Effects of oxygen vacancy formation energy and Pt doping on the CO2 hydrogenation activity of In2O3 catalysts

Abstract

Hydrogenation of CO2 into value-added chemicals and fuels, such as methanol, is a promising solution to mitigate the greenhouse effect, and In2O3-based catalysts have shown high activity and stability in the CO2 hydrogenation reactions. In this study, the effects of oxygen vacancy formation energy and bulk Pt doping on CO2 reactivity and methanol selectivity in CO2 hydrogenation catalyzed by In2O3 and Pt-doped In2O3 were studied using density functional theory (DFT) calculations and microkinetic simulations. Upon oxygen vacancy formation, the number of electrons lost by the In atoms surrounding the oxygen vacancies decreased substantially, which correlated with the oxygen vacancy formation energy, and Pt doping further increased the oxygen vacancy formation energy. DFT-based microkinetic simulations revealed that Pt doping also enhanced the overall reaction rate and methanol selectivity. Among the different surface oxygen vacancy sites, no methanol was predicted to be formed for VO3 and VO6 between 473 K and 673 K; however, the methanol selectivities for Pt-VO3 and Pt-VO6 were calculated to be 50% at 473 K. Nevertheless, the reactivities of these oxygen vacancy sites were found to be lower than those of the previously studied VO7 and Pt-VO7, further confirming our previous conclusions. Degree of rate control (DRC) calculations showed that the fast direct dissociation of CO2 to CO at Pt-VO3, Pt-VO6 and Pt-VO7 inhibited methanol formation, especially at relatively high reaction temperatures. This study sheds new physical insights into the quantitative structure–activity relationship between the oxygen vacancy formation energy and the catalytic performance of the In2O3-based catalysts and reveals the effect of bulk Pt doping on the catalytic activity of the In2O3 catalyst for CO2 hydrogenation reaction.

Graphical abstract: Effects of oxygen vacancy formation energy and Pt doping on the CO2 hydrogenation activity of In2O3 catalysts

Supplementary files

Article information

Article type
Paper
Submitted
28 Nov 2024
Accepted
05 Jan 2025
First published
07 Jan 2025

Catal. Sci. Technol., 2025, Advance Article

Effects of oxygen vacancy formation energy and Pt doping on the CO2 hydrogenation activity of In2O3 catalysts

Z. Wei, Y. Bao, Y. Wang and S. Li, Catal. Sci. Technol., 2025, Advance Article , DOI: 10.1039/D4CY01439A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements