMA 2 35 https://allosigma.bii.a-star.edu.sg/home/ Analyzes allosteric signal propagation to assess effects induced by
ligand binding or mutations

Allosite 36 https://mdl.shsmu.edu.cn/AST/ Uses support vector machines (SVM) to predict allosteric sites, applied
in protein allosteric regulation analysis

AllosES 37 No Integrates sequence entropy and evolutionary conservation to identify
allosteric sites

ConSeq 38 https://conseq.bioinfo.tau.ac.il/ Identifies functionally important regions in proteins based on sequence
conservation without requiring 3D structures

ConSurf 39 https://consurf.tau.ac.il/consurf_index.php Evolutionary conservation analysis of proteins to identify functional
residues based on multiple sequence alignments

ConSurf-DB 40 https://consurfdb.tau.ac.il/ A database for evolutionary conservation scores of proteins
FTMap 41 https://ftmap.bu.edu/ Identifies ligand-binding hotspots by distributing small organic probes

over protein surfaces
FTMove 31 https://ftmove.bu.edu/ Analyzes multiple conformations to identify dynamic binding hotspots

across different protein structures
Fpocket 42 https://durrantlab.pitt.edu/fpocketweb/ Geometric analysis for pocket detection and allosteric site identification

on protein surfaces
GHECOM 43 https://pdbj.org/ghecom/ Uses mathematical morphology to reveal complex hidden pockets on

protein surfaces
KeyAlloSite 44 No Predicts key allosteric residues using the evolutionary coupling model

(ECM), particularly for long-range interactions
Minimotif Miner 45 https://mnm.engr.uconn.edu Searches for short functional motifs in protein sequences to reveal

functional and evolutionary insights
PASSer 46 https://passer.smu.edu/ Predicts allosteric sites using machine learning (ML), leveraging

geometric and topological features
PocketMiner 47 https://pocketminer.azurewebsites.net/ Graph neural network (GNN)-based method for allosteric site

prediction, effectively processing large datasets
Q-SiteFinder 29 https://www.modelling.leeds.ac.uk/qsitefinder Detects binding sites using van der Waals probes to map favorable

binding regions
SBSMMA 48 No A statistical mechanics model that simulates ligand binding effects for

allosteric site identification
SURFNET 49 No Geometric pocket detection based on 3D contour generation, identifies

large binding pockets
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computational cost makes it challenging to perform simula-
tions over large time scales and systems.56,57 In contrast, NMA
approximates the potential energy surface of proteins as a
harmonic potential, enabling the identification of low-freq-
uency vibrational modes associated with large-scale conforma-
tional changes, which are often key to biological functions.58

For instance, in the study of lysozyme, NMA revealed hinge-
bending movements between its domains, demonstrating how
the protein adapts its conformation through low-frequency
modes to accommodate substrate binding.59 With the help of
this low-frequency mode, the function of lysozyme can be
explained, and the ability of NMA to capture critical flexible
regions related to the function of proteins is further validated.
Despite certain limitations, such as its reliance on harmonic
approximations and exclusion of solvent effects, NMA remains
a valuable tool in molecular docking and structural analysis,
particularly when protein flexibility significantly impacts
ligand-binding predictions. Techniques like EXPOSITE demon-
strate how incorporating dynamic exposure changes can
significantly improve the prediction of active sites. As a result,
NMA complements MD simulations by providing insights into
protein dynamics and functional mechanisms, proving useful
in fields such as drug discovery and enzyme regulation. For
example, perturbation response scanning (PRS) is an effective
computational method that combines the ENM with linear
response theory (LRT) to explore allosteric sites in proteins,
often in conjunction with MD simulations.60 Techniques like
PRS integrate NMA with linear response theory to explore
allosteric sites in enzymes. PRS systematically applies random
perturbative forces to each residue within the protein structure
and calculates the overall response to these perturbations,
identifying key residues that induce global conformational
changes.61 For instance, Paul et al. integrated PRS with MD
simulations to investigate the dynamic allosteric regulation
between the main proteases of SARS-CoV-1 and SARS-CoV-2.62

They performed MD simulations on multiple structures of both
proteases using the AMBER software package and used PRS to
calculate the dynamic flexibility index (DFI) and dynamic
coupling index (DCI), providing an in-depth analysis of the
dynamic coupling between different residues. Their study
revealed that the catalytic sites of SARS-CoV-2 (e.g., H41 and
C145) exhibit significantly enhanced inter-chain dynamic cou-
pling with other regions of the protein, particularly residues on
chain B (e.g., E55, I59, R60, N277, R279, and L286), a feature
absent in SARS-CoV-1.62 Further analysis indicated that the
dynamic changes in SARS-CoV-2 primarily occur in regions
distant from the mutation sites, specifically at the dimer inter-
face and areas critical for enzymatic activity regulation.62

Additionally, the study found that key allosteric sites in SARS-
CoV-2 exhibit behavior opposite to that in SARS-CoV-1 upon
inhibitor binding. These findings elucidate the complex mecha-
nisms of dynamic regulation in SARS-CoV-2 and provide new
targets and strategies for antiviral drug development.

In summary, the integration of MD simulations, enhanced
sampling techniques, energy-based structural analysis methods
like FTMap,41 Q-SiteFinder,29 and FTMove,31 structure-based

tools such as Fpocket42 and others, and computational meth-
ods like NMA offers a comprehensive framework for identifying
and characterizing allosteric sites in enzymes (Table 1). This
multidimensional approach allows for a deeper understanding
of the structural and dynamic features underlying allosteric
regulation, providing valuable insights for drug discovery and
the modulation of enzyme activity.

2.2 Evolutionary dynamics and sequence-based methods for
predicting allosteric sites

One of the most effective strategies for identifying allosteric
sites in enzymes is through evolutionary and sequence-based
methods. By analyzing the evolutionary history and sequence
variations of enzymes, these approaches can pinpoint potential
allosteric sites, particularly those that are distal from the active
site but play a critical role in enzyme regulation. Below are
several commonly employed evolutionary and sequence analy-
sis techniques specifically designed for uncovering allosteric
sites in enzymes.

2.2.1 Evolutionary conservation analysis: identifying key
functional residues in allosteric sites. Evolutionary conserva-
tion analysis is a crucial tool for identifying key functional sites,
particularly allosteric sites, in proteins. By comparing homo-
logous proteins or genes across different species, researchers
can uncover residues or structural regions that have been
highly conserved throughout evolution, which often play criti-
cal roles in regulating protein function, especially in allosteric
mechanisms. Although allosteric sites are often located far
from the active center, they can influence protein function by
modulating conformational changes. As protein sequences
undergo variations (e.g., mutations, insertions, or deletions),
these allosteric communication pathways diversify during evo-
lution to adapt to different functional requirements.63 Addi-
tionally, evolutionary conservation analysis can be conducted
using tools such as ConSurf,39 ConSurf-DB,40 ConSeq,38 or
Minimotif Miner,64 which can map conservation scores without
the three-dimensional structure of enzymes, aiding in the
identification of potential allosteric sites (Table 1).

Frlan et al. employed multiple sequence alignment (MSA)
and phylogenetic tree construction to analyze protein sequ-
ences of seven enzymes from pathogenic bacteria, which were
obtained from the UniProt database.65 They utilized the Con-
Surf tool and SiteMap to calculate conservation scores for the
amino acid residues of these enzymes, assigning scores from
1 to 9, with higher scores indicating greater conservation across
species.39,65 These scores were then mapped onto the three-
dimensional crystal structures of the enzymes, visually high-
lighting regions with high functional conservation. Their ana-
lysis revealed that most of the substrate-binding sites in the
enzymes, particularly in four key enzymes of the shikimate
pathway (DHQS, SDH, EPSPS, and CS), exhibited high conser-
vation, overlapping with functional sites. This indicates that
these regions are critical for bacterial survival and represent
potential targets for broad-spectrum antimicrobial drugs.
However, the allosteric sites of some enzymes, such as DAHPS,
showed higher variability across species, limiting their potential
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as broad drug targets. Additionally, the study revealed that while
some binding sites are highly conserved, their polar or charged
nature may make it difficult to identify drugs with strong binding
affinity. By integrating evolutionary conservation analysis with
druggability assessment, Frlan et al. identified the most suitable
binding sites in the shikimate pathway for developing broad-
spectrum antimicrobial drugs.65

As in the study of Frlan, Leander et al. employed evolution-
ary conservation analysis to identify allosteric sites within the
TetR protein. Through multiple sequence alignments, they
found that allosteric sites in TetR exhibit lower evolutionary
conservation compared to structural stability sites, yet these
less-conserved residues still play key roles in allosteric
regulation.66 Leander et al. employed deep mutational scan-
ning and MD simulations to reveal how distal residues, despite
their lower conservation, can restore function through long-
range thermodynamic modulation.66 For example, residues
R49 and N129 in the a4 and a9 helices, though not highly
conserved in evolution, were identified as critical components
of the allosteric network, exhibiting significant functional
flexibility.66 This decoupling between evolutionary conserva-
tion and function suggests that while allosteric sites may not be
highly conserved, they can still regulate protein function
through multiple mechanisms, offering important implications
for drug design.

The combined findings of Frlan et al. and Leander et al.
highlight the value of evolutionary conservation analysis in
identifying both allosteric sites and druggable targets. By
leveraging multiple sequence alignments, conservation analy-
sis tools like ConSurf, and integrating functional and structural
data, researchers can identify residues or regions that are
functionally critical and explore their potential as drug
targets.39,40 Evolutionary conservation analysis not only reveals
the value of highly conserved substrate-binding sites for drug
development but also demonstrates that, despite lower con-
servation, allosteric sites play a pivotal role in regulating
protein function, showcasing the broad applications of this
tool in biology and drug discovery.

2.2.2 Co-evolutionary analysis: uncovering long-range resi-
due interactions for allosteric regulation. Co-evolutionary ana-
lysis is a key tool for predicting protein interactions and
regulatory functions, with broad applications in bioinformatics
and structural biology.67 Currently, mutual information (MI),68

statistical coupling analysis (SCA),69 and direct coupling analy-
sis (DCA)70 are the three main methods used in co-evolutionary
analysis, each demonstrating distinct advantages and limita-
tions depending on the research context. MI reveals evolution-
ary coupling relationships by assessing the shared information
between pairs of amino acids.68 While it is computationally
simple and can rapidly identify residue dependencies, it is
susceptible to background noise, leading to a high false posi-
tive rate. In contrast, SCA identifies co-evolving residues based
on mutational patterns in multiple sequence alignments, making
it particularly suitable for detecting long-range interactions.69

However, its predictive performance is highly dependent on
the quality and quantity of homologous sequences. DCA, by

constructing a maximum entropy model to filter out indirect
coupling signals, can more precisely predict directly coupled
residue pairs, excelling in local interaction and structural
prediction tasks.70

DCA has demonstrated exceptional accuracy in predicting
local protein interactions. Fantini et al. showed that DCA could
accurately capture the structural features of CyaY, a protein
involved in iron–sulfur cluster biosynthesis, and elucidate the
dimerization mechanism of IscU and its coordination with FeS
clusters.71 Additionally, DCA successfully predicted the local
interactions between IscU and IscS, further validating its effec-
tiveness in short-range interaction predictions. However, DCA
exhibits certain limitations in predicting long-range coopera-
tive effects. Bravi et al. found that DCA struggles to accurately
capture long-distance interactions between distant epitopes,
which are critical in regulating allosteric functions.72 To address
this issue, Bravi and colleagues proposed a neural network-based
nonlinear model that better captures complex long-range coop-
erative effects, particularly in allosteric proteins involving multiple
structural regions.

La Sala et al. applied SCA to identify co-evolving amino acids
in proteins to uncover allosteric regulatory mechanisms.7

By calculating the coverage score (CS) of co-evolving residues
in allosteric pockets, they evaluated the functional significance
of these pockets. Their results showed that the known allosteric
pockets in GR, BCKDK, and p38-a had high CS values, indicat-
ing that the residues within these pockets co-evolved during
evolution, contributing to the transmission of allosteric signals.
As a result, SCA is limited in its ability to predict sequence
homologies in cases where the quality of homologous sequence
data is inadequate, as in the case of MAT2A and LFA-1
sequences. Nevertheless, SCA revealed networks of long-range
co-evolving residues, which are critical for understanding allo-
steric regulatory mechanisms. To improve predictive accuracy,
La Sala et al. combined SCA with druggability score analysis
and rigidity analysis, constructing a three-parameter model
that significantly enhanced the identification of allosteric
pockets.7

In recent years, co-evolutionary computational methods
have made significant progress in identifying key allosteric
residues (allo-residues) in proteins. Xie et al. developed the
KeyAlloSite method, which uses the Evolutionary Coupling
Model (ECM) to successfully predict key allosteric residues in
several proteins and reveal strong coupling relationships between
these residues and orthosteric site residues.44 KeyAlloSite excels
in predicting cancer-related mutation sites and residues distant
from catalytic sites but essential for enzymatic function. It
provides a systematic and efficient tool for allosteric drug design
and protein engineering, addressing the flat structure–activity
relationship problem commonly encountered in the optimiza-
tion of allosteric molecules and advancing the development of
allosteric drugs and the design and optimization of functional
proteins.

In summary, MI, SCA, and DCA each offer unique advan-
tages in co-evolutionary analysis, and their integration with
emerging tools such as neural network models and KeyAlloSite
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can more effectively predict protein functions, structures, and
interactions.44,68–70

2.2.3 Sequence entropy analysis: quantifying variability
and information flow in allosteric networks. Sequence entropy
analysis is a computational method used to quantify the
variability and information content within protein or nucleo-
tide sequences.73 By measuring the degree of disorder or
uncertainty in the arrangement of residues, this approach helps
identify regions of high or low variability within the sequence.74

In proteins, regions with high sequence entropy typically cor-
respond to flexible or functionally diverse areas. In contrast,
low entropy regions indicate conserved areas critical for struc-
tural stability or function, such as active or binding sites.

In allosteric regulation, sequence entropy analysis is crucial
for revealing the evolutionary conservation and functional
relevance of residues that drive allosteric behavior. It offers
insights into allosteric mechanisms by highlighting residues
that contribute to dynamic communication networks within
the protein. Transfer entropy, in particular, serves as an impor-
tant metric by capturing time-delayed correlations between
residues, thereby mapping the information transfer between
different sites within a protein. By quantifying how the dynamic
behavior of one site affects another distant site, transfer entropy
provides a unique means to identify key residues involved in
allosteric regulation. For example, in the study of the allosteric
mechanism of biotin protein ligase, transfer entropy analysis
revealed certain residues with high transfer entropy values,
suggesting their roles as mediators of allosteric communi-
cation.37 This method complements traditional structural analy-
sis by providing a more robust framework for studying the
complexity of allosteric systems, especially in cases where con-
ventional approaches are insufficient to identify allosteric sites.

Cecconi et al. employ sequence entropy analysis to explore
allosteric mechanisms within the protein ubiquitin.75 This
method, particularly transfer entropy, quantifies the flow of
information between residues, offering insights into the direc-
tional relationships that drive allosteric regulation.75 Unlike
traditional correlation analysis, which captures coordinated
fluctuations between residues without inferring causality,
sequence entropy analysis offers a way to distinguish between
mere correlations and true causal influences. An essential part
of sequence entropy analysis is transfer entropy, which mea-
sures how knowing the state of one residue reduces the
uncertainty about the future state of another residue.74 This
approach reveals the roles of specific residues in ubiquitin as
information donors or acceptors, elucidating the flow of allos-
teric signals across the protein. By utilizing sequence entropy
analysis, researchers can determine how perturbations in one
part of the protein lead to functional changes at distant sites,
thereby mapping the allosteric pathways that regulate the
activity of ubiquitin. The study also shows that residues
involved in allosteric control of ubiquitin can be linked through
transfer entropy, emphasizing their roles in modulating inter-
actions with ubiquitinase. Cecconi et al. leverage sequence
entropy analysis to provide a detailed understanding of
dynamic allosteric networks in proteins, highlighting the utility

of this method in identifying key regulatory residues and
pathways.75

Furthermore, integrating entropy-based methods with evo-
lutionary data, such as spatial proximity evolutionary scores,
enhances the accuracy of identifying allosteric modulators by
considering both dynamic and structural constraints. By com-
bining sequence entropy with evolutionary analysis, tools like
AllosES have demonstrated exceptional predictive perfor-
mance in identifying allosteric sites, showcasing the extensive
potential of this approach in understanding and targeting
allosteric regulation in proteins.37

2.3 Graph-theory and machine learning-based approaches

2.3.1 Graph-based methods for allosteric site prediction.
Graph theory approaches offer novel perspectives in enzyme
research. Enzymes can be represented as networks of amino acids,
where edges correspond to interactions between residues. Network
analysis methods such as AlloSite36 and AlloPred33 can identify key
residues that act as communication hubs within the network, these
residues often correspond to allosteric sites of the enzyme (Table 1).
By unveiling the topological connections among amino acids, these
methods enhance our understanding of the regulatory mechan-
isms within enzymes and provide a crucial theoretical foundation
for the identification and prediction of allosteric sites. This graph
theory-based network analysis not only aids in exploring the global
dynamics of proteins but also effectively screens potential drug
targets, thereby opening new avenues for drug design.

Allosite is a computational tool designed to predict allosteric
sites in proteins, playing a crucial role in drug discovery due to
the advantages of targeting allosteric sites, including higher
specificity, fewer side effects, and lower toxicity compared
to orthosteric drugs.36 The method integrates pocket-based
analysis and support vector machine (SVM) algorithms to
accurately identify potential allosteric sites. Allosteric sites are
regions distinct from the active site, where ligand binding can
induce conformational changes that modulate the function of
prteins. Given their lower evolutionary conservation, allosteric
sites present a more selective target for therapeutic interven-
tions. The Allosite model is trained on high-quality datasets
from the allosteric database (ASD)76 and has been validated
with cross-validation, demonstrating over 95% accuracy.36

In the study conducted by Wenkang Huang and colleagues,
the Allosite tool was successfully employed to identify allosteric
sites in various proteins.4 By extracting non-redundant allo-
steric protein-modulator co-crystal structures from the allos-
teric database, the research team used a support vector
machine model to predict allosteric sites, achieving successful
outcomes across several proteins. For instance, in the study of
Bcr-Abl kinase, Allosite accurately identified an allosteric site at
the myristate-binding site of Bcr-Abl, where the allosteric
modulator GNF-2 binds, effectively regulating the activity of
proteins. Additionally, Allosite was able to rapidly and precisely
identify 0-4 potential allosteric sites in other proteins, provid-
ing valuable targets for further drug development efforts.4

Solvent mapping is a computational technique widely used
to identify potential binding pockets, including allosteric sites,
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on protein surfaces by simulating interactions between small
probe molecules and the protein surface, thereby determining
energetically favorable regions.48 These hotspots, characterized
by frequent probe binding, indicate areas of high ligand-
binding affinity, making them ideal candidates for drug dis-
covery, particularly for targeting allosteric regulation, where
binding at distant sites modulates enzyme activity. Comple-
menting this, ENM offers a valuable approach for analyzing
how local perturbations, such as ligand binding, induce global
conformational changes in proteins.77 By modeling proteins as
networks of nodes connected by springs, ENM predicts low-
frequency motions linked to functional shifts and helps iden-
tify key residues involved in allosteric signaling. This combined
approach enhances the understanding of protein dynamics and
informs the design of allosteric modulators. For instance,
Ayyildiz and colleagues utilized solvent mapping, ENM, and
sequence/structural alignments to investigate allosteric sites in
glycolytic enzymes, including phosphofructokinase (PFK),
glyceraldehyde-3-phosphate dehydrogenase (GADPH), and pyru-
vate kinase (PK).78 Their research identified several allosteric
sites at subunit interfaces, with ENM revealing their impact on
global enzyme dynamics. Furthermore, sequence alignments
indicated low conservation of these sites across bacterial, para-
sitic, and human species, highlighting their potential as species-
specific drug targets.

2.3.2 Machine learning and AI-based methods for rapid
prediction of cryptic allosteric site. Graph neural networks
(GNNs) have proven to be an effective method for predicting
cryptic allosteric sites in enzymes. These models represent
molecular structures as graphs, with atoms functioning as
nodes and chemical bonds as edges, enabling the network to
learn complex atomic interactions through graph convolution
operations.79 By propagating information through these graph
structures, GNNs can extract local structural features and
predict potential allosteric sites. One prominent example is
PocketMiner, a model built on the geometric vector perceptron
(GVP) architecture.47 This model accurately predicts cryptic
allosteric sites by encoding protein residues and their spatial
relationships into a graph format, integrating this information
across multiple layers of the network. PocketMiner offers
a significant advantage over traditional MD simulations due
to its rapid prediction capability and high accuracy, making it
well-suited for large-scale protein screenings and diverse
datasets.47 In applied studies, PocketMiner has successfully
identified cryptic allosteric sites in several enzymes, demon-
strating its value in drug discovery and allosteric regulation
research. For example, in the study of PIM2, a serine/threonine
kinase involved in cancer, PocketMiner predicted a cryptic
allosteric site located near the orthosteric site, which was
subsequently validated through MD simulations.47 This dis-
covery suggests a new potential target for allosteric regulation
in PIM2. Similarly, PocketMiner identified cryptic allosteric
sites in the WNT2 protein, despite the lack of visible binding
sites in its ground-state structure.47

PASSer is an advanced tool designed for the rapid and
accurate prediction of protein allosteric sites, which play a

crucial role in regulating protein function through conformational
changes induced by ligand binding at sites distal to the active
site46 (Table 1). The tool integrates ensemble learning techniques,
including eXtreme Gradient Boosting (XGBoost) and graph con-
volutional neural networks (GCNNs), to extract and analyze the
geometric and physicochemical properties of protein pockets
identified by the FPocket algorithm.80 These machine learning
(ML) models enable PASSer to accurately predict allosteric sites by
leveraging structural features and topological data. The tool has
demonstrated high performance in identifying potential allosteric
sites by leveraging both the geometric and topological features
of protein structures. PASSer also employs automated machine
learning (AutoML) techniques, which streamline the process of
model selection and hyperparameter tuning, significantly enhan-
cing both the efficiency and accuracy of predictions.81 A notable
feature of PASSer is its use of ranking algorithms, including
LambdaRank, which prioritize potential allosteric pockets based
on their likelihood of functional relevance, thus improving the
interpretability of its predictions.46 PASSer was employed to
predict the allosteric sites in the light-oxygen-voltage (LOV)
domain protein46 In using ensemble learning models, including
extreme gradient boosting (XGBoost)82 and Graph. Convolu-
tional neural networks (GCNNs),80,83 PASSer successfully identi-
fied the top-ranked allosteric pocket with 89.65% probability.80

According to these results, the tool was able to accurately predict
allosteric sites that were experimentally validated, demonstrat-
ing its robust performance for allosteric site prediction.

AlloReverse is an advanced computational tool designed
to predict and analyze allosteric sites in enzymes using the
reversed allosteric communication theory, which posits bidirec-
tional regulation between allosteric and orthosteric sites34 (Fig. 2).
By integrating protein dynamics with ML, AlloReverse offers
comprehensive predictions of allosteric residues, sites, and reg-
ulatory pathways, providing a valuable resource for understanding
enzyme regulation and aiding in allosteric drug design. A notable
application of AlloReverse is its use in studying the enzyme
CDC42, a GTPase involved in cytoskeletal regulation. AlloReverse
predicted a previously unknown allosteric site near the orthosteric
GTP-binding region.34 Experimental validation through site-
directed mutagenesis of key residues, such as L67, R68, and
S71, demonstrated a significant decrease in GTP binding, con-
firming the functional importance of this allosteric site.

AlphaFold, one of the most advanced AI models, enables
high-precision prediction of protein three-dimensional struc-
tures from sequence data.84 It is a key tool in predicting allosteric
sites, which has become a leading trend in current research. The
AlloMAPS2 program, for example, uses a structure-based statisti-
cal mechanics model (SBSMMA) to quantify allosteric commu-
nication within proteins, integrating AlphaFold and Pfam-tr-
Rosetta predictions.85 To quantify the allosteric effects of muta-
tions and small molecule probes on individual residues, the
model creates allosteric signalling maps (ASMs) and allosteric
probing maps (APMs).85 A mathematical model reveals how
structural changes, such as mutations or small molecule binding,
influence allosteric sites, enabling AI-predicted structures to be
identified quickly and accurately with potential allosteric sites.
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AlloMAPS 285 has been successfully applied across multiple
studies, including research on the SARS-CoV-2 spike protein,
where AlphaFold-predicted structures were analyzed using
ASMs to predict how distal mutations influence the dynamics
of the receptor-binding domain through allosteric mecha-
nisms.86 Additionally, APMs have been used to simulate small
molecule binding, successfully identifying potential allosteric
targets, thus providing valuable insights for drug development.
Simultaneously, Casadevall et al. utilized AlphaFold2, in con-
junction with deep learning, MD simulations, and other com-
putational methods, to investigate conformational changes in
enzymes and active site pockets for both orthosteric and
allosteric sites32 (Table 1).

Simultaneously, the latest advancements in ML-based allo-
steric site prediction increasingly emphasize the importance of
integrating dynamic molecular features to enhance predictive
accuracy. Recent studies have begun incorporating MD simula-
tions to extract conformational flexibility, residue interaction
networks, and ligand-induced dynamic changes, thereby
improving the identification of allosteric regulatory sites.
A recent study by Frasnetti et al. leveraged the combination of
MD simulations and ML algorithms to predict the functional
characteristics of kinase ligands.87 They employed long-time-
scale MD simulations to capture ligand-induced conforma-
tional changes in cyclin-dependent kinases (CDKs) and utilized
random forest (RF), support vector machine (SVM), and multilayer

perceptron (MLP) to classify ligands as orthosteric or allosteric
binders. The results demonstrated that RF achieved the highest
classification accuracy of 91%, outperforming other models. This
approach was further validated by correctly classifying several
FDA-approved CDK inhibitors, including Palbociclib and Abema-
ciclib, as orthosteric binders. This study highlights the potential
of integrating MD-derived dynamic features with ML-driven clas-
sification models to improve the accuracy and reliability of
allosteric site prediction. With the continuous advancement of
computational methodologies, the integration of MD simulations
and ML algorithms is expected to play a pivotal role in predicting
cryptic allosteric sites, characterizing ligand-binding mechanisms,
and optimizing allosteric drug design strategies. By leveraging
dynamic molecular data, these approaches provide new insights
into enzymatic allosteric regulation and contribute to the accel-
erated discovery of novel therapeutic.

3. Case studies: exploring enzymatic
allosteric modulators through
computational approaches
3.1 Computational approaches in identifying Sirtuin 6
(SIRT6) allosteric modulators

Sirtuin 6 (SIRT6), an NAD+-dependent deacetylase, plays a critical
role in regulating DNA repair, metabolism, inflammation, and

Fig. 2 Structural and functional analysis of the allosteric modulation identified by AlloReverse. (A) The enzyme structure highlights the orthosteric
pocket (yellow) and the allosteric pocket (blue), which was computationally identified using the AlloReverse approach. The key allosteric residues (L67,
R68, L70, and S71) within the allosteric pocket are shown in their spatial context, interacting with the modulator. (B) Mutational analysis of these residues
demonstrates their effects on CDC42-GTP binding activity, expressed as fold change relative to the wild-type (WT). The R68A mutation causes a
substantial decrease in activity, underscoring its critical role in allosteric regulation, whereas L67A and L70A show moderate effects.
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genomic stability.88–90 By deacetylating histones such as H3 at
lysine 9 (H3K9ac) and lysine 56 (H3K56ac), SIRT6 maintains
chromatin integrity and facilitates DNA damage repair.91–93

Additionally, SIRT6 suppresses transcription in centromeric
regions through deacetylation of H3K18ac, preventing chromo-
somal missegregation.93 The enzymatic activity of SIRT6 is closely
linked to intracellular NAD+ levels, influencing the cellular energy
state. SIRT6 is also involved in regulating cellular metabolism,
acting through the AMPK pathway to promote glucose and
fatty acid metabolism, ensuring cellular energy homeostasis.94

Furthermore, SIRT6 exerts anti-inflammatory effects by dea-
cetylating and inhibiting nuclear factor kB (NF-kB), thereby
reducing the production of pro-inflammatory cytokines. In
cancer biology, SIRT6 primarily acts as a tumor suppressor by
inhibiting oncogenes such as c-Myc, HIF-1a, and c-Jun, modu-
lating key signaling pathways like PI3K/Akt and MAPK/ERK,
and inducing cell cycle arrest and apoptosis.95 However,
the role of SIRT6 in cancer is highly complex and context-
dependent, necessitating a deeper understanding of its reg-
ulation to develop targeted therapies.

Computational methods have been pivotal in identifying
allosteric modulators of SIRT6, using techniques such as
molecular docking, virtual screening, and MD simulations.
Huang et al. utilized a combined computational and experi-
mental approach to screen for potential SIRT6 activators.96

The Allosite method was used to predict the full enzyme active

site of SIRT6, and based on this prediction, over five million
compounds were screened.96 Through virtual docking, 20 com-
pounds were identified, and their activity was further validated.
Among them, MDL-800 and MDL-801 were found to signifi-
cantly enhance the catalytic efficiency of SIRT6. Shang et al.
integrated these computational methods to explore the binding
of MDL-800 and MDL-801 with SIRT6.97,98 MD simulations
revealed that MDL-800 notably enhanced the deacetylase activity
of SIRT6 and inhibited the proliferation of non-small cell lung
cancer (NSCLC) cells by inducing G0/G1 cell cycle arrest.97

Furthermore, simulations of MDL-801 indicated that this com-
pound induced conformational changes in SIRT6, stabilizing
its active form, particularly through key interactions with
residue Met136.98,99 Principal component analysis (PCA) and
free energy calculations using the AlloSigMA server further
highlighted the allosteric coupling between the MDL-801 binding
site and the NAD+ site, offering detailed insights into its role as an
allosteric activator of SIRT6.98 Similarly, virtual screening and
molecular docking also contributed to the identification of novel
inhibitors, such as 11e and compound 8a.100–102 Compound 11e
was found to disrupt internal signaling pathways and reduce
SIRT6 activity, offering a new approach for pancreatic cancer
therapy100 (Fig. 3). MD simulations revealed that 11e binding
induced significant conformational changes in SIRT6, and further
free energy and community network analyses demonstrated that
11e binding disrupted internal signaling pathways, reducing SIRT6

Fig. 3 Structural analysis of compound 11e binding to the allosteric site. (A) The surface representation of the protein structure shows compound 11e
(yellow) bound to the allosteric pocket, which is highlighted in blue. The inset provides a detailed view of key interacting residues within the allosteric site,
including P62, F64, F82, V70, W71, F86, D116, and M157, which are involved in stabilizing the binding of compound 11e. (B) Chemical structure of
compound 11e, showing its functional groups that contribute to the interaction with the allosteric site. These interactions suggest a potential mechanism
for modulating enzyme activity through allosteric regulation.
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deacetylase activity, thus presenting a novel approach for anti-
pancreatic cancer therapy.100 Compound 8a was identified as a
non-competitive inhibitor of SIRT6.101,102 Binding energy calcula-
tions confirmed the strong interaction between 8a and SIRT6,
further supporting its inhibitory mechanism.102

Beyond small-molecule screening, advanced computational
methods have been used to identify previously unrecognized
allosteric sites in SIRT6. Zhang et al. employed enhanced
sampling MD simulations and Markov State Modeling (MSM)
to reveal a cryptic allosteric site, termed ‘‘Pocket Z’’, within
SIRT6.103 Through accelerated MD (aMD) simulations, they
found that NAD+ binding induces a coupling between Pocket
Z and the catalytic domain, altering the function of SIRT6.
To validate this novel site, they performed high-throughput
virtual screening, leading to the identification of JYQ-42, an
allosteric inhibitor.103 Binding free energy calculations and per-
residue decomposition analysis confirmed the stability of the
JYQ-42/SIRT6 complex, validating the druggability of Pocket Z
as a therapeutic target.103

These studies collectively demonstrate the power of compu-
tational techniques—including virtual screening, molecular
docking, MD simulations, and free energy calculations—in
identifying both activators and inhibitors of SIRT6. Through
these methods, researchers can gain deeper insights into the
allosteric regulation of SIRT6 and facilitate the rational design
of novel modulators for cancer therapy.

