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Pseudorotaxane monolayers of pillar[5]arene and linear
fatty acids at the air–water interface†
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1

Pseudorotaxanes, which are formed by macrocyclic host molecules2

and linear guest molecules, show potential in molecular devices3

and surface applications. In this study, ethoxy-functionalized4

pillar[5]arene (P5A) and amphiphilic linear fatty acid guests5

were self-assembled into oriented monolayers at the air–water6

interface. The fatty acid structure dictates the monolayer7

formation: [2]pseudorotaxane-based, [3]pseudorotaxane-based8

and phase-separated monolayers. These findings provide insights9

into P5A-based pseudorotaxane monolayers, facilitating their10

integration into advanced functional materials.11

12

Pseudorotaxanes are formed by a macrocyclic host molecule13

and a linear guest molecule that exhibits specific non-covalent14

interactions with the host.1 The tiling of oriented pseudorotax-15

anes particularly in two-dimensional planes is promising for ap-16

plications such as molecular shuttles,2,3 surface wettability con-17

trol,4 sensors,5 catalysts,6 and transistors.7 Compared with the18

commonly used self-assembled monolayer (SAM) method for sur-19

face modification, the Langmuir–Blodgett (LB) technique8 im-20

poses significantly fewer material limitations because of the lack21

of chemical bonds between the pseudorotaxane terminal func-22

tional groups and the substrate surface. Additionally, this method23

allows for control of the density and orientation of pseudorotax-24

anes through in-plane mechanical compression.25

Pillararenes, first developed in 2008,9 are a class of macro-26
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cyclic host molecules, with cyclopentamer (P5A) and cyclohex-27

amer (P6A) derivatives being the most commonly used. Com-28

pared to other macrocyclic host molecules, such as crown ethers29

and calixarenes, pillararenes offer advantages in terms of easy30

synthesis, flexible functionality, and high symmetry.10 In partic-31

ular, P5A forms pseudorotaxanes with saturated alkanes via C–32

H· · ·π interactions.11,12 Recent studies have demonstrated that33

P5A-based pseudorotaxanes can exhibit bistable states,13,14 of-34

fering applications such as molecular machines, similar to those35

investigated in "blue box" systems.3 Accordingly, two-dimensional36

tiling of P5A-based pseudorotaxanes can maximize the expression37

of switchable surface functionalities. Therefore, understanding38

P5A-based pseudorotaxane monolayers at the air–water interface39

is expected to open new avenues for various applications.40

In this study, we found that pseudorotaxanes, which is com-41

posed of ethoxy-functionalized pillar[5]arene (EtP5A) and linear42

fatty acid guests, were oriented and assembled in a monolayer at43

the air–water interface. The chemical structure of the fatty acid44

guest dictates the resulting monolayer structure; short-chain lin-45

ear fatty acids lead to [2]pseudorotaxane monolayers, long-chain46

linear fatty acids form [3]pseudorotaxane monolayers, and a fatty47

acid guest unsuitable for EtP5A undergoes phase separation (Fig.48

1a).49

To elucidate the monolayer state of Langmuir films at the air–50

water interface, we measured the surface pressure–area (π–A)51

isotherms (Fig. 1b). Pure EtP5A exhibited a lift-off of the surface52

pressure near 1.3 nm2 and monolayer collapse at 10.3 mN/m. In-53

terestingly, given the good agreement with the theoretical calcula-54

tions (1.42 nm2), the pure EtP5A with simple ethoxy substitution55

was found to orient its cavities perpendicular to the water surface,56

as observed in previous studies using pillararene with longer and57

more complex substitution15,16. The relatively low collapse pres-58

sure (πC) suggested weak intermolecular interactions within the59

plane. To obtain a stable and oriented pseudorotaxane mono-60

layer, we mixed a chloroform solution with amphiphilic G5-18,61
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Fig. 1 Pseudorotaxane of EtP5A at the air–water interface. (a) Molecular structures and schematics of monolayer states for employed EtP5A host
and guests. (b) π–A isotherms for pure EtP5A (black line), mixture with G5-18 (red line) and with G6 (blue line). (c) DFT-calculated IR spectrum of
EtP5A with experimental one of the powder (section 1.4, ESI†). MAIRS spectra of LB films for pure EtP5A, mixture with G5-18 and pure G5-18 in
the 1550-1300 cm−1 (d) and 3000-2800 cm−1 (e) regions. The OP (pink line) and IP (light blue line) indicate the out-of-plane and in-plane directions
of the LB films, respectively.

which has been widely employed in insoluble monolayer stud-62

ies,8,17 at a molar ratio of 1:1. Mixing with G5-18 decreased63

the limiting cross-sectional area (AL) per EtP5A molecule from64

1.28 nm2 to 0.91 nm2, as calculated by extrapolating the π–A65

isotherms. The reduction in molecular area by as much as 0.3766

nm2does not occur if EtP5A and G5-18 form no complexes or67

1:1 complexes, suggesting the formation of [3]pseudorotaxane68

structure at the air–water interface. Note that the AL per EtP5A69

molecule of 0.91 nm2 is close to the sum of one-half of the AL70

of 1.28 nm2 for a single PA molecule and the AL of 0.2 nm2
71

for an alkyl chain, which support [3]pseudorotaxane formation.72

Furthermore, the [3]pseudorotaxane structure might contribute73

to the formation of a more in-plane rigid film as confirmed by74

the significant increase in πC of 43.2 mN/m compared to 10.375

mN/m of pure EtP5A. On the other hand, when mixed with G6,76

a guest molecule incompatible with the cavity size of EtP5A, π–77

A isotherm shifted toward larger molecular areas corresponding78

to the cross-sectional area of G6, with minimal changes in πC79

compared to pure EtP5A. This behavior indicates phase separa-80

tion within the two-dimensional film.18 Similar phase separation81

was observed when EtP5A and G5-18 were sequentially spread82

on the water surface (Fig. S6, ESI†). Note that host-guest chem-83

istry strongly influences these phenomena, as demonstrated by84

the formation of pseudorotaxanes with G6 and phase separation85

with G5 when using EtP6A as the host (Fig. S7, ESI†).86

To investigate the molecular orientation and pseudorotax-87

ane formation, we performed multiple-angle incidence resolu-88

tion spectroscopy (MAIRS) measurements on LB films transferred89

from the water surface. This method involves tilting the thin90

film relative to the optical axis and analyzing the infrared ab-91

sorption spectra acquired at varying polarization angles.19 The92

MAIRS method can separate the out-of-plane (OP) and in-plane93

(IP) absorption components of the film materials. Unlike tradi-94

tional approaches that combine transmission and reflection meth-95

ods,17 the MAIRS method offers the advantage of measuring one96

identical film with fewer substrate constraints. EtP5A exhibited97

similar absorption characteristics in both the powder and LB films98

(Fig. 1c,d). According to density functional theory (DFT) calcula-99

tions, the most intense absorption bands at 1502 cm−1 and 1408100

cm−1 were mainly consisted of aromatic C–H bending, aromatic101

C–H stretching, CH2 wagging, and CH3 wagging vibrations (sec-102

tion 1.4, ESI†). The strong transition moments along the cavity103

direction of EtP5A can be useful for assessing the molecular orien-104

tation. For both LB films of EtP5A and the mixture of EtP5A and105

G5-18, these vibrational bands were more prominent in the OP106

spectrum than in the IP spectrum, indicating the vertical orienta-107

tion of the EtP5A cavity, both at the air–water interface and after108

transfer to solid substrates. This vertical orientation of EtP5A cor-109

2 | 1–4Journal Name, [year], [vol.],
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between extrapolated limiting area per EtP5A molecule and stoichiometric ratio. (c) Characteristics of monolayer collapse for mixtures of EtP5A and
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responds to the fact that the AL obtained by π–A isotherm is close110

to the calculated cross-section value of 1.42 nm2 for EtP5A. Ad-111

ditionally, pure G5-18 exhibited characteristic vibrational peaks112

due to CH2 trans-zigzag packing owing to its crystallinity, specif-113

ically CH2 antisymmetric stretching vibrations ( 2920 cm−1) and114

CH2 symmetric stretching vibrations ( 2850 cm−1) (Fig. 1e).20,21
115

Upon mixing with EtP5A, these peaks shifted to higher wavenum-116

bers, indicating that the alkyl chains adopted a gauche conforma-117

tion and supporting the formation of inclusion complexes with118

EtP5A.119

Considering that the formation behavior of EtP5A-based120

pseudorotaxanes depends on the chain length of the guest121

molecules,12 the monolayer state was investigated using guests122

with carbon numbers ranging from 14 to 26, which can indepen-123

dently form insoluble monolayers. In this study, the molecules124

were mixed at a 1:1 molar ratio before spreading to the air–water125

interface. The π–A isotherms for each system, guest-dependent126

AL, and guest-dependent collapse areas and πC are shown in127

Fig. 2a, b, and c, respectively. All the molecular areas were128

calculated per EtP5A molecule. Compared to pure EtP5A, the129

πC for all mixed systems increased, suggesting that pseudoro-130

taxane formation and concomitant lateral hydrophobic interac-131

tions between alkyl chains improved monolayer rigidity. The con-132

stant AL and πC indicate that EtP5A forms a nearly identical two-133

dimensional film when mixed with guests having carbon numbers134

greater than 18, where [3]pseudorotaxane is stabilized as dis-135

cussed later. In contrast, the mixed systems with G5-14 and G5-136

16 exhibited larger AL and lower πC than those with G5-18 and137

other guests. Note that a similar collapse area of 1.20 nm2 for138

pure EtP5A and the mixture with G5-14 implies that the mixture139

system mainly consists of a 1:1 complex, that is, [2]pseudorotax-140

ane. The gradual shift in the AL with increasing carbon num-141

ber indicates that the stoichiometry of pseudorotaxane forma-142

tion depends on the carbon number of the guest molecules.12 In143

other words, it is plausible that the composition of the monolay-144

ers—[2]pseudorotaxane, [3]pseudorotaxane, and uncomplexed145

molecules—varies depending on the type of guest molecule, given146

that the π–A isotherms provide average information about the147

Langmuir films on the water surface, which extend over an area148

of several hundred cm2.149

To assess the effect of the molecular mixing ratio, we analyzed150

π–A isotherms for a mixture with G5-20, which has a sufficiently151

long carbon chain to stabilize the monolayer state, as shown in152

Fig. 2b,c. Here, when nA represents the number of molecules of A,153

the host-guest stoichiometric ratio (SR) is defined as nG5/nEtP5A154

in the mixing solution. The horizontal axis in Fig. 3a and the155

AL in Fig. 3b are plotted against the area per EtP5A molecule.156

Given that the collapse behavior of Langmuir films depends on157

the compressibility of the entire film, the collapse area is repre-158

sented as a mean value for all mixed molecules (Fig. 3c). As159

expected, π–A plots approached the characteristics of pure EtP5A160

(or pure G5-20) as the stoichiometric ratio approached zero (or161

infinity) (Fig. S8, ESI†). Interestingly, the AL per EtP5A molecule162

and the collapse behavior exhibited a clear bifurcation at a sto-163

ichiometric ratio of 3/7. Within each of the two groups, the AL164

can be approximated by a linear trend with an intersection of ap-165

proximately 0.33. The decrease in the molecular area of binary166

Langmuir films is often indicative of specific attractive interac-167

Journal Name, [year], [vol.],1–4 | 3

Page 3 of 5 ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/8
/2

02
5 

11
:4

0:
14

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5CC01040C

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cc01040c


tions.8,22 In this system, such a trend strongly suggests pseudoro-168

taxane formation. Assuming that all G5-20 molecules participate169

in complex formation under excess conditions of EtP5A (e.g., SR170

= 1/9, 2/8, 3/7), the number of EtP5A molecules involved in171

each pseudorotaxane can be estimated from the AL. The results172

are 2.1, 2.3, and 2.0 EtP5A molecules, respectively, strongly in-173

dicating that [3]pseudorotaxane is the dominant species in the174

mixed monolayer films. Conversely, under conditions where G5-175

20 is in excess, the decrease in area surpasses the value expected176

from molecular interactions associated with pseudorotaxane for-177

mation, making it challenging to describe the behavior with a178

simple additivity rule. Further investigations are necessary to elu-179

cidate this phenomenon. Nonetheless, the identical collapse be-180

havior implies that the monolayers include [3]pseudorotaxane.181

In conclusion, we systematically investigated monolayers of182

ethoxy-substituted P5A and mixtures with fatty acid guests. Lin-183

ear fatty acid guests lead to pseudorotaxane monolayers with184

P5A cavities oriented toward the water surface. The mixing ra-185

tio and chain length of the guests influenced the stoichiometry186

of pseudorotaxane formation and monolayer composition. This187

study provides insight into P5A-based pseudorotaxane monolay-188

ers for various applications. The simple procedure employed189

for monolayer formation also offers the possibility of introducing190

functional properties by appropriately selecting host and guest191

molecules. Furthermore, by removing guest molecules after the192

formation of aligned pseudorotaxane films, these materials can193

be explored for applications in sensors and filters.23–25
194
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