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Proton transport in liquid phosphoric acid: the
role of nuclear quantum effects revealed by
neural network potential†

Pei Liu, Wei Li * and Shuhua Li *

Pure phosphoric acid exhibits high proton conductivity and is widely used in modern industry. However,

its proton transport mechanism remains less understood compared to that of water, which presents a

significant challenge for advancing technologies like phosphoric acid fuel cells. In this study, we utilize

machine learning potentials and molecular dynamics (MD) simulations to investigate the proton diffusion

mechanisms in liquid phosphoric acid systems. The neural network potentials we developed

demonstrate quantum chemical accuracy and stability across a range of temperatures. Our simulations

reveal continuous proton hopping between phosphoric acid anions. Moreover, the radial distribution

functions and diffusion coefficients obtained from ring polymer MD—a variant of path-integral

MD—exhibit improved alignment with experimental values compared to classical MD results, as ring

polymer MD inherently accounts for nuclear quantum effects on proton behavior. Additionally, we

employed neural networks combined with the charge equilibration method to predict the charge

distribution in liquid phosphoric acid, examining the proton transport mechanism through vibrational

spectra analysis.

1. Introduction

Phosphoric acid, a widely used inorganic acid, plays a pivotal
role in modern industry as an essential chemical substance.1 It
has attracted considerable attention across various disciplines,
including atmospheric science,2 environmental science,3 and
astrophysics.4 Notably, phosphoric acid fuel cells represent the
first generation of commercialized fuel cell technology.5 Due to
its exceptional proton conductivity,6,7 pure phosphoric acid has
found extensive application in energy technologies, such as
proton exchange membrane fuel cells8–10 and phosphoric acid
fuel cells.11,12 Additionally, phosphate-based systems are cru-
cial in biological processes;13 the synthesis of adenosine tripho-
sphate (ATP) is driven by proton concentration gradients
between cellular compartments, with proton transport (PT)
occurring near the surface of the phospholipid membrane.14

Therefore, investigating the physicochemical properties of
phosphoric acid can provide valuable insights into the PT
mechanisms in more complex materials and biological sys-
tems, underscoring its scientific importance.

To gain deeper insights into the properties and behavior of
liquid phosphoric acid systems, molecular dynamics (MD)
simulations are a commonly employed approach. Classical
force fields (FFs), such as GROMOS15 and COMPASS,16 are
typically used to explore the structural and dynamical properties
of liquid phosphoric acid systems.17–19 These classical FFs can
reproduce experimental radial distribution functions (RDFs)
and densities,17 For example, Zhu et al. utilized classical
FFs to investigate the microscopic structure and hydrogen
bonding characteristics of pristine and phosphoric acid doped
polybenzimidazoles.18 However, these classical FFs have preci-
sion limitations and are incapable of describing chemical reac-
tions, making them inadequate for accurately modeling proton
transfer processes in liquid phosphoric acid systems. In contrast,
ab initio MD (AIMD) simulations are capable of describing
chemical reactions with higher precision, providing detailed
results such as vibrational spectra,20 PT chains,6 and intermedi-
ate scattering functions21 of phosphoric acid. Nonetheless, the
computational cost of AIMD scales significantly with system size,
often limiting simulations to small systems and time scales of
only a few ps.

To overcome these limitations and bridge the gap between
efficiency and accuracy, various machine learning (ML) algo-
rithms have been developed to construct FFs with ab initio
accuracy by learning from reference ab initio data.22–27 ML
potential (MLP)-based MD simulations combine the efficiency
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of classical FF methods with the precision of AIMD.25,26,28–32 In
these methods, the local atomic environment of each atom
serves as the input, and the total energy of a large system is
calculated by summing the atomic energy contributions, which
depend on the local environment. Equivariant neural networks
(NNs), such as NequIP,33 Allegro,34 and MACE,35 are employed to
construct equivariant interatomic potentials. These potentials
rely on relative interatomic position vectors and higher-order
geometric tensors, rather than just scalar distances or angles.
This enables the network to capture more complex geometric
relationships and exhibit both rotational and translational
equivariance. Compared to conventional neural network poten-
tials (NNPs), this results in superior predictive accuracy and
significantly higher sample efficiency. Jinnouchi utilized ML
potentials to conduct MD simulations of liquid phosphoric acid
to investigate its proton conduction properties.36 However, the
obtained RDFs and diffusion coefficients showed discrepancies
compared to experimental values. We attribute these discrepan-
cies to the neglect of nuclear quantum effects (NQEs) associated
with protons in the simulations, which have been shown in
previous studies to significantly impact PT.37–39

In this work, we combined path-integral MD (PIMD) with
NNPs, based on hybrid density functional theory (DFT), to
construct a dataset for liquid phosphoric acid at multiple
temperatures. This dataset was then used to train NNPs for
liquid phosphoric acid. We conducted classical Born–Oppen-
heimer MD, abbreviated as MD, simulations and ring polymer
MD (RPMD)40 simulations utilizing our NNP. The results
indicate that the impact of NQEs is clearly observed due to
the substantial presence of protons. These NQEs significantly
influence the structure and atomic arrangement of liquid
phosphoric acid, thereby affecting the RDFs. Proton diffusion
coefficients in the RPMD simulations were higher than those in
the MD simulations, as NQEs lower the energy barriers for PT
in liquid phosphoric acid. Additionally, the simulated vibra-
tional spectra revealed overlapping P–O peaks and a broad O–H
peak, reflecting the presence of hydrogen-bonding networks in
liquid phosphoric acid, which facilitates long-range PT.

2. Methodology and
computational details
2.1 Liquid phosphoric acid models

All liquid phosphoric acid systems were modeled with unit cells
under three-dimensional periodic boundary conditions (PBCs).
First, we optimized the structure of gaseous phosphoric acid
molecules at the PBE0/def2-SVP level of theory. Packmol
software41 was used to randomly pack the optimized structures
into cubic boxes. To simulate the diffusion behavior of liquid
phosphoric acid at different temperatures, we generated three
boxes of varying sizes, with densities derived from experimental and
theoretical studies of liquid phosphoric acid at 298.15 K, 333.15 K,
and 350.15 K (1.874 g cm�3, 1.830 g cm�3, and 1.804 g cm�3,
respectively).36,42,43 As shown in Fig. 1, each box contains
38 phosphoric acid molecules.

To obtain equilibrium lattice structures, we employed the
SCC-DFTB44 semi-empirical method to optimize the three
initial configurations and performed NVT MD simulations at
298.15 K, 333.15 K, and 350.15 K for 200 ps each using the CP2K
software.45 In the MD simulations, the time step was set to 1 fs
for efficient structural relaxation. We randomly sampled 200
structures from the last 100 ps of each trajectory to create an
initial dataset, which was then used to train preliminary NNs
for subsequent active learning iterations.

2.2 Neural network potential generations

To construct a high-accuracy NNP for liquid phosphoric acid,
we employed an active learning approach using committee NNs
for iterative sampling.46,47 After each round of NNP training, we
conducted MD simulations on three different initial structures
at three temperatures under PBCs. The initial simulated trajec-
tories lasted a few ps and were extended to 1 ns as the iterations
increased. Configurations were extracted at 100 fs intervals
during each sampling round as candidate samples. Four models
were trained on the same dataset, forming the committee NNs.
These committee NNs evaluated all candidate configurations by
calculating the maximum standard deviation of atomic forces.
Approximately 500 configurations with the largest force devia-
tions were selected for further sampling. We then calculated the
energy, atomic forces, and atomic charges of the selected con-
figurations, adding these results to the dataset. This iterative
process was repeated until the NNs converged on the test set.

Fig. 1 illustrates the periodic structure of liquid phosphoric
acid in the dataset. All calculations in this study were per-
formed at the Gamma point. Single-point calculations were
carried out using the CP2K software with the mixed Gaussian
and plane wave (GPW) method at the PBE0-D3(BJ)/TZVP-
MOLOPT-GTH level.48–50 The auxiliary density matrix method
(ADMM)51 was applied with admm-dzp as the auxiliary basis
set. The Coulomb truncation of the hybrid functional was set to
6.0 Å, while the plane wave cutoff was established at 550

Fig. 1 Snapshot of a pure phosphoric acid system, containing 38 phos-
phoric acid molecules within the periodic cubic box. Red, orange, and
white spheres represent oxygen, phosphorus, and hydrogen atoms,
respectively.
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Rydberg, with convergence tests for the cutoff energy shown in
Fig. S1 and Table S1 of the ESI.† Atomic charges were calculated
using the Hirshfeld-I method.52

The NN model used in this work is the MACE equivariant
graph NN (GNN). In the MACE equivariant GNN, the intera-
tomic graph comprises atomic nodes and edges connecting
these atoms.35,53 An atom j near atom i is included in the graph
if it is within the truncation radius rij, which is a hyperpara-

meter of the NN. The features of node i are represented by h
tð Þ
i;kL,

where t denotes the layer number, k indexes this series of
features, which also corresponds to the number of chemical
channels. L specifies the feature set of node i as well as the

transformation of h tð Þ
i;kL:

hti;kLM Q � r1; . . . ; rNð Þð Þ ¼
P
M0

DL
M0MðQÞhti;kLM0 r1; . . . ; rNð Þ (1)

Here, DL Qð Þ 2 R 2Lþ1ð Þ� 2Lþ1ð Þ represents an L-th order Wigner D-
matrix, and Q denotes a set of rotational transformations applied
to atomic coordinates. When all features are labeled as L = 0,
they represent invariant scalars. For L 4 0, they correspond to
tensors of the respective order: vectors for L = 1, matrices for
L = 2, and higher-order tensors for larger values of L.

The network outputs the atomic energy EA for each atom A
based on the local environment descriptors of the atoms. The
total energy E is the sum of the atomic energies in the system:

E ¼
P

A2Natom

EA (2)

The atomic force FA on atom A is the negative gradient of the
total energy with respect to the position of atom A.

The NNP developed for liquid phosphoric acid is termed
PBE0-NN. Additionally, we combined the MACE model with the
charge equilibration (Qeq) method to develop a NN for predict-
ing the charge distribution within liquid phosphoric acid
systems, termed Qeq-NN. In Qeq-NN, atomic charges are deter-
mined by minimizing a simplified energy expression:

Q ¼ argmin
P
A

wAQA þ
P
A

JAQA
2 þ Ecoul � l

P
A

QA �Qtot

� �� �
(3)

Here, wA is the electronegativity of atom A, indicating its ability to
attract electrons, and JA denotes the hardness of atom A, reflect-
ing the resistance of the molecule to charge fluctuations.54 We
interpret the electronegativity and hardness as environmentally
dependent, learnable atomic properties. In eqn (3), the Coulomb
potential Ecoul is calculated using the reciprocal space term in
the Ewald summation method:55

Ecoul Q;Rð Þ ¼ 2p
V

P
A;B

QAQB

P
ka0

exp � k=2að Þ2þik � rA � rBð Þ
� �

k2

(4)

Here, rA is the position of particle A in real space, k is the wave
vector, a = 1/Rcutoff is the cutoff parameter for the Coulomb
potential, with Rcutoff set to 2 Bohr. After training, the Qeq-NN
can predict the electronegativity and hardness of all atoms in

liquid phosphoric acid, which are then substituted into eqn (3)
to calculate the atomic charge distribution. The loss functions
for the two NNs, PBE0-NN and Qeq-NN, are defined as follows:

LQeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i

Qpred �Qref

	 
2s
(5)

LEF ¼
wE

m

Pm
i¼1

Epred;i � Eref ;i;SR

�� ��2 þ wF

m

Pm
i¼1

PNat

A

Fpred;i;A � Fref ;i;A

�� ��2
(6)

The hyperparameters are provided in Table 1:
Following several rounds of active learning, the final dataset

for liquid phosphoric acid comprised 4947 energies, 4 511 664
atomic forces, and 1503 888 atomic charges. This dataset was
randomly split into a training set and a validation set with an
88% to 12% ratio and was used to train the MACE equivariant
GNNs, PBE0-NN and Qeq-NN. The test set, consisting of
600 frames of periodic liquid phosphoric acid systems, was
randomly sampled from all six trajectories, which included
both MD and RPMD ones at three different temperatures.

We evaluated the predictive accuracy of the two NNs. For the
test set, the correlation coefficient (R2) between the atomic
forces predicted by PBE0-NN and the reference values was
99.84% (see Fig. S3, ESI†), demonstrating excellent predictive
performance. The mean absolute errors (MAEs) for energies
and atomic forces were 0.238 meV per atom and 35.13 meV Å�1,
respectively, closely aligned with the errors observed on the
training and validation sets (see Table S2, ESI†). This consis-
tency suggests that the NNP has achieved quantum chemical
accuracy. Additionally, the MAE of atomic partial charge pre-
dictions in the periodic liquid phosphoric acid system,
obtained using the Qeq-NN model, was as low as 0.003 e.
This indicates that we can efficiently and accurately predict
the distribution of partial charges throughout the trajectory,
enabling precise analysis in subsequent trajectory studies. To
assess the computational speed improvement of NNP MD
simulations using PBE0-NN compared to AIMD, we tested
systems of three different sizes (see in Fig. S4 and Table S4,
ESI†). The results showed that our NNP achieved a performance
efficiency improvement of at least 2400-fold over AIMD on CPU.
Given that the NNP is deployed to run on GPUs, the computa-
tional efficiency in actual simulations is even more substantial.
The computational resources for generating the dataset and
training the ML model are compared in Section S3 of the ESI.†

