Formation of C5H6 isomers: a combination of experimental and computational investigation

Abstract

A propagation mechanism originating from 1,3-cyclopentadienyl, a prearomatic resonantly stabilized radical, makes a significant contribution to the growth of polycyclic aromatic hydrocarbons and soot. 1,3-Cyclopentadiene, as the simplest 5-membered carbon closed-shell molecule that could generate 1,3-cyclopentadienyl via photolysis and H-elimination, is attracting attention from astrochemistry and combustion chemistry communities. The reaction of propargyl (˙C3H3) with ethylene (C2H4) was investigated in a micro SiC reactor under low-pressure (<100 Torr) conditions coupled with tunable synchrotron radiation photoionization and molecular beam mass spectrometry techniques. Their potential energy surfaces were explored by ab initio electronic structure calculations. Subsequently, microscopic kinetics were demonstrated by RRKM/master equation theory in consideration of temperature- and pressure-dependent effects. The analysis of the photoionization efficiency (PIE) analysis at m/z = 66 has confirmed the formation of C5H6 molecules with a cyclic structure, i.e. 1,3-cyclopentadiene, as well as its linear isomer 3-penten-1-yne. Supported by ionization energies and Franck–Condon factors from theoretical predictions, this work proposes the possible formation of C5H6 molecules with two linear isomers 1,2,4-pentatriene and 4-penten-1-yne. Kinetics reveal the discrepancy of product selectivity under diverse temperatures and pressures. Notably, the generation of 1,2,4-pentatriene prevails at high temperatures corresponding to combustion environments, followed closely by 4-penten-1-yne and 3-penten-1-yne formations. Conversely, 1,3-cyclopentadiene shows a strong yield predominance in a vacuum environment within 300–600 K. This finding provides a potential pathway to aromatic hydrocarbon formation, especially in the planetary nebulae and circumstellar envelopes of carbon-rich stars.

Graphical abstract: Formation of C5H6 isomers: a combination of experimental and computational investigation

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2024
Accepted
04 Feb 2025
First published
05 Feb 2025

Phys. Chem. Chem. Phys., 2025, Advance Article

Formation of C5H6 isomers: a combination of experimental and computational investigation

Y. Zhang, W. Li, C. Wang, C. Huang, H. Bian and L. Zhao, Phys. Chem. Chem. Phys., 2025, Advance Article , DOI: 10.1039/D4CP03728F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements