Phenylboronic acid-modified nanoparticles for cancer treatment
Abstract
Phenylboronic acid (PBA) has emerged as a promising component in the design of functional nanomaterials for cancer treatment. PBA possesses unique characteristics such as pH/reactive oxygen species (ROS)-responsiveness, low cytotoxicity, stability, and the ability to target sialic acid residues overexpressed on cancer cell surfaces. PBA-modified nanomaterials can be utilized in various strategies, including chemotherapy, gene therapy, and phototherapy, to enhance drug delivery, cancer cell targeting, and therapeutic efficacy. This review examines the application of PBA-modified nanomaterials in cancer treatment, focusing on their roles in stimuli-responsive drug release and cancer cell targeting. The incorporation of PBA into nanoparticles, dendrimers, and other nanostructures has shown significant potential in improving the selectivity and efficacy of cancer therapeutics while minimizing adverse side effects. With ongoing research and development, PBA-based technologies hold promising potential for further innovations in medical science, particularly in oncology.