2.3 Analysis methods

The trajectories obtained from MD simulations can be used to
calculate the RDF, gA-B(r). The RDF describing the density of
atoms of element B around atoms of element A and is defined

Table 1 Hyperparameter settings for two MACE-equivariant GNNs

Model Cutoff radius r/Å Chemical channels k Max L

Qeq-NN 4.5 16 1
PBE0-NN 4.5 128 1
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as follows:

gA-BðrÞ ¼ V

NANB

P
i2A

P
j2B;jai

d r� rij
	 
* +

1

4pr2dr
(7)

Here, NA and NB represent the number of atoms of element A
and element B, respectively, and d(r � rij) is the Dirac delta
function. The RPMD-simulated RDFs are obtained by statisti-
cally analyzing the structures of all beads. After obtaining the
RDFs, the average coordination number (CN) nB

A of atom A
surrounded by atom B can be calculated from the integral of the
RDFs over the spherical shell between intervals R1 and R2:

nBA R1;R2ð Þ ¼ 4prcB

ðR2

R1

gA-BðrÞr2dr (8)

The diffusion of molecules and atoms in liquid phosphoric
acid is crucial for understanding its transport properties. Given
the strong PT capabilities of phosphoric acid under standard
conditions, investigating the proton diffusion coefficient pro-
vides valuable insights into the mechanisms that facilitate
efficient PT in liquid phosphoric acid. In condensed-phase
systems, the diffusion coefficient for a specific atomic species
can be derived from the slope of the mean square displacement
(MSD) of the corresponding atoms:

MSD tð Þ ¼ 1

N

PN
i¼1

ri t0 þ tð Þ � ri t0ð Þ½ �2 (9)

D ¼ 1

6

d

dt
MSD tð Þ (10)

The vibrational density of states (VDOS) is a tool used in MD
simulations to analyze the dynamic properties of a system. The
VDOS can be calculated from the autocorrelation function of
atomic velocities, vi(t), obtained from the MD trajectories:

IðoÞPW ¼
1

2p

ðX
i

dvi t0ð Þ � dvi t0 þ tð Þe�iotdt (11)

Here, I(o)PW represents the spectral density of the VDOS. After
using Qeq-NN to predict the point charge distribution along the
trajectory, we can calculate the dipole moment of the simulated
system as follows:

M tð Þ ¼
P
A

QA tð ÞrA tð Þ (12)

Here, QA(t) and rA are the point charge and position of atom A at
time t, respectively. Then, the infrared (IR) absorption intensity
I(o)IR of the target system can be calculated through the time
correlation function of the dipole moment M(t):56

IðoÞIR ¼
1

2p

ð
dM t0ð Þ � dM t0 þ tð Þe�iotdt (13)

The RPMD-simulated dynamical properties of liquid phos-
phoric acid are calculated by first averaging the coordinates,
velocities, and dipole moments of different beads. These aver-
aged values are then substituted into the corresponding for-
mulas to obtain the desired dynamical properties.

2.4 Simulation details

We performed canonical ensemble MD simulations using
the trained PBE0-NN model at three temperatures (298.15 K,
333.15 K, and 350.15 K) each for a duration of 1 ns. Additionally,
we conducted canonical ensemble RPMD simulations with
12 beads at the same three temperatures for 100 ps, utilizing
the PBE0-NN to explore NQEs in the phosphoric acid system.
All NNP-based MD and RPMD simulations were performed with
the i-PI software.57,58 For comparison, we also carried out a
CVFF-based59 MD simulation of phosphoric acid at 298.15 K
starting from the same initial structure and applying identical
MD simulation parameters with the LAMMPS software.60 A
Langevin thermostat61 was used to control the temperature in
all MD simulations in this work. The computational resources
for simulations and DFT calculations are compared in Section S3
of the ESI.†

3. Results and discussions
3.1 Radial distribution functions

To verify the accuracy of the PBE0-NN MD simulation trajec-
tories and to characterize the simulated structural information,
we calculated the RDFs from the MD simulations of the
phosphoric acid system and compared the results with those
obtained from neutron scattering experiments,43 as shown in
Fig. 2 and Table 2. It should be mentioned that all experimental
data presented in our study were obtained using pure
phosphoric acid.

Fig. 2 illustrates that the PBE0-NN MD results align closely
with experimental RDFs, particularly in terms of peak positions
for gX–X, gH–X, and gH–H in the phosphoric acid system.
However, there are some discrepancies in the shape and
intensity of these peaks. The first peak in gX–X, located at
1.57 Å in the PBE0-NN MD simulations, corresponds to the P–O
bond within the phosphoric acid molecule and shows a minor
deviation of 0.03 Å from the experimental value. In gas-phase
phosphoric acid, P–O bonds are classified into single bonds
(1.60 Å) and double bonds (1.46 Å).20 In the condensed-phase
phosphoric acid system, however, only a single peak appears in
the RDFs due to the influence of a strong hydrogen-bonding
network. The second peak in gX–X, at 2.55 Å, represents O–O
intramolecular correlations, with a 0.04 Å deviation from the
experimental value. Overall, the deviations between PBE0-NN
MD-simulated and experimental gX–X peak positions are small.
Additionally, there is little difference between RPMD and MD
results for gX–X, as NQEs are less significant for heavier atoms
like O and P.

The gH–X peaks from both MD and RPMD simulations are
similarly positioned and closely match experimental values.
The first peak at 1.00 Å in gH–X corresponds to the covalent O–H
bond, with a deviation of only 0.02 Å from the experimental
value. RPMD simulations provide a more accurate depiction of
peak intensity and width compared to MD. The second peak in
gH–X, located at 1.53 Å, represents the intermolecular O� � �H–O
hydrogen bond, deviating by 0.01 Å from the experimental value.
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The overlap of these two peaks in gH–X suggests frequent proton
transfers along strong O� � �H–O hydrogen bonds in liquid phos-
phoric acid. However, RPMD might slightly overestimate this
overlap compared to experimental data. The third and fourth
peaks in gH–X reflect non-bonded intramolecular H–P and H–O
interactions, respectively, with RPMD providing a significantly
better representation of these interactions than MD.

The first peak in gH–H, spanning 1.90 to 2.60 Å, captures H–
H correlations across adjacent hydrogen bonds. The MD simula-
tions, however, tend to overestimate the intensity of this peak,

indicating that the hydrogen-bond network in phosphoric acid
appears more structured in simulations than in experimental
measurements. Nonetheless, the gH–H peaks from both MD and
RPMD simulations qualitatively agree with experimental data.

As presented in Table 2, the average coordination numbers
calculated (CNs) from RPMD and MD simulations show no
significant differences, indicating that PBE0-NN accurately
predicts the structure and local atomic environment of phos-
phoric acid. Furthermore, the gH–X RDFs in Fig. 2 reveal that
RPMD, which accounts for NQE, produces RDFs with peak

Fig. 2 Radial distribution function of the phosphoric acid system at 333.15 K, obtained from PBE0-NN MD and RPMD simulations, compared with the
experimental data.43 The variable X represents oxygen (O) and phosphorus (P) atoms.
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intensities and shapes that are more consistent with experi-
mental values. The overlap of the O–H bond and O� � �H–O
hydrogen bond peaks suggests a lower energy barrier for proton
transfer between oxygen atoms, potentially indicating
increased proton diffusion and hopping in RPMD simulations.
This aspect will be explored in the following section.

3.2 Proton diffusion

Fig. 3 illustrates the snapshots extracted from PBE0-NN MD
trajectories at 298.15 K. These four panels sequentially display
the transfer of three protons along a hydrogen bond chain to
new oxygen atoms. Fig. 3(a) shows the initial 0 ps snapshot,
where four phosphoric acid molecules or ions form a chain-like
structure stabilized by hydrogen bonds. According to the Grot-
thuss mechanism,62 protons are transported through this
hydrogen bond network by the continuous breaking and
reforming of hydrogen bonds. Fig. 3(b) illustrates a later snap-
shot in which a proton (highlighted in yellow) has transferred
from one oxygen atom to another along the hydrogen bond.
About 3 ps later, as shown in Fig. 3(c), a second proton

undergoes a similar transfer. Four ps after that, a third proton
transfer occurs, depicted in Fig. 3(d).

According to previous studies,21 proton transfer predomi-
nantly occurs through the hydrogen bond network rather than
a molecular vehicle, as illustrated in Fig. 3. To investigate this,
we tracked the motion of a single proton. Fig. 4 depicts its
bonding to various oxygen atoms over time, excluding transfers
to the same oxygen atom to provide a clearer view of directional
PT within the hydrogen bond network. The transport distance
of this proton is approximately 2 Å, contributing significantly to
the high conductivity observed in liquid phosphoric acid.

Fig. 5 compares the proton diffusion coefficients at different
temperatures from both PBE0-NN MD simulations and experi-
mental data, with specific values listed in Table 3. The diffusion
coefficients from the PBE0-NN MD simulations show a
clear upward trend with increasing temperature. In RPMD
simulations, the diffusion coefficients exhibit an exponential
increase with temperature, aligning well with the experimental
results.

Table 2 Peak types, positions, and average coordination numbers (CNs) of the phosphoric acid system at 333.15 K, obtained from PBE0-NN MD and
RPMD simulations

Peaka Position/Å Average CNsb Assignment

gX–X (1) 1.57 (1.54) 1.10/1.19 (1.16) P–O bonds
gX–X (2) 2.55 (2.51) 3.80/3.84 (3.82) O–O intramolecular
gH–X (1) 1.00 (0.98) 0.95/0.95 (0.95) H–O bonds
gH–X (2) 1.53 (1.54) 0.73/0.76 (0.75) H–O through hydrogen bonds
gH–X (3) 2.20 (2.20) n.m. H–P intramolecular
gH–X (4) 2.80 (2.80) n.m. H–O intramolecular
gH–H (1) 1.90–2.60 n.m. H–H across hydrogen bond
gH–H (2) 2.60–4.10 n.m. H–H intramolecular and intermolecular

a Peak labels as shown in Fig. 2, where X represents O and P atoms. b Values presented before and after the slash correspond to MD and RPMD
simulations, respectively. Experimental values of pure phosphoric acid from ref. 43 are provided in parentheses. n.m.: not meaningful.

Fig. 3 Proton transport (PT) mechanism in the phosphoric acid system,
illustrated through snapshots of PT chains in liquid phosphoric acid at 0 ps
(a), 13 ps (b), 16 ps (c), and 20 ps (d) in the PBE0-NN MD trajectory at
298.15 K. Periodic boundaries, transported protons, and hydrogen bonds
are represented by blue solid lines, yellow spheres, and green dashed lines,
respectively.

Fig. 4 Motion of a single proton in phosphoric acid obtained from PBE0-
NN MD simulations at 298.15 K. The trajectory color changes each time
the proton transfers to a different oxygen atom. A black line connects
the center of mass of each proton cloud, projected onto the x–y plane
for clarity.
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Table 3 also reveals that the diffusion coefficient of P is
much smaller than that of H. This supports the conclusion that
PT in phosphoric acid primarily follows a hopping mechanism,
consistent with the mechanism shown in Fig. 3. The differences
between simulated and experimental diffusion coefficients are
within an order of magnitude. At temperatures of 298.15 K,
333.15 K, and 350.15 K, experimental diffusion coefficients for
hydrogen in phosphoric acid were determined to be 0.40 �
10�10 m2 s�1, 1.27 � 10�10 m2 s�1, and 2.02 � 10�10 m2 s�1,
respectively. Corresponding MD values were 0.16 � 10�10 m2 s�1,
0.38� 10�10 m2 s�1, and 0.55� 10�10 m2 s�1, while RPMD values
were 0.21 � 10�10 m2 s�1, 0.66 � 10�10 m2 s�1, and 1.20 �
10�10 m2 s�1. Similar to previous simulations of liquid water
systems, RPMD results show enhanced hydrogen diffusion coeffi-
cients compared to MD, highlighting the significant impact of
NQEs on phosphoric acid dynamics. Both RPMD and MD simula-
tions predict lower diffusion coefficients than the experimental
values at corresponding temperatures. As shown in Fig. 2, the first
H–H peak intensities predicted by both MD and RPMD simu-
laions are higher than experimental observations, which suggests
that this discrepancy does not arise from the neglect of NQEs in
the MD simulations. Similar discrepancy have been observed in
previous PBE-based AIMD simulations of liquid phosphoric acid
systems.20 This discrepancy may stem from the inherent

limitations of the DFT method, as several studies have pointed
out that DFT often struggles to accurately predict hydrogen
bonding and tends to underperform relative to more advanced
methods like MP2.64,65 This effect could result in protons becom-
ing ‘‘trapped’’ in the simulations, leading to slower diffusion than
in experiments, where additional bond-breaking and reforming
events enhance proton mobility.

Fig. 2 also shows that the RDFs for hydrogen bonds and
covalent bonds exhibit greater overlap in RPMD than in MD.
This overlap lowers the energy barrier for proton hopping
between oxygen atoms, facilitating proton diffusion. In con-
trast, MD predicts sharper, more intense RDF peaks for cova-
lent bonds, hydrogen bonds, and H–O and H–P correlations,
reflecting a denser phosphoric acid configuration that restricts
proton mobility. By incorporating NQE, RPMD provides a more
accurate representation of these interactions, which is crucial
for capturing proton dynamics in phosphoric acid.

3.3 Vibrational spectra

We compared the VDOS and IR spectra of phosphoric acid at
298.15 K from MD simulations with experimental data, as
shown in Fig. 6 and 7. Fig. 6 shows the PBE0-NN MD simulated
VDOS for phosphoric acid along with experimental Raman
peaks at 298.15 K.66 In Fig. 6(a), the MD-simulated VDOS does
not display distinct vibrational peaks in the low- and mid-
frequency regions. By contrast, Fig. 6(b) shows the VDOS from
RPMD simulations, which features three distinct peaks, with
those at 496 cm�1 and 359 cm�1 closely aligning with experi-
mental observations. This alignment suggests that incorporat-
ing NQEs enhances the accuracy of vibrational energy spacing,
evidenced by the sharper, more defined peaks in the RPMD
spectrum. The simulated peak for P–O single bond stretching at
910 cm�1 matches the experimental value well in both MD and
RPMD simulations, though the P–O double bond stretching
exhibits a blue shift of approximately 100 cm�1. The over-
lapping vibrations of P–O single and double bonds, due to
frequent proton transfers within phosphate, obscure distinct
spectral features. While no discrete O–H bond stretching peaks
were observed in the experimental Raman spectra, the simula-
tions reveal a broad peak between 2400 and 4000 cm�1,
significantly red-shifted compared to the sharp O–H stretching
peak seen in gas-phase phosphoric acid.20 This broadening and
red shift can be attributed to strong hydrogen bonding in liquid
phosphoric acid, which weakens the O–H bond and suppresses
a well-defined stretching mode.

Fig. 7 illustrates the IR spectra for phosphoric acid at
298.15 K, as predicted by PBE0-NN and CVFF MD simulations,
compared with experimental attenuated total reflectance IR
spectra.67 In the 400–1400 cm�1 region, the classical CVFF
predicts two absorption peaks: one at 460 cm�1 with greater
intensity than the 915 cm�1 peak. However, these peaks differ
significantly from experimental data in terms of frequency,
shape, and intensity. In contrast, PBE0-NN simulations, both
MD and RPMD, produce an absorption peak at 490 cm�1 that
closely matches the experimental peak in both frequency and
shape. The experimental peak at 915 cm�1, associated with P–O

Fig. 5 Comparison of proton diffusion coefficients in the phosphoric acid
system obtained from PBE0-NN MD and RPMD simulations at various
temperatures, alongside experimental values of pure phosphoric acid from
ref. 63.

Table 3 Diffusion coefficients (D) for H and P atoms obtained from PBE0-
NN MD and RPMD simulations, as well as experimental data, at tempera-
tures of 298.15 K, 333.15 K, and 350.15 Ka

Temperature/K

D/10�10 m2 s�1

H P

298.15 0.16/0.21 (0.40) 0.04/0.06 (0.09)
333.15 0.38/0.66 (1.27) 0.06/0.22 (0.21)
350.15 0.55/1.20 (2.02) 0.11/0.39 (0.57)

a Values presented before and after the slash correspond to MD and
RPMD simulations, respectively. Experimental values of pure phospho-
ric acid from ref. 63 are provided in parentheses.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/2
1/

20
25

 1
2:

46
:3

7 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4cp04195j


Phys. Chem. Chem. Phys. This journal is © the Owner Societies 2025

bond vibrations, is more intense than in PBE0-NN simulations,
with the RPMD-predicted peak exhibiting a red shift of about

30 cm�1, bringing it closer to the experimental frequency
(Table 4).

At high frequencies, the PBE0-NN simulations produce a
broad absorption band from 2000 to 3800 cm�1, consistent
with the experimentally observed broad peak. In contrast,
absorption peaks from classical FF are much narrower, show-
ing two distinct peaks that fail to capture the complex
hydrogen-bonding network in phosphates. The PBE0-NN
method weakens the O–H bond force constant and enhances
dipole moment changes during vibration, leading to broader,
stronger absorption features. Specifically, PBE0-NN MD simu-
lations reveal a prominent absorption peak at 3270 cm�1,
which is blue-shifted by approximately 490 cm�1 from the
experimental value. In comparison, PBE0-NN RPMD, which
accounts for NQEs of light atoms such as hydrogen, predicts
O–H stretching peaks in the range of 2000 to 3500 cm�1. The
shape and intensity of this RPMD-predicted peak align well
with experimental data, with only a 20 cm�1 blue shift at the
peak’s maximum.

These findings underscore the critical role of NQEs in
influencing proton vibrational properties in liquid phosphoric
acid. Classical MD, which neglects NQEs, underestimates the
impact of strong hydrogen bonding on O–H vibrations in liquid
phosphoric acid. In contrast, RPMD effectively captures these
effects by modeling protons as a series of ‘‘beads’’ forming a
ring polymer. Overall, these results highlight the strong pre-
dictive performance of the PBE0-NN method for the vibrational
spectra of phosphoric acid and emphasize the indispensable

Fig. 6 Comparison of the VDOS predicted by PBE0-NN MD (a) and RPMD (b) simulations with experimentally observed vibrational frequencies of pure
phosphoric acid from ref. 66. Green arrows indicate vibrational frequencies observed in the experimental Raman spectra of liquid phosphoric acid.

Fig. 7 Comparison of the IR spectra of pure phosphoric acid predicted by
PBE0-NN MD and RPMD, and CVFF MD simulations with experimental
data of pure phosphoric acid from ref. 67.

Table 4 Comparison of vibrational peak wavenumbers (cm�1) from IR
spectra: PBE0-NN MD and RPMD, and CVFF MD simulations versus
experimental measurements of pure phosphoric acid from ref. 67

Peaks Experiment PBE0-NN RPMD PBE0-NN MD CVFF MD

1 470 490 490 460
2 915 885 1030 915
3 2780 2800 3270 3060/3750
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role of NQEs in facilitating PT within liquid phosphoric
acid systems.

4. Conclusion

In this work, we developed a NNP for phosphoric acid based on a
high-precision dataset generated using the PBE0 hybrid func-
tional. Long-time simulations were conducted at three tempera-
tures using both RPMD and MD simulations. The simulated
RDFs closely align with experimental results, validating that the
PBE0-NN model accurately captures the structural characteristics
of phosphoric acid. Notably, the gH–X curves from RPMD match
experimental data more closely than those from MD, highlight-
ing the significant impact of NQEs on structural properties.
Furthermore, analysis of the MD trajectories reveals continuous
directional proton transfer along hydrogen-bond networks, indi-
cating that PT in phosphoric acid follows the Grotthuss mecha-
nism (similar to liquid water), where protons hopping through
hydrogen bond breaking and reformation.

Comparing proton diffusion coefficients obtained from
RPMD and MD at various temperatures confirmed that NQEs
significantly enhance PT. Additionally, RPMD reproduces the
vibrational density of states and IR spectra with greater accuracy
in both shape and frequency. Our results show that RPMD not
only provides more accurate vibrational energy spacing but also
captures the effects of strong hydrogen bonding and proton
tunneling on the transport and vibrational properties of phospho-
ric acid. These findings offer valuable insights and a robust
foundation for further exploration of NQEs in the conductive
properties of phosphoric acid and related materials. Building on
this work, future research could explore the integration of NNP
and PIMD simulations with low-scaling electron correlation
methods.68 This would enable the construction of datasets at the
MP2 or CCSD(T) level, thus achieving more accurate NNP-based
MD simulations. Additionally, we aim to develop NNs capable of
predicting system pressure, which will enable pressure-controlled
simulations. This approach will allow us to simulate the viscosity
of phosphoric acid and phosphate systems across a range of
temperatures and concentrations, thus providing a more compre-
hensive theoretical framework for understanding their properties.
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