Issue 1, 2025

First principles study on monolayer GeTe as an anode material for multivalent ion batteries

Abstract

Finding suitable anode materials for multivalent ion batteries (MuIBs) is the key to improving theoretical capacity, reducing development costs and enhancing the safety of energy storage batteries. In recent years, monolayer GeTe has been reported as an anode material in monovalent ion batteries, but it has not received much attention in MuIBs. This article uses first principles methods based on density functional theory (DFT) to explore the application prospects of monolayer GeTe with a unique serrated wrinkled layer structure as an anode material for multivalent metal ion (Al3+/Mg2+/Ca2+) batteries. The research results show that Al3+, Mg2+ and Ca2+ have low diffusion barriers (0.47, 0.35 and 0.61 eV) on monolayer GeTe, indicating its excellent diffusion ability and fast charge discharge rate during the charging and discharging process. Reasonable open circuit voltages (0.62, 0.85 and 0.64 V) and theoretical specific capacities higher than those of commercial graphite anode materials (624.6, 446.1 and 446.1 mA h gāˆ’1) indicate that monolayer GeTe has the ability to store Al3+/Mg2+/Ca2+. Finally, molecular dynamics simulations (MD) are used to calculate the adsorption energy and density field of ions during their movement on the surface of monolayer GeTe, demonstrating the stable adsorption ability of monolayer GeTe and the strong interaction between the two. This article reveals that monolayer GeTe can be used as a promising candidate anode material for MuIBs.

Graphical abstract: First principles study on monolayer GeTe as an anode material for multivalent ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
14 Sep 2024
Accepted
26 Nov 2024
First published
27 Nov 2024

Phys. Chem. Chem. Phys., 2025,27, 520-530

First principles study on monolayer GeTe as an anode material for multivalent ion batteries

J. Chen, Z. Zhou and R. Zhang, Phys. Chem. Chem. Phys., 2025, 27, 520 DOI: 10.1039/D4CP03568B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements