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hydroxide crystals exhibiting high fluoride ion
adsorption properties and chemical stability†
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Fluoride ion (F−) contamination of groundwater has become a global issue. As potential adsorbents for F−

removal, layered double hydroxides (LDHs) have moderate affinities for F−. Moreover, the preparation of

LDHs exhibiting both high F− adsorption capacities and chemical stability is empirically challenging. To

overcome this issue, we used process informatics to explore promising ternary LDHs with high F−

adsorption capacities and chemical stability. We constructed machine learning models based on F−

adsorption test data and Bayesian optimisation. Initially, the objective variable for LDH candidates was the

F− adsorption amount. By considering LDH systems that combine one type of divalent cation (M2+) with

two types of trivalent cation (M3+), ternary LDHs such as Ni–Fe–Ga and Ni–Al–Ga LDHs, which have not

been studied previously, were proposed. The subsequent addition of the M2+ leaching amount as an

objective variable allowed the identification of LDHs such as Ni–Fe–Y and Ni–Cr–Y LDHs with high F−

adsorption capacities (15–17 mg g−1 at 1 mM F−, Kd > 4600–8300 mL g−1) and chemical stability. Projected

crystal orbital Hamilton population analysis indicated that the M2+–O bonds in Ni–Al–Ga and Ni–Cr–Y LDHs

have a stronger covalent character than those in Mg-based LDHs. These findings provide guidelines for the

synthesis of novel LDHs with various compositions.

1. Introduction

The increasing prevalence of fluoride ion (F−) contamination
in groundwater necessitates the development of efficient F−

removal methods. The World Health Organization has set a
maximum limit of 1.5 mg L−1 for F−,1 but many regions of
Africa and countries such as China, Canada, Australia, and
India are affected by high F− levels. F− naturally occurring in
minerals such as calcium fluoride and as a component of
volcanic gases can lead to F− dissolution in groundwater.2

Groundwater is also susceptible to contamination by other

chemical substances, which can pose threats not only to
human and livestock health but also to agriculture.3

Various types of materials, including activated alumina,
mixed metal oxides or hydroxides, metal–organic frameworks,
and carbon-based composites, have been investigated as
adsorbents for F− removal from aqueous solution.4–14 In
particular, layered double hydroxides (LDHs) are good
candidates for F− removal because of their high chemical
stability.15–18 As inorganic layered compounds, LDHs are
characterised by a structure in which host layers of metal
hydroxides alternate with intercalated guests (anions or water
molecules). The intercalation of anions or water molecules
compensates for the positive charge of the metal hydroxide
layers. LDHs have a general formula of [M2+

1−xM
3+

x(OH)2]
[An−]x/n·yH2O (M2+ = Mg2+, Zn2+, Ni2+, Co2+; M3+ = Al3+, Ga3+,
Fe3+; An− = CO3

2−, SO4
2−, Cl−; x = 0.2–0.4), where [M2+

1−x-
M3+

x(OH)2] represents the positively charged brucite-like
sheets and An− represents the intercalated anions.19 Unlike
most ion-exchangeable layered materials that undergo cation
exchange, LDHs are unique inorganic compounds capable of
exchanging anions in the guest layer with those in
solution.19,20 The anion selectivity and affinity are dependent
on the combination and clustering of structures in the LDH.21

We have previously highlighted the importance of atomic
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arrangement in two-dimensional hydroxide layers.21,22 The
chemical stability of LDHs is also an important issue for
practical applications.

Materials informatics, including process informatics, is a
powerful methodology for exploring new functional
materials.23,24 Machine learning (ML)-based models can be
constructed to predict promising candidate variables X based
on objective variables Y. Conventional experimental
approaches using ML typically select candidates for
subsequent experimental conditions based on estimated Y
values that are close to the target value. However, if
candidates with a higher probability of success are identified,
fewer experimental iterations are required to reach the target
Y values.

Herein, we introduce an ML-based model for exploring
new LDHs that exhibit high F− adsorption capacities and
chemical stability. Fig. 1 shows the workflow employed to
search for new LDHs using Bayesian optimisation (BO),
wherein BO is an ML approach that proposes promising
candidate variables X based on Gaussian process regression
(GPR).25 First, to search for experimental conditions for
synthesising LDH candidates with high F− adsorption
capacities, an existing dataset was used to construct a GPR
model between features X (experimental conditions and LDH
information) and objective variables Y (F− adsorption and
M2+ leaching amounts). One million candidate experimental
conditions were randomly generated based on the conditions
in Table S1 in the ESI† and then input into the constructed
GPR model to predict Y values and their variance. An
acquisition function was calculated from the predictions and
variances, and the candidate experimental conditions with
the largest acquisition function values were selected. The
LDH candidates were then synthesised using the selected
experimental conditions, the F− adsorption and M2+ leaching
amounts were analysed, and the obtained numerical results
were added to the dataset. Repeating this cycle enabled the
efficient exploration of ternary LDH systems, including in
extrapolated regions. Consequently, we were able to discover
promising new LDHs, such as Ni–Al–Ga, Ni–Fe–Y, and Ni–Cr–
Y LDHs, which were not previously known.

2. Materials and methodology
2.1. Datasets

LDH samples for the training and validation datasets were
synthesised using the coprecipitation method and then
subjected to hydrothermal treatment to increase their
crystallinity. The library of training and validation datasets is
provided in the ESI.† The synthesis conditions for the LDH
samples in the validation dataset are summarised in Tables
S2–S6 (runs 1–17) in the ESI.†

Analytical-grade salts, including Mg(NO3)2·6H2O,
Zn(NO3)2·6H2O, Ni(NO3)2·6H2O, Mn(NO3)2·6H2O,
Al(NO3)3·9H2O, Fe(NO3)3·9H2O, Cr(NO3)2·9H2O, Ga(NO3)3·nH2-
O, Y(NO3)3·nH2O, NaOH, Na2CO3, HCl, and NaCl were
purchased from Wako Pure Chemical Industries, Ltd. (Japan)
and used as received. Typically, Ni, Fe, and Ga nitrates were
dissolved in 100 mL of ultrapure water to obtain a 15–100
mM solution (solution A), and NaOH and Na2CO3 were
dissolved in 200 mL of ultrapure water to obtain a 100 mM
alkaline solution (solution B). Subsequently, solution B was
quickly added dropwise to solution A under stirring at a pH
of approximately 10. The obtained mixture was aged for 20 h
under continuous stirring. The resulting dispersion was
transferred to an autoclave and heated at the desired
temperature for the required holding time. After cooling, the
slurry was filtered and dried at 60 °C overnight. Finally, after
immersion in an acidic aqueous solution containing HCl
(33.0 mM) and NaCl (4.0 M) overnight to exchange CO3

2−

with Cl− in the interlayers, the sample was dried at 60 °C
under atmospheric conditions. The samples were named
using the constituent metal species and atomic fraction of
M2+ relative to the total amount of metals (M2+ and M3+).
Using run 5 in Table S2 in the ESI† as an example, the
sample with a chemical composition of [Ni0.67Fe0.23-
Ga0.10(OH)2]Cl0.33·nH2O was named Ni–Fe–Ga-067 LDH.

2.2. Ion adsorption tests

The F− adsorption performance of the LDH samples was
investigated using batch experiments. Solutions were
prepared using reagent-grade NaF (Wako Pure Chemical
Industries, Ltd., Japan). In a typical experiment, LDH powder
was added to a solution in a capped bottle, and the mixture
was agitated overnight at 150 rpm using an automatic shaker.
After separating the test solution from the LDH crystals using
a 0.2 μm syringe filter, ion chromatography (HIS-20A,
Shimadzu, Japan) was used to determine the residual F−

concentration in the solution and the adsorption amount q
(mg g−1) of F− per gram of LDH. The initial F− concentration
was 1 mM.

The distribution coefficient Kd was used to evaluate the
preference for F− and is expressed by eqn (1):

Kd ¼ C0 −Ceð Þ
Ce

V
m
; (1)

where C0 and Ce are the initial and equilibrium F−

concentrations (mg L−1), V is the volume (mL) of the testFig. 1 Workflow for proposed experiments using BO.
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solution, and m is the amount of ion exchanger (g). The
amount of leached M2+ was determined using inductively
coupled plasma atomic emission spectroscopy (ICP-OES;
SP5510 Type S, SII Nano Technology Inc., Japan and ICPE-
9820, SHIMADZU Corp., Japan).

The effect of competitive ions on the Kd was determined
using the batch method. The conditions were as follows: F− =
0.2 mM; Cl−, NO3

−, HCO3
−, SO4

2− = 0.2 mM; volume/mass
ratio = 1000 mL g−1; final pH = 5.6–6.5; room temperature;
and shaking time = 1 h. Solutions were prepared using
reagent-grade NaF, NaCl, NaNO3, NaHCO3, and Na2SO4

(Wako Pure Chemical Industries, Ltd., Japan). The total anion
concentration was 1 mM.

2.3. Characterisation

X-ray diffraction (XRD) patterns were collected using a
MiniFlex II diffractometer (Rigaku, Japan) or SmartLab
diffractometer (Rigaku, Japan) with monochromated Cu Kα

radiation (λ = 0.15418 nm). Field-emission scanning electron
microscopy (FE-SEM) images and energy-dispersive X-ray
spectroscopy data were obtained using a JSM-7600F
instrument (JEOL, Japan). The water content in the samples
was determined using thermogravimetry-differential thermal
analysis (TG-DTA; Thermo Plus EVOII TG8120, Rigaku, Japan)
at a heating rate of 10 °C min−1 in an air flow.

2.4. Gaussian process regression (GPR)

GPR is a linear regression analysis method that can be
extended to nonlinear regression models using a kernel
trick.26 GPR can be used to predict Y values and the variance
of the predicted Y values, enabling researchers to discuss the
reliability and extrapolation of the predicted Y values. When
input x is given, output y(x) is represented as a probability
model following a normal distribution. Assuming that the
GPR model is linear, the i-th sample is expressed by eqn (2):

y(i) = x(i)b, (2)

where b is a vector of the regression coefficients. The prior
distribution of b assumes a normal distribution with a zero
mean and variance σb

2. Then, mean vector mi of y(i) and
covariance σyi, j

2 of y(i) and y( j) are calculated using eqn (3)
and (4):

mi = E[y(i)] = 0, (3)

σyi, j
2 = cov[y(i), y( j)] = x(i)x( j)Tσb

2. (4)

Input x is transformed by the nonlinear function φ, and
σyi, j

2 is calculated using eqn (5):

σyi, j
2 = φ(x(i))φ(x( j))Tσb

2. (5)

As Y values have measurement errors, the i-th sample
(including the measurement error) is set as yobs

(i) and its

measurement error is set as e(i). Thus, yobs
(i) is given by

eqn (6):

yobs
(i) = y(i) + e(i), (6)

where e(i) assumes a normal distribution with a zero mean
and variance σe

2, and e(i) is independent for each sample.
Then, the covariance σyobs,i, j

2 between yobs
(i) and yobs

( j) is
calculated as follows (eqn (7)):

σyobsi, j
2 = φ(x(i))φ(x( j))Tσb

2 + δi, jσe
2 = K(x(i), x( j)), (7)

where K is a kernel function.
In the GPR method, if output yobs = (yobs

(1)⋯yobs
(n))T

corresponding to the past input vector x(1)⋯x(n) is used as
training data, the output for the new input vector x(n+1) can
be predicted as a normal distribution with mean m(x(n+1))
and variance σ2(x(n+1)) using eqn (8) and (9):

m x nþ1ð Þ
� �

¼ k
X−1
n

yobs; (8)

σ2 x nþ1ð Þ
� �

¼ K x nþ1ð Þ; x nþ1ð Þ
� �

− k
X−1
n

kT ; (9)

which are subject to eqn (10):

k = [K(x(1), x(n+1)) K(x(i), x(n+1))⋯K(x(n), x(n+1))]. (10)

Output y*obs ¼ yobs
1ð Þ⋯yobs

nð Þ; yobs
nþ1ð Þ� �T

can be predicted
as a Gaussian distribution, as shown in eqn (11):

(11)

which is subject to eqn (12) and (13):

K = [K(x(1), x(n))⋯K(x(i), x(n))⋯K(x(n), x(n))], (12)

k* = [K(x(n+1), x(n+1))]. (13)

Output yobs
(n+1) for the new input vector x(n+1) can be

estimated using eqn (14):

(14)

Similar to the dataset, the X variables are the heating
temperature [°C], holding time [h], M2+, MI

3+ × 1, MI
3+ × 2,

and F− concentration [mM], as summarised in Table S1 in
the ESI.†

2.5. Bayesian optimisation (BO)

BO is a method for calculating an acquisition function (AF)
that considers the predicted Y values and the variance of the
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predicted Y values and for selecting candidate variables X
with the highest AF values.27,28 In BO, the GPR model is used
to calculate a predicted Y value and its variance for a new
sample, which are then used to calculate an AF value. In this
study, we used the probability of improvement (PI) and
probability in the target range, which can be reasonably
extended to multiple Y values as an AF. The PI is the
probability that the predicted Y value is higher than the
maximum value of the existing samples, which corresponds
to the integration of the maximum value of Y (Ymax) in the
samples to infinity in a normal distribution, where the
estimated Y value and its variance are the mean and variance,
respectively. PI(xnew), the PI value in new sample xnew, is
given by eqn (15):

PI xnewð Þ

¼
ð∞

Y maxþε

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2 xnewð Þp exp − 1

2σ2 xnewð Þ x − μ xnewð Þð Þ2
� �

dx;

(15)

where μ(xnew) is the estimated Y value, σ2(xnew) is its variance,

and the value of ε is 0.001.
The probability that the predicted Y value is less than the

minimum value of the samples can be expressed by
calculating the PI after multiplying the Y values by −1. The
probability in the target range, which is the probability that
the estimated Y value falls within the target range, is
expressed as the difference between the PI determined using
the upper limit of the set range (Yrange,max) and that
determined using the lower limit of the set range (Yrange,min),
as in eqn (16):

PTR(xnew) = PImin(xnew) − PImax(xnew), (16)

which is subject to eqn (17) and (18):

PImax xnewð Þ

¼
ð∞

Y range;maxþε

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2 xnewð Þp exp − 1

2σ2 xnewð Þ x − μ xnewð Þð Þ2
� �

dx;

PImin xnewð Þ

¼
ð∞

Y range;minþε

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2 xnewð Þp exp − 1

2σ2 xnewð Þ x − μ xnewð Þð Þ2
� �

dx:

2.6. Random forest (RF) analysis

The RF regression method is based on ensemble learning. In
this method, multiple decision trees are constructed, and the
predictions are integrated to obtain a final prediction.29 Samples
and X variables are randomly selected from the dataset, and
decision trees are constructed. The predictive performance of
the RF models can be evaluated using out-of-bag data, which are
samples not used in constructing the decision tree. The
importance of the X variables can be evaluated using eqn (19):

Ij ¼ 1
k

X
T

X
t∈T ; j

mt

m
ΔEt;

where k is the number of decision trees to be constructed, T is
the decision tree in which j-th X variables are used, t is the node
of the decision tree at T, m is the number of samples, mt is the
number of samples at node t, and ΔEt is the difference in the
evaluation function at t. A larger Ij value indicates a more
important X variable.

2.7. First-principles calculations

Simulations of the three LDH systems, namely Ni–Al–Ga, Ni–
Cr–Y, and Mg–Al LDHs, were performed within the
framework of density functional theory (DFT) using the
Vienna ab initio simulation Package.30,31 The systems were
modeled using a 3 × 3 × 1 supercell containing 171 atoms,
where a periodic arrangement of divalent and trivalent

cations resulted in a
ffiffiffi
3

p
×

ffiffiffi
3

p
cation ordering pattern.

Initially, intercalated chloride (Cl−) ions and water molecules
were placed in an orderly manner within the interlayer, with
the Cl− ions positioned on top of the trivalent cations. Spin-
polarized calculations were carried out using the projector
augmented wave method,32,33 and the Perdew–Burke–
Ernzerhof functional34 was used for the exchange-correlation
treatment. The Brillouin zone was sampled using a 2 × 2 × 1
k-point mesh, and a plane-wave cutoff energy of 520 eV was
employed. To account for long-range van der Waals
interactions, the Becke–Johnson damping variant of the DFT-
D3 dispersion correction was applied.35 The systems were
fully optimized until the forces on all atoms were less than
0.02 eV Å−1. Bonding analysis was conducted using the
LOBSTER program to determine the crystal orbital Hamilton
population (COHP),36–38 which provides insights into the
nature and strength of the chemical bonds in the systems.

