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luation of anharmonic bond
potentials for molecular simulations†

Paul J. van Maaren and David van der Spoel *

Most general force fields only implement a harmonic potential to model covalent bonds. In addition, in

some force fields, all or a selection of the covalent bonds are constrained in molecular dynamics

simulations. Nevertheless, it is possible to implement accurate bond potentials for a relatively small

computational cost. Such potentials may be important for spectroscopic applications, free energy

perturbation calculations or for studying reactions using empirical valence bond theory. Here, we

evaluate different bond potentials for diatomic molecules. Based on quantum-chemical scans around

the equilibrium distance of 71 molecules using the MP2/aug-cc-pVTZ level of theory as well as CCSD(T)

with the same basis-set, we determine the quality of fit to the data of 28 model potentials. As expected,

a large spread in accuracies of the potentials is found and more complex potentials generally provide

a better fit. As a second and more challenging test, five spectroscopic parameters (ue, uexe, ae, Be and

De) predicted based on quantum chemistry as well as the fitted potentials are compared to experimental

data. A handful of the 28 potentials tested are found to be accurate. Of these, we suggest that the

potential due to Hua (Phys. Rev. A, 42 (1990), 2524) could be a suitable choice for implementation in

molecular simulations codes, since it is considerably more accurate than the well-known Morse

potential (Phys. Rev., 34 (1929), 57) at a very similar computational cost.
1 Introduction

Prediction of molecular properties can be done, in principle,
through theoretical models based on physics or by models
based directly on data.1 Both ways involve approximations and
require thorough validation based on experimental data.
Importantly, though there has been great progress in data-
based models,2 the laws of physics remain valid.3 Data and
physics-based models share the need for high-quality reference
data, and we have recently presented an overview of available
quantum-chemistry databases for this purpose.4 Here, we aim
to design parts of a force eld for molecular dynamics (MD)
simulation, for which empirical potentials are needed that
reproduce data from high-quality quantum chemistry or
experiments. This means that the fundamental physics should
be followed as much as possible without making the potentials
impractically complicated.5 Systematic design of force elds6 is
needed to determine which functions are suitable for predicting
properties.7 By careful design of the data set it is possible to
break down the complex empirical potential for molecules into
simpler parts. We have, for instance, studied noble gases to
evaluate potential forms for exchange and dispersion
, Uppsala University, Uppsala, Sweden.

(ESI) available: Additional tables and
4dd00344f

–830
interactions8 and found that the 14-7 potential due to Halgren9

as well as the generalized Buckingham due to Werhahn et al.10

were sufficiently exible to reproduce both gas-phase and
condensed phase data. On the other hand, the popular
Lennard-Jones 12-6 potential11 was the poorest contender. We
obtained similar results in an earlier study of alkali-halides,12

where multiple potentials were parameterised in exactly the
same manner, allowing apples-to-apples comparisons of their
predictive power. There we found that the 12-6 potential had
three times higher deviation from experimental observables
than a modied Buckingham potential.13

In this paper, we address potentials for covalent bonds by
studying diatomic molecules. The study of diatomic molecules
has a long history, with famous old papers such as those by
Heitler and London,14 Morse,15 Rydberg16 and Pöschl and
Teller.17 Systematic comparisons of potentials with experi-
mental data have been done, for instance by Royappa et al.,18

and by others,19,20 usually focused on reproduction of vibra-
tional modes. It should be noted that many of these potentials
are “related” to each other21,22 but we will not discuss this here.
Instead, we refer the reader to a recent review by Araújo et al.
covering 100 years of history of analytical potentials to t
diatomic energy curves.23 The development of methods for
accurate yet affordable prediction of vibrational spectra has
been an active research eld for a long time24–26 and the choice
of a potential for covalent bonds is a step towards force eld
based prediction of vibrational spectra.27,28
© 2025 The Author(s). Published by the Royal Society of Chemistry
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When addressing the question what bond potential is best
suitable for molecular simulation, it is important to realize that
“best” by necessity involves a compromise between accuracy
(deviation from experimental data or high-level quantum
chemistry) and computational efficiency. A further consider-
ation is that a potential should be simple to parameterize,
which favors functions with fewer parameters. It should be
noted that many classical force elds use a simple harmonic
function to model chemical bonds although, for instance, the
MM3 force eld can employ a Morse function instead.29 In what
follows, we consider the root mean square deviation (RMSD)
from the reference data as the “accuracy” of the potential. For
comparison with earlier studies, we also provide the least-
squares Z-score introduced by Murrell and Sorbie.30 As we
have shown in our study on noble gases, it is oen advanta-
geous or even necessary to introduce an energy threshold for
tting potentials. The magnitude of such a threshold is
important quantitatively, but oen not qualitatively.8 The size of
the RMSD changes with energy threshold used for training, but
the ranking of potentials does not change much. We discuss the
effect of different thresholds on different potential functions
below. Finally, we evaluate the quantum chemistry data and
a number of empirical potentials by computing spectroscopic
parameters and comparing them to experimental data.