3.2 Computational approaches in targeting MEK allosteric
sites for cancer therapy

MAPK/ERK kinase (MEK) is a critical dual-specificity kinase in
the Raf-MEK-ERK signaling cascade, playing a pivotal role in
the regulation of cell proliferation, survival, and differen-
tiation.92,104 MEK1/2 are the only known substrates of Raf
kinase, involved in the activation of downstream ERK1/
2.104,105 Overactivation of MEK1 and MEK2 is closely associated
with various inflammatory conditions and approximately 30%
of human cancers, making them key targets for anticancer drug
development.92,106 To date, four MEK allosteric inhibitors—
Trametinib, Binimetinib, Selumetinib, and Cobimetinib—have
received FDA approval for effectively inhibiting MEK1/2
activity92,107–109 (Fig. 4).

A recent study by Mudedla et al. employed molecular
dynamics (MD) simulations to investigate the impact of several
MEK1 allosteric inhibitors (such as selumetinib, trametinib,
cobimetinib, and CH5126766) on MEK1.110 The results revealed
that these inhibitors bind to an allosteric pocket near the MEK1
aC helix, restricting the flexibility of the MEK1 activation loop,
particularly preventing Ser222 from approaching ATP, thereby
stabilizing its inactive conformation and blocking Raf-
mediated MEK activation.92,110 This mechanism leads to the
suppression of MAPK pathway signaling. The free energy
perturbation (FEP) method, which combines free energy calcu-
lations, accurately predicted the binding affinities of these

Fig. 4 Structural analysis of cobimetinib binding to the orthosteric and allosteric pockets of the enzyme. (A) Surface representation of the enzyme
showing the orthosteric pocket (yellow) and allosteric pocket (orange) with cobimetinib binding across both sites. The inset highlights the
detailed interactions of AMP-PCP (blue) and cobimetinib (magenta) within the binding region, showing critical residues such as K97 and D190 involved
in ligand coordination. (B) Chemical structure of cobimetinib, illustrating its pharmacophore elements that interact with the enzyme’s active and allosteric
sites.
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inhibitors and showed strong correlation with experimental
IC50 values. By employing MD simulations, the study provided
deeper insights into how allosteric inhibitors block MEK1
activation, offering valuable guidance for the design of more
selective and potent MEK1 inhibitors for cancer therapy.
Furthermore, Di Fruscia et al. utilized fragment-based and
virtual screening strategies to target the allosteric site of
MEK1.111 They constructed a fragment library and identified
142 potential binders through 1D NMR screening.111 They
constructed a fragment library and identified 142 potential
binders through 1D NMR screening.111 These findings demon-
strate the effectiveness of fragment-based screening in identify-
ing novel allosteric modulators.111

In summary, MEK plays a pivotal regulatory role in the Raf-
MEK-ERK signaling pathway, and its allosteric site has emerged as
a critical target for anticancer drug development.112 Through
computational approaches, including virtual screening, fragment-
based screening, and molecular dynamics simulations, researchers
have successfully identified and optimized MEK allosteric modu-
lators, while gaining in-depth insights into the molecular mechan-
isms of MEK1 and its interactions with inhibitors.92,104,111,112

These findings provide essential guidance for the design of more
efficient and selective drugs, paving the way for new strategies in
cancer treatment.

4. Conclusions: advancing
computational methods for allosteric
drug discovery

Allosteric activators in enzymes represent a promising avenue
for drug discovery, offering distinct advantages over traditional
orthosteric drugs, such as increased specificity and reduced off-
target effects. This review highlights the integration of compu-
tational approaches, including MD simulations, enhanced
sampling techniques, NMA, evolutionary conservation, and
ML, to identify and characterize allosteric sites in enzymes.
These approaches collectively provide a comprehensive frame-
work for understanding enzyme dynamics and pinpointing
potential regulatory sites for therapeutic intervention.

The application of advanced computational tools like
PASSer,46,80,81 AlloReverse,34 and AlphaFold,32,84 in combi-
nation with molecular docking and free energy calculations,
has successfully revealed cryptic allosteric sites and provided a
deeper understanding of their regulatory mechanisms. Further-
more, the identification of allosteric modulators, as demon-
strated in the studies of SIRT6 and MEK, underscores the
therapeutic potential of targeting allosteric pathways, particu-
larly in oncology.

The advances in computational techniques not only enhance
our ability to predict allosteric sites but also provide critical
insights into the molecular mechanisms of allosteric regulation.
This progress paves the way for rational drug design targeting
allosteric sites, with the potential to develop more selective and
efficacious therapeutic agents. Future research should optimize
these computational methods, integrate experimental validation,

and explore the broad applicability of allosteric modulators in
diverse therapeutic areas, ultimately bridging the gap between
computational predictions and clinical outcomes.
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