3. Results and discussion

In the first cycle, BO was performed using a single objective
variable Y (F− adsorption amount). The explanatory variables X,
including the types of metals and synthetic conditions, used in
the ML model are summarised in Table S1 in the ESI.†
Experimental conditions for synthesising LDHs were proposed
based on high PI values for the AF, as summarised in Table S2
in the ESI,† and the following five LDH systems were selected:
Mn–Cr–Y, Mn–Y, Mg–Y, Mg–Fe–Y, and Ni–Fe–Ga LDHs. Fig. 2
shows the XRD patterns of the obtained LDHs, and we found
that Ni–Fe–Ga-067 LDH was obtained as a single-phase LDH
crystal after the hydrothermal treatment, whereas the Mn–Cr–
Y, Mn–Y, Mg–Y, and Mg–Fe–Y LDH samples did not exhibit any
peaks derived from a layered structure.

The results of the F− adsorption tests and M2+ leaching
analysis are presented in Table S2 in the ESI.† The LDH
samples without a layered structure (Mn–Cr–Y, Mn–Y, Mg–Y,
and Mg–Fe–Y LDHs) exhibited lower F− adsorption amounts
than conventional LDHs. In contrast, Ni–Fe–Ga-067 LDH with

(17)

(18)
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a layered structure showed a high F− adsorption amount of
18.6 mg g−1 and a removal rate of 97.7% (Kd = 4248 mL g−1).
SEM imaging of Ni–Fe–Ga-067 LDH (Fig. S1 in the ESI†)
revealed LDH particles with a lateral size of 200–300 nm. The
chemical composition of this sample was analysed using ICP-
OES, as summarised in Table S3 in the ESI.† The Ni and Fe
contents in Ni–Fe–Ga-067 LDH corresponded well to the
target composition, whereas the Ga3+ content deviated by
approximately 40%, mainly because of the effect of the
hydrate of the Ga source. Based on the TG-DTA profile of Ni–
Fe–Ga-067 LDH in Fig. S2 in the ESI,† the water content was
estimated to be 4.9 wt%. Thus, the chemical formula of this
sample can be written as [Ni0.70Fe0.24Ga0.06(OH)2]
[Cl−]0.30·0.30H2O.

Using the GPR for a second cycle, BO was conducted to
select the next five samples with high PI values for the AF
(Table S4 in the ESI†). The selected compositions were Ni–Y,
Ni–Fe–Cr, Mg–Al–Ga, Mn–Al–Fe, and Ni–Al–Ga. Among these
samples, Ni–Y LDH consisted of two elements, whereas the
other four samples were ternary LDHs. Compared with the
first cycle, the divalent metal Ni2+ was predominantly chosen
in the second cycle. In addition, the second cycle proposed
LDHs with various combinations of Al, Fe, and Ga. Similar to
the first cycle, all the experimental candidates differed from
those in the starting dataset. As shown by the XRD patterns
in Fig. 3, Mg–Al–Ga, Ni–Al–Ga, and Ni–Fe–Cr LDHs were
synthesised as single-phase LDH structures, whereas Mn–Al–
Fe and Ni–Y LDHs did not exhibit peaks characteristic of
layered structures.

The results of the F− adsorption tests and M2+ leaching
analysis are presented in Table S4 in the ESI.† The Ni–Y-080
and Mn–Al–Fe-067 LDH samples without layered structures
exhibited lower F− adsorption amounts than the other LDHs.
Although Mg–Al–Ga-067 and Ni–Al–Ga-067 LDHs showed
high F− adsorption amounts (>17.4 mg g−1), these samples
did not outperform Ni–Fe–Ga-067 LDH synthesised in the

first cycle. However, Ni–Fe–Ga-067 LDH exhibited a greater
extent of M2+ dissolution, indicating that the LDHs
synthesised in the second cycle achieved higher chemical
stability than those synthesised in the first cycle.

Next, we explored LDHs with both high F− adsorption
capacities and chemical stability using two objective variables
Y (F− adsorption and M2+ leaching amounts). We selected five
samples (Zn–Al–Ga, Zn–Al–Y, Zn–Al–Fe, and Zn–Al–Cr LDHs)
with high PI values for the AF using GPR, and the
corresponding experimental conditions X are summarised in
Table S5 in the ESI.† Fig. 4 on the top panel shows XRD
patterns of the obtained LDH crystals. Only Zn–Al–Ga-067
LDH exhibited a single-phase LDH structure. Although LDH-
derived peaks were observed for Zn–Al–Ga-080 and Zn–Al–Cr,
a ZnO impurity phase was also observed.

The results of the F− adsorption tests and M2+ leaching
analysis in Table S5 in the ESI† reveal that the Zn–Al–Ga, Zn–
Al–Y, Zn–Al–Fe, and Zn–Al–Cr LDH samples with a ZnO
impurity phase exhibited lower F− adsorption amounts than
the other LDHs. Zn–Al–Ga-067 LDH showed a high
adsorption capacity of 18.5 mg·g−1, but the M2+ leaching
amount was 5.87 mg·L−1, indicating poor chemical stability.

After incorporating the proposed samples into the dataset,
we conducted BO again using the GPR to select two samples
with high PI values for the AF. The proposed experimental
conditions X of the selected samples (Ni–Fe–Y-067 and Ni–
Cr–Y-067 LDHs) are summarised in Table S6 in the ESI.†
Similar to the first cycle, only LDHs with three elements were
proposed. As shown by the XRD patterns in the bottom panel
of Fig. 4, both selected samples were obtained as single-
phase LDHs. Furthermore, ICP-OES analysis revealed that the
Fe, Cr, and Y ion contents of the Ni–Fe–Y and Ni–Cr–Y LDH
samples were similar to the target composition, and the
chemical formulas were determined to be [Ni0.64Fe0.25-
Y0.09(OH)2Cl0.34] and [Ni0.67Cr0.25Y0.08(OH)2Cl0.33], respectively.
He et al. previously reported the synthesis of Ni–Fe–Y LDH.39

Fig. 2 XRD patterns of (a) Mn–Cr–Y-067, (b) Mn–Cr-067, (c) Mg–Y-
070, (d) Mg–Fe–Y-080, and (e) Ni–Fe–Ga-067 LDHs with that of (f)
Mg0.667Al0.33(OH)2(CO3)0.166·0.5H2O (PDF 00-066-0802) shown for
comparison. The synthetic conditions for the LDHs are summarised in
Table S2 in the ESI.†

Fig. 3 XRD patterns of (a) Ni–Y-080, (b) Ni–Fe–Cr-067, (c) Mg–Al–Ga-
067, (d) Mn–Al–Fe-067, (e) Ni–Al–Ga-067 LDHs with those of (f)
Mg0.667Al0.33(OH)2(CO3)0.166 (PDF 00-066-0802) and (g) Mn3O4 (PDF
00-013-0162) shown for comparison. The synthetic conditions for the
LDHs are summarised in Table S4 in the ESI.†
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However, in this study, Ni–Fe–Y LDH had a slightly different
chemical composition and was used as an electrocatalyst
instead of an adsorbent.

Based on of the F− adsorption tests and M2+ leaching
analysis in Table S6 in the ESI,† the F− adsorption and M2+

leaching amounts of Ni–Fe–Y-067 LDH were 15.78 mg·g−1 and
3.4 mg L−1, respectively, whereas those of Ni–Cr–Y-067 LDH
were 17.09 mg g−1 and 1.5 mg L−1, respectively. These
samples exhibited lower M2+ dissolution than Zn–Al–Ga-067,
indicating that the LDHs synthesised in the second cycle with
two objective variables had greater chemical stability than
those produced in the first cycle.

Fig. 5A shows the optimisation process of the F−

adsorption and M2+ leaching amounts for the LDHs as
functions of the number of experiments. We highlight that
the F− adsorption amount fluctuated somewhat but gradually
increased, whereas the M2+ leaching amount gradually
decreased. Fig. 5B shows the correlation between these

variables, where Y = 1 represents the samples from BO with a
single objective (F− adsorption amount) and Y = 2 represents
the samples from BO with two objectives (F− adsorption and
M2+ leaching amounts). Compared with the samples from the
first cycle, the samples from the second cycle are plotted in
the bottom-right corner of the graph, regardless of whether
one or two objective variables were considered. Although Ni–
Cr–Y-067 LDH (run 17, Table S6 in the ESI†), which was
proposed using two objectives, did not exhibit a higher F−

adsorption amount than Ni–Al–Ga-067 LDH (run 10, Table S4
in the ESI†), the M2+ leaching amount of Ni–Cr–Y-067 LDH
was lower than that of Ni–Al–Ga-067 LDH, indicating higher
chemical stability and confirming the correctness of the
present approach. The addition of the M2+ leaching amount
as an objective variable allowed for the fabrication of LDH
materials with both high F− adsorption capacities and
chemical stability. Thus, compared with traditional methods,
iterating the experimental condition proposed using BO
provides a more cost-effective and efficient method to search
for LDH materials with high F− adsorption capacities.

Fig. S3 in the ESI† shows a comparison of the F−

adsorption amounts of the LDHs prepared in the present
study with those of previously reported adsorbents under

Fig. 4 (Top) XRD patterns of (a) Zn–Al–Ga-080, (b) Zn–Al–Y-080, (c)
Zn–Al–Fe-080, (d) Zn–Al–Cr-080, and (e) Zn–Al–Ga-067 LDHs with
those of (f) Mg0.667Al0.33(OH)2(CO3)0.166·0.5H2O (PDF 00-066-0802)
and (g) ZnO (PDF 00-036-1451) shown for comparison. The synthetic
conditions for the LDHs are summarised in Table S5 in the ESI.†
(Bottom) XRD patterns of (a) Ni–Fe–Y-067 and (b) Ni–Cr–Y-067 with
that of (c) Mg0.667Al0.33(OH)2(CO3)0.166·0.5 H2O (PDF 00-066-0802)
shown for comparison. The synthetic conditions for the LDHs are
summarised in Table S6 in the ESI.†

Fig. 5 A) Changes in the F− adsorption amount (black squares) and
M2+ leaching amount (red open circles and dashed line) of LDHs with
the number of runs in the BO process. B) Correlation between F−

adsorption and M2+ leaching amounts of LDHs.
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similar conditions.6–15 Notably, the LDHs proposed by BO
exhibit superior F− adsorption capacities compared with the
previously reported adsorbents.

Competitive F− adsorption experiments were then
performed in the presence of Cl−, NO3

−, HCO3
−, and SO4

2−,
according to literature.40–42 We used the synthesised Ni–Al–
Ga, Ni–Cr–Y, and Mg–Al LDHs with chemical compositions of
Ni0.67Al0.10Ga0.23(OH)2Cl0.33, Ni0.67Cr0.23Y0.10(OH)2Cl0.33, and
Mg0.67Al0.33(OH)2Cl0.33, respectively. Ni–Al–Ga, Ni–Cr–Y, and
Mg-Al LDHs achieved removal efficiencies of 82.0%, 83.2%,
and 71.0%, respectively, with Kd values of 4564, 4951, and
2248 mL g−1, respectively. The higher removal efficiencies
and Kd values of Ni–Cr–Y and Ni–Al–Ga LDHs demonstrates
their excellent fluoride adsorption performance under
competitive adsorption conditions.

To explain the higher chemical stability of Ni–Al–Ga and
Ni–Cr–Y LDHs compared with that of Mg–Al LDH, bonding
analysis was conducted. Fig. 6 shows the projected crystal
orbital Hamilton population (pCOHP) between the divalent
cations (M2+) and the neighbouring oxygen atoms in these
LDHs. A negative COHP value (or the positive region in
–pCOHP) indicates bonding interactions, whereas a positive
COHP value (or the negative region in –pCOHP) indicates
anti-bonding interactions. The integrated value of COHP up
to the Fermi level (iCOHP) quantifies the strength of the
bonding interactions between the divalent cations and
oxygen atoms. A more negative iCOHP value indicates
stronger bonding and higher covalency. Despite the
noticeable presence of filled anti-bonding states just below
the Fermi level, the Ni–O bond in Ni–Cr–Y LDH has the most
negative iCOHP value, followed by that in Ni–Al–Ga. This
indicates that the M2+–O bonds in Ni–Al–Ga and Ni–Cr–Y
LDHs have a stronger covalent character (Fig. 6a and b). On
the other hand, the Mg–O bond in Mg–Al LDH has the least
negative iCOHP value, suggesting that it is more ionic in
nature, with weaker orbital interactions between Mg and O
(Fig. 6c). To further understand the bonding interactions
determined from the COHP analysis, the projected density of
states of the three LDHs were analysed. As shown in Fig. S4
in the ESI,† the Ni 3d orbitals in Ni–Al–Ga and Ni–Cr–Y LDHs
significantly overlap with the O 2p states, particularly in the

energy range below the Fermi level. This indicates strong
hybridisation between the Ni 3d and O 2p states, which
enhances the covalency of the metal–oxygen bonds. In the
case of Mg–Al LDH, as Mg primarily consists of s and p
states, its orbitals exhibit minimal overlap with the O 2p
orbitals. Thus, the higher chemical stability of Ni–Al–Ga and
Ni–Cr–Y LDHs can be attributed to the stronger covalent
character of the Ni2+–O bonds, whereas the more ionic Mg–O
interactions in Mg–Al LDH lead to lower chemical stability.

We then discuss the structural stability of the LDHs
because several samples proposed by BO failed to produce an
LDH structure. We performed an RF analysis to examine the
importance of the dataset features (Fig. 7A). The following
explanatory variables were considered: heating temperature,
holding time, fractions of MI

3+ and MII
3+, F− adsorption

amount, fraction of M2+, ionic radii of M2+, MI
3+, and MII

3+,
electronegativity χ of M2+, MI

3+, and MII
3+, weighted-average

ionic radius, and weighted-average χ. The weighted-average
ionic radius accounted for approximately 91% of the total
importance, whereas the significance of the other parameters
was negligible. These findings indicate that the presence or
absence of an LDH structure was significantly influenced by
the weighted average of the ionic radius. Visualisation of the
weighted-average ionic radius values using the dataset shown
in Fig. S5 in the ESI† revealed that samples tended not to
exhibit an LDH structure when the weighted-average M2+,
MI

3+, and MII
3+ ionic radius exceeded 0.71 Å. We also

examined the effect of the weighted-average M3+ ionic radius
of Mg- and Ni-based LDHs on the formation of the brucite-
type LDH structure. The results confirmed that this LDH
structure does not form when the weighted-average ionic
radius of the trivalent cation MI

3+/MII
3+ exceeds 0.77 Å as

summarized in Fig. S6.† These effects of this variable on LDH

Fig. 6 COHPs of (a) Ni0.67Al0.10Ga0.23(OH)2Cl0.33, (b)
Ni0.67Cr0.23Y0.10(OH)2Cl0.33, and (c) Mg0.67Al0.33(OH)2Cl0.33.

Fig. 7 A) RF analysis of explanatory variable importance. B) Schematic
diagram of the two-dimensional layer of an LDH viewed from the top.
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formation can be explained by considering Mg–Al and Mg–Y
LDHs as examples. Fig. 7B shows a schematic diagram of the
two-dimensional layer of an LDH viewed from the top. The
ionic radii of Mg2+, Al3+, and Y3+ are 0.72, 0.535, and 0.90 Å,
respectively.43 As Y3+ has a larger ionic radius than Al3+, the
electrostatic repulsion between adjacent metals in Mg–Y LDH
(i.e., Mg2+–Y3+ and Y3+–Y3+) is stronger than that between
adjacent metals in Mg–Al LDH (i.e., Mg2+–Al3+ and Al3+–Al3+).
Thus, suppressing the electrostatic repulsion in the two-
dimensional oxide layer is likely important for the formation
of the LDH structure.

4. Conclusions

We explored LDH materials with both high F− adsorption
capacities and chemical stability using BO with the GPR. The
use of one (F− adsorption amount) or two target variables (F−

adsorption and M2+ leaching amounts) enabled us to find
new LDHs in the extrapolated region of the chemical space.
The proposed LDHs, including Ni–Al–Ga, Ni–Fe–Y, and Ni–
Cr–Y LDHs, were not present in the original dataset and
showed high F− adsorption capacities and chemical stability.
The DFT calculation results explained the high chemical
stability of the newly discovered Ni-based LDHs. Visualisation
revealed that samples with a weighted-average ionic radius
exceeding 0.71 tended to lack an LDH structure. The inability
to synthesise LDHs may be attributable to significant
differences in the ionic radii of the divalent and trivalent
metals, resulting in increased electrostatic repulsion between
the metal oxide octahedra.
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