2 Methods
2.1 Energy calculations

71 diatomic molecules were selected, consisting of rst and
second row atoms plus sulfur, halogens and alkali halides. The
dataset therefore consists of both covalently bound molecules
and ion-pairs. Ion-pairs are included because there is a lot of
experimental data available to compare tted potentials to,
including spectroscopic data, allowing to test our scripts and
the generality of the potentials. In MD simulations, one would
not use a covalent potential for ion pairs but rather a combi-
nation of Coulomb and van der Waals potentials.12 For each of
these molecules respectively ion pairs, a scan of the energy as
a function of distance was made at two levels of theory. First,
Møller–Plesset 2nd order (MP2) perturbation theory31 with the
correlation-consistent basis-set aug-cc-pVTZ32 and second,
coupled clusters33 with singlets and doublets and perturbative
triples, or CCSD(T), with the same basis-set. Iodine and iodide
were modeled using the aug-cc-pwCVTZ-PP basis set34 while for
potassium, calcium, cesium and rubidium the def2-TZVPP
basis set was employed,35 all downloaded from the basis-set
exchange.36 For singlet molecules a restricted Hartree–Fock
procedure was used.37 Initially, unrestricted Hartree–Fock
calculations were performed for the radicals, but in particular
for the MP2 method this led to signicant spin contamination.
For this reason, restricted open-shell Hartree–Fock38 calcula-
tions were used instead, and these were well-behaved.

A list of molecules, their charge, multiplicity and the range of
distances used for quantum calculations is provided in Table
S1.† The range of distances used in the quantum calculations
was based on the equilibrium distance re by dividing it by 1.2
and multiplying it by 1.2 to get the lower and upper limits
© 2025 The Author(s). Published by the Royal Society of Chemistry
respectively (Table S1†). The distance between scanning points
was 0.5 pm. Calculations were performed with the Psi4 soware
suite.39 Experimental data for the subset of 14 molecules used
by Royappa et al.18 were used for tting here as well. References
to experimental data for these molecules are given in Fig. S9–
S13, S25, S28, S30, S39, S43, S48–S50, S58 and S59, in the ESI.†
Experimental data on frequencies were collected from the
database of spectroscopic constants of diatomic molecules40,41

and the National Institute of Standards Webbook.42 We note
that the database contained several errors and omissions that
we corrected based on the original data collection due to Huber
and Herzberg,43 which itself also contained some errors. Cor-
rected les are provided on Zenodo.44
2.2 Data processing

Energies were stored as text les and processed with a curve-
tting script based on Scientic Python.45 28 functions were
used to t the energy curves, 21 of which were evaluated by
Royappa et al. previously.18 In addition, we use a harmonic
potential, potentials due to Lennard-Jones,11 Buckingham,46

Cahill,47 Tang & Toennies,48 Xie et al.49 and Wang et al.13

Numerical curve-tting was extremely tedious. First, a careful
shiing of the quantum chemical energy curves to have their
minimum energy level at zero was needed. Despite tuning of
tolerances, the energies produced by geometry optimization were
incompatible with single point calculations. Therefore, we
located the position and depth of the energy minimum by
implementing a bisection algorithm using single point calcula-
tions with exactly the same settings as used in the distance scan.
Then, manual curating of the starting values was required, using
visual inspection of the tted curves to validate the correctness of
the t. Unfortunately, the Levenberg–Marquardt algorithm50,51

used in Scientic Python45 simply is not fool-proof. Unless start-
ing parameters are close to the correct ones, it cannot be guar-
anteed that the best solution will be found, in particular since we
used some highly non-linear potentials with a relatively small
number of correlated data points. The total number of ts to be
checked in this manner was well over 10 000. This suggests that,
as much as we would like it to, the era of digital discovery has not
yet fully started. Even though the curve tting applied here only
requires a small number of parameters to be determined, we are
not aware of any guaranteed error-free solution. More elaborate
algorithms like Monte Carlo search in parameter space coupled
with simulated annealingmight help, but any such algorithm can
get stuck in a local minimum as well. A further possibility would
be the algorithm due to Ho and Rabitz for generating amolecular
energy surface from quantum chemistry calculations.52,53 Finally,
for tting the data a number of different energy thresholds were
employed: either all data was used, or just the data points with
energy of at most 1000 cm−1 respectively 5000 cm−1.

Fitting and evaluation of the goodness of t was done using
the Z-score30

Z ¼ 1

NDr

XN
i¼1

�
Eobs � Efit

�2
(1)
Digital Discovery, 2025, 4, 824–830 | 825
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where Dr is the range of distances considered in the t and N is
the number of data points. Eobs is the energy from experiment
or quantum chemistry and Et the energy according to the
analytical potential. We also list the conventional root mean
square deviation (RMSD)

RMSD ¼
"
1

N

XN
i¼1

�
Eobs � Efit

�2#1=2

(2)

or, in other words RMSD = (ZDr)1/2. The Z-scores were averaged
linearly over molecules to obtain one number per empirical
potential. The RMSD were squared before averaging over
molecules, followed by taking a square root. Due to non-linear
relation between Z and RMSD, the order of empirical potentials
may differ slightly in the Tables 1, 2, S2 and S3.† For compati-
bility with earlier papers (e.g. by Royappa et al.18) we present the
Z-scores in wave numbers, whereas the RMSD are given in J
mol−1 which is customary in the molecular simulation
community.
3 Results & discussion
3.1 Experimental reference data

To validate our Python code, we attempted to reproduce the
data included in the paper by Royappa et al.18 The curve-tting
script reproduces Fig. 2–5 from that paper. We found lower
average Z-scores for all of the potentials (Table 1), likely in part
because of the manual curation of the data. It is also possible,
however, that in some cases a better t was obtained because
Table 1 Statistics per function for fits to experimental data for the 14
compounds used by Royappa et al.18 M is the number of parameters, Z
is the average Z-score (cm−2 Å−1),DZ indicates the difference between
the Z calculated here and that by Royappa, and RMSD (J mol−1) is the
root mean signed error from experimental data without any energy
cut-off. Table is sorted after Z-score

Function M Z DZ RMSD

Sun54 8 534 −1264 29
Murrell–Sorbie30 5 3300 −1158 66
Hulburt–Hirschfelder55 5 4050 −1154 76
Tietz II56 5 9521 −1696 144
Ra57 5 9985 −45762 137
Levine58 4 10 517 −18734 150
Noorizadeh59 5 13 447 −4086 129
Wei Hua60 4 13 707 −1127 174
Pöschl–Teller17 4 22 749 −61372 175
Frost–Musulin61 4 30 581 −1434 223
Morse15 3 47 826 −1641 282
Varshni62 3 57 698 −1431 315
Rosen–Morse63 4 60 451 −94393 349
Rydberg16 3 69 734 −1406 357
Pseudo-Gaussian64 3 86 717 −1148 352
Linnett65 4 107 285 −28842 489
Deng–Fan66 3 154 247 −2646 577
Tietz I56 5 185 811 −60007 596
Valence-state67 4 205 072 −3700 625
Kratzer68 2 4 424 629 −6825 2283
Lippincott69 3 10 132 095 −18092 3330

826 | Digital Discovery, 2025, 4, 824–830
the tting algorithm switched places between the attractive and
repulsive part of the potentials. For example, in the potential
due to Linnett65

UðrÞ ¼ a

rm
� be�nr (3)

the rst term is supposed to model the repulsion and the
second part the attraction. In our training we nd that without
exception a and b become negative. In other words, we did not
enforce parameters that historically have been identied with
a certain physical interpretation, such as re and De, to be within
experimental range. For the experimental data set, no energy
threshold was applied, that is all data points were taken into
account. This is more demanding in terms of the functional
form and like Royappa18 and co-workers we nd that the more
complex functions are better able to reproduce the experimental
data (Table 1).
3.2 Quantum chemical reference data

Since quantum chemistry for diatomics is relatively cheap it was
possible to include 71 diatomic molecules. The quantum
chemistry curves are plotted in Fig. S1–S71† and, where avail-
able, experimental data are plotted as well. Statistics of the
potentials when tted using an energy threshold of 1000 cm−1

are given in Table 2. As expected, simple functions like Lennard-
Jones11 and the harmonic function represent the quantum
chemistry data poorly. The ab initiomodel due to Xie et al.49 was
not accurate for the molecules studied here either, likely due to
the fact that most molecules studied here are not just bonded by
s-valence electrons, like in the original paper.49 The well-known
Tang–Toennies potential,48 that reproduces high-level quantum
chemistry interaction functions for noble gases extremely well,8

is not among the top contenders either. Table S2† gives the
corresponding data for a t with an energy threshold of
5000 cm−1 and Table S3† without any energy threshold. No
signicant difference with Table 2 is found, the potentials with
the ten or so best ts to the quantum chemistry data are just
shuffled in a somewhat different order. For the best performing
functions, it seems somewhat easier to reproduce the CCSD(T)
data than the MP2 data (Tables 2 and S2†). It can also be noted
that some potentials, like the ones due to Ra57 or Levine,58 are
more accurate for non-covalent interactions than covalent
bonds. For the purpose of this paper we are mainly interested in
potentials that model covalent bonds well, so we will not
investigate this further.
3.3 Spectroscopic parameters

Based on the quantum-chemical data, the vibrational harmonic
frequency, the rst anharmonic correction and other vibra-
tional parameters24 were computed by second order vibrational
perturbation theory using the Psi4 soware39 (Table S4†). It
should be noted that slightly more accurate vibrational
constants may be computed by directly solving the 1D Schrö-
dinger equation26,70,71 but vibrational perturbation theory is
accurate enough to distinguish the accuracy of the potentials
under evaluation here. Fig. 1 displays the residual (quantum
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Statistics per function for quantum chemistry results.Mf is the number of parameters used for fitting,Msim the number of parameters if
the minimum is not fixed at zero and when redundancies are removed (see text). N is the number of compounds, Z is the average Z-score (cm−2

Å−1), and RMSD (J mol−1) is the root mean signed error from quantum chemical results. An energy cut-off of 1000 cm−1 was applied. Table is
sorted after Z-score for covalent compounds computed at the CCSD(T) level of theory

Function Mf Msim

CCSD(T) MP2

Non-covalent (26) Covalent (45) Non-covalent (26) Covalent (45)

Z RMSD Z RMSD Z RMSD Z RMSD

Sun54 8 8 0.0 0.5 0.0 0.1 0.0 0.1 0.0 0.1
Hulburt–Hirschfelder55 5 5 0.0 0.9 0.0 0.1 0.0 0.4 0.0 0.2
Tietz II56 5 4 0.1 2.5 0.0 0.5 0.1 2.0 0.1 1.5
Wei Hua60 4 4 0.1 2.7 0.0 0.5 0.1 2.2 0.2 2.2
Cahill47 6 6 0.0 0.4 0.0 0.3 3.8 9.4 0.9 4.9
Ra57 5 4 0.1 1.8 0.1 2.1 0.1 1.7 0.5 4.8
Murrell–Sorbie30 5 5 0.1 2.7 0.2 2.7 0.2 3.0 0.4 3.6
Frost–Musulin61 4 3 0.6 5.6 0.2 3.7 0.6 5.6 1.0 5.0
Pöschl–Teller17 4 3 0.6 5.8 0.2 3.7 0.7 5.9 1.1 5.1
Valence-state67 4 4 0.6 5.0 0.3 4.3 0.5 4.6 1.2 5.4
Rosen–Morse63 4 3 0.9 7.0 0.4 3.8 0.9 7.0 1.2 5.4
Morse15 3 3 0.9 7.3 0.4 4.2 1.1 7.3 1.6 6.1
Rydberg16 3 3 1.2 8.3 0.4 4.3 1.3 8.4 1.7 6.3
Levine58 4 4 0.2 3.5 0.4 5.6 4.2 10 5.8 17
Linnett65 4 3 0.6 5.7 0.5 4.6 0.6 5.6 1.5 6.4
Pseudo-Gaussian64 3 3 1.9 11 0.6 5.0 2.0 11 1.7 6.5
Tietz I56 5 4 1.0 6.9 0.8 6.5 1.0 6.6 4.9 9.4
Varshni62 3 3 1.5 9.5 2.1 8.0 3.7 12 4.2 10
Deng–Fan66 3 3 0.7 6.0 5.1 13 4.8 11 10 18
Wang–Buckingham13 3 3 8.3 22 9.9 20 9.1 22 13 21
Tang (2003)48 6 6 17 26 44 29 1.0 6.7 98 43
Buckingham46 3 3 4.7 16 44 48 5.1 16 56 53
Noorizadeh59 5 4 23 29 273 78 22 29 217 69
Kratzer68 2 2 578 176 380 101 483 166 365 93
Lippincott69 3 3 1753 307 1471 196 1554 294 1409 186
Xie (2005)49 4 3 1747 299 1818 213 1512 284 1767 203
Harmonic 3 2 3848 452 3648 314 3506 438 3531 302
Lennard-Jones11 2 2 5487 532 9044 523 5690 534 9287 529

Fig. 1 Vibrational harmonic frequency ue from experimental data42,43

and residual from quantum chemistry.

Fig. 2 First anharmonic correction uexe from experimental data42,43

and residual from quantum chemistry.
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chemistry minus experiment) of the vibrational harmonic
frequency ue for the 71 molecules studied here. Despite some
outliers, the overall trend is that the frequencies are reproduced
well when using CCSD(T), but with considerably more noise for
MP2. These results can be compared to results from a machine
learning study by Ibrahim and co-workers, who built models to
predict spectroscopic constants of diatomic molecules based on
© 2025 The Author(s). Published by the Royal Society of Chemistry
atomic and molecular properties.72 Their best model produced
vibrational harmonic frequencies ue of similar accuracy to the
ones from CCSD(T) (Fig. 1).

The rst anharmonic correction uexe, is overestimated by
both the MP2 and CCSD(T) methods (Fig. 2). These results are
corroborated by a summary of statistics in Table 3, showing the
deviation from either experiment or CCSD(T). MP2 has almost
Digital Discovery, 2025, 4, 824–830 | 827
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Table 3 Percent deviation for vibrational harmonic frequency ue, first anharmonic correction uexe, equilibrium rotational constant Be, first
correction of the rotational constant ae, centrifugal distortion constant De, for different methods and analytical potentials fitted on CCSD(T) with
an energy threshold of 1000 cm−1, from the reference indicated below. Potentials sorted according to deviation of ue from CCSD(T)

Reference Experiment CCSD(T)

Method ue uexe Be ae De ue uexe Be ae De

CCSD(T) 2.92 18.64 2.77 14.12 26.92
MP2 6.65 45.47 2.47 20.34 28.21 6.33 41.80 2.13 18.15 9.37
Sun54 2.92 18.24 2.77 14.16 26.92 0.01 0.58 0.00 0.09 0.03
Hulburt–Hirschfelder55 2.92 18.07 2.77 14.07 26.92 0.01 0.67 0.00 0.13 0.03
Cahill47 2.92 18.85 2.77 14.13 26.92 0.02 2.28 0.00 0.17 0.03
Wei Hua60 2.92 17.61 2.77 13.89 26.92 0.04 1.68 0.00 0.77 0.08
Tietz II56 2.93 18.10 2.77 13.85 26.92 0.05 2.55 0.00 0.93 0.11
Ra57 2.94 17.46 2.77 13.85 26.93 0.08 2.63 0.00 1.19 0.16
Murrell–Sorbie30 2.92 20.33 2.77 14.13 26.92 0.08 7.78 0.00 1.00 0.17
Levine58 2.93 18.01 2.77 13.76 26.93 0.14 6.34 0.01 2.15 0.30
Deng–Fan66 2.93 19.47 2.77 16.68 26.94 0.15 9.49 0.04 8.80 0.36
Morse15 2.92 19.74 2.77 14.05 26.94 0.15 9.02 0.01 2.09 0.32
Rydberg16 2.91 21.33 2.77 14.00 26.95 0.17 10.71 0.01 2.24 0.36
Tietz-I56 2.97 18.86 2.77 14.53 26.93 0.18 10.23 0.01 2.74 0.39
Frost–Musulin61 2.93 18.50 2.77 14.04 26.95 0.19 7.70 0.01 2.14 0.39
Pöschl–Teller17 2.93 18.87 2.77 14.05 26.95 0.19 8.20 0.01 2.14 0.40
Valence-state67 2.98 16.04 2.77 14.34 26.93 0.19 8.96 0.01 2.15 0.40
Varshni62 2.90 22.51 2.77 14.74 26.96 0.20 11.60 0.02 4.99 0.42
Tang (2003)48 2.92 21.49 2.76 17.32 26.94 0.20 15.19 0.06 14.69 0.40
Pseudo-Gaussian64 2.89 23.89 2.77 13.89 26.96 0.21 13.43 0.01 2.74 0.44
Rosen–Morse63 2.91 22.51 2.77 14.04 26.96 0.22 12.53 0.01 2.20 0.45
Linnett65 2.93 22.89 2.77 14.20 26.94 0.22 14.12 0.01 2.04 0.44
Noorizadeh59 2.94 42.83 2.75 36.21 26.94 0.37 40.52 0.14 34.52 0.45
Buckingham46 2.98 69.91 2.78 22.85 26.97 0.59 59.92 0.16 21.71 1.24
Wang–Buckingham13 2.90 60.73 2.77 15.03 27.01 0.60 52.84 0.02 6.29 1.22
Kratzer68 3.32 63.09 2.96 50.86 26.92 0.81 63.64 0.32 50.07 0.76
Lippincott69 3.06 100 3.09 100 27.01 0.97 90.31 0.61 100 2.40
Xie (2005)49 3.69 87.13 3.09 100 26.92 1.47 87.41 0.58 100 1.38
Harmonic 3.80 — — — — 1.66 — — — —
Lennard-Jones11 5.02 100 2.89 100 27.41 4.69 100 1.65 100 4.15
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three times higher deviation from experiment than CCSD(T) for
ue and uexe, however for the other parameters the difference is
smaller.

The potentials, tted to CCSD(T) with a threshold of
1000 cm−1, were used to compute vibrational parameters as well
(Table 3). The ve best potentials from Table 2 are the best here
as well. All of these seem to reproduce the CCSD(T) energy
curves faithfully as they sport the same deviation from experi-
ment as CCSD(T) and low deviation from the CCSD(T)
frequencies as well. The deviation for frequencies ue from
experiment for the harmonic potential are comparable to other
potentials, however the deviation from CCSD(T) is high and the
other spectroscopic parameters are zero by denition.

Table S5† shows that without energy threshold for tting the
analytical potentials to CCSD(T), the top ranking ones are the
same as tted with an energy threshold (Table 3). It could be
suspected that using a larger energy threshold of 5000 cm−1

when tting the potentials, would be advantageous, since the
ground state vibration of molecular hydrogen, at 4401.21 cm−1

(ref. 43) would fall well inside this energy range. However, Table
S6† shows that the deviation of frequencies from experiment in
fact is larger than that tted with a lower threshold (Table 3).
Finally, it is possible to t potentials directly on experimental
828 | Digital Discovery, 2025, 4, 824–830
data. Table S7† shows the RMSD from experimental frequencies
for the 14molecules from Table 1. The deviation for both ue and
uexe is somewhat larger than for the ts to the CCSD(T)
potential, likely since the ground state vibrations are deter-
mined mainly by the shape of the potential close to the
minimum. Therefore, tting a potential to an accurate quantum
chemistry calculation may be sufficient if the purpose is to
reproduce the vibrational properties listed in Table 3.
4 Conclusions

An evaluation of 28 analytical potentials to reproduce quantum
chemistry data for 71 diatomic molecules is presented. Several
of these potentials t the quantum chemical reference data
excellently (Table 2) and also produce vibrational parameters on
par with the CCSD(T) ones (Table 3). The potential due to Hua is
both accurate and relatively simple and therefore it may be
a good choice for implementation in molecular simulation
codes. It is given by

UðrÞ ¼ De

�
1� e�bðr�reÞ

1� c e�bðr�reÞ

�2
(4)
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where De is the well-depth, re the equilibrium bond length, and
b and c are constants with ‖c‖ < 1. At r = re, the energy is zero,
but for MD simulations to reproduce the quantum-chemical
energy, De should be subtracted from eqn (4). It has been
shown that the Tietz II potential56 is mathematically identical to
the one due to Hua, under the condition that the same De is
used,22 however the Tietz II potential lacks the feature that the
energy minimum is zero by denition. For use in MD simula-
tions, the formulation in eqn (4) therefore has the advantage of
straightforward interpretation of the meaning of the parame-
ters. The potentials due to Hulburt–Hirschfelder55 and Sun54 are
more complex and therefore more computationally expensive.
In addition, more parameters will make those potentials more
cumbersome to parameterize.

Anharmonicity in the frequencies is not reproduced very well
by the quantum chemical methods employed here (Fig. 2 and
Table 3) and this is reected in the analytical potentials. Simply
stated, these potentials are not better than the reference data, in
this case CCSD(T)/aug-cc-pVTZ. Although this is perhaps
a trivial conclusion, it applies to both science-driven1 (like in
this work) and data-driven model building, and a careful eval-
uation of training data is therefore crucial in any machine
learning endeavor.4 A data-science problem that needs to be
addressed in both schools of modeling is the range of energies
incorporated. We have shown previously8,73 as well as here that
the choice of energy threshold can affect predictive power of
models trained on the data. A high threshold, or including
a large range of energies, requires complex models to get good
results, and simpler models may not be able to compete. A
smaller threshold could lead to more complex potentials being
underdetermined, but we nd rather the opposite, that
frequencies are reproduced better when a limited threshold is
used (compare Tables 3 and S6†). Finally, it should be noted
that the frequencies produced from the MP2 calculations are
much less accurate than those from CCSD(T). However, before
disregarding MP2 as a basis for systematic design of force
elds,6 studies with larger compounds are needed.
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4 K. Kř́ı̌z, L. Schmidt, A. T. Andersson, M.-M. Walz and D. van
der Spoel, J. Chem. Inf. Model., 2023, 63, 412–431.

5 A. Hagler, J. Comput.-Aided Mol. Des., 2019, 33, 205–264.
6 D. van der Spoel, Curr. Opin. Struct. Biol., 2021, 67, 18–24.
7 L. Wang, P. K. Behara, M. W. Thompson, T. Gokey, Y. Wang,
J. R. Wagner, D. J. Cole, M. K. Gilson, M. R. Shirts and
D. L. Mobley, J. Phys. Chem. B, 2024, 128, 7043–7067.
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S. Käser, F. L. Kearns, N. R. Kern, J. B. Klauda,
T. Lazaridis, J. Lee, J. A. Lemkul, X. Liu, Y. Luo,
A. D. MacKerell Jr, D. T. Major, M. Meuwly, K. Nam,
L. Nilsson, V. Ovchinnikov, E. Paci, S. Park, R. W. Pastor,
A. R. Pittman, C. B. Post, S. Prasad, J. Pu, Y. Qi,
T. Rathinavelan, D. R. Roe, B. Roux, C. N. Rowley, J. Shen,
A. C. Simmonett, A. J. Sodt, K. Töpfer, M. Upadhyay, A. van
der Vaart, L. I. Vazquez-Salazar, R. M. Venable,
L. C. Warrensford, H. L. Woodcock, Y. Wu, C. L. Brooks
III, B. R. Brooks and M. Karplus, J. Phys. Chem. B, 2024,
128, 9976–10042.

54 W. Sun, Mol. Phys., 1997, 92, 105–108.
55 H. Hulburt and J. Hirschfelder, J. Chem. Phys., 1941, 9, 61–

69.
56 T. Tietz, Can. J. Phys., 1971, 49, 1315.
57 F. M. Ra, Phys. Lett. A, 1995a, 205, 383–387.
58 I. Levine, J. Chem. Phys., 1966, 45, 827–828.
59 S. Noorizadeh and G. Pourshams, J. Mol. Struct., 2004, 678,

207–210.
60 W. Hua, Phys. Rev. A, 1990, 42, 2524–2529.
61 A. Frost and B. Musulin, J. Chem. Phys., 1954, 22, 1017–1020.
62 Y. Varshni, Can. J. Chem., 1988, 66, 763–766.
63 N. Rosen and P. Morse, Phys. Rev., 1932, 42, 210–217.
64 M. Sage, Chem. Phys., 1984, 87, 431–439.
65 J. Linnett, Trans. Faraday Soc., 1940, 36, 1123–1134.
66 Z. H. Deng and Y. P. Fan, Shandong Univ. J., 1957, 7, 162.
67 D. Gardner and L. von Szentpály, J. Phys. Chem. A, 1999, 103,
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