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language models for quantum
chemistry simulation input generation†

Pieter Floris Jacobs and Robert Pollice *

Scientists across domains are often challenged to master domain-specific languages (DSLs) for their

research, which are merely a means to an end but are pervasive in fields like computational chemistry.

Automated code generation promises to overcome this barrier, allowing researchers to focus on their

core expertise. While large language models (LLMs) have shown impressive capabilities in synthesizing

code from natural language prompts, they often struggle with DSLs, likely due to their limited exposure

during training. In this work, we investigate the potential of foundational LLMs for generating input files

for the quantum chemistry package ORCA by establishing a general framework that can be adapted to

other DSLs. To improve upon as our base model, we explore the impact of prompt

engineering, retrieval-augmented generation, and finetuning via synthetically generated datasets. We find

that finetuning, even with synthetic datasets as small as 500 samples, significantly improves

performance. Additionally, we observe that finetuning shows synergism with advanced prompt

engineering such as chain-of-thought prompting. Consequently, our best finetuned models outperform

the formally much more powerful model. In turn, finetuning GPT-4o with the same small

synthetic dataset leads to a further substantial performance improvement, suggesting our approach to

be more general rather than limited to LLMs with poor base proficiency. All tools and datasets are made

openly available for future research. We believe that this research lays the groundwork for a wider

adoption of LLMs for DSLs in chemistry and beyond.
Introduction

Many researchers are required to master so-called Domain
Specic Languages (DSLs) for their work.1 DSLs are specialized
programming languages for one specic application domain,
for instance simulation instructions for molecular mechanics
or quantum chemistry computations. They offer tailored
features and eld-specic abstractions to streamline research.
However, DSLs are hardly ever the primary subject of interest for
scientists but rather a means to an end to perform simulations
or analyses. This poses a challenge, as researchers have to
spend substantial time to learn DSLs, which limits the actual
research of interest.
3, 9747 AG Groningen, The Netherlands.
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Code synthesis offers an appealing solution by automatically
generating code from textual instructions. This is achieved via
dedicated machine learning models that process the instruc-
tions and generate the corresponding code as output. These
models are trained on vast amounts of code and corresponding
text data.

In this work, we implement a general framework (cf. Fig. 1)
and develop an open-source package to utilize large language
Fig. 1 Outline of the approach adopted in this work. (A) Model
architecture enabling the generation of instructions for domain
specific languages. (B) Case study conducted in this work on gener-
ating simulation input files for the quantum chemistry simulation suite
ORCA.
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models (LLMs) for DSLs. We apply this framework to the
generation of input les for the quantum chemistry soware
package ORCA.2 Key to this framework is the development of
three synthetic data generation schemes. Additionally, we
demonstrate the effects of netuning, prompt engineering, and
retrieval-augmented generation (RAG) on the performance of
both and . We nd that netuning, even
on small synthetic datasets, signicantly boosts performance,
especially when combined with chain-of-thought prompting.
Our best models signicantly outperform both the pristine

and baselines. We believe that our work
builds a solid foundation for future improvements in the
generation of ORCA input les specically, and the area of DSL-
synthesis for chemistry in general. Accordingly, our framework,
which is transferable to any DSL, even outside chemistry, will
help to improve the efficiency of researchers in the near future.
Expanding our framework could empower researchers to
generate specialized code that advances scientic objectives,
even in challenging scenarios with limited data access. In
contrast to recent studies that create tailored LLMs for dealing
with textual data in chemistry, our research offers a founda-
tional approach for teaching LLMs domain-specic code, which
the original model could not comprehend, and our approach
can be adapted to any DSL across scientic disciplines.

Related work

Until recently, specialized code synthesis models were encoder–
decoder architectures3,4 using so-called abstract syntax trees
(AST).5–8 An AST is a hierarchical, tree-like representation of the
syntactic structure of code, where each node represents
a component of the source code with specic syntactic or
semantic meaning. It captures the underlying structure and
connections between different elements. Typically, the encoder
compresses this hierarchical structure into a xed representa-
tion, and the decoder is trained to generate the target output,
a transformed or synthesized code.

Currently, LLMs are increasing in popularity in the context of
code synthesis.9 These models have a massive number of
parameters and are trained on immense amounts of natural
language (NL) data. Most such LLMs are causal decoding-only
models10 built on the transformer architecture.11 They do not
generate output from a xed piece of text but instead sequen-
tially, predicting the next character or word based on the context
of the preceding text. The transformer blocks enable the model
to dynamically focus on different parts of the input, informing
the prediction of each subsequent word by relevant portions of
the preceding text. Hence, they have to be fed with text, referred
to as a prompt, to be continued. In the case of code synthesis,
this prompt would generally consist of textual descriptions on
how the code should look or function. For instance, these
textual descriptions would specify what the purpose of the code
to be generated is and what approach is to be adopted to achieve
this purpose. Recently released LLMs, such as GPT-4 (ref. 12)
and Gemini 1.5,13 have shown remarkable capabilities in code
synthesis, translating textual instructions into functional code
for popular programming languages like Python and Java.14
© 2025 The Author(s). Published by the Royal Society of Chemistry
These models are trained on vast and diverse datasets and can
solve complex tasks given appropriate prompts. Additionally,
their chat-like interface provides interactivity to users seeking
clarication, troubleshooting, or deeper understanding.
Accordingly, they have the potential to lower the barrier of DSLs
signicantly, thereby boosting overall research productivity.

Additionally, LLMs were shown to possess expert knowledge
in many research domains where DSLs are used, including
chemistry. Among others, LLMs were found useful for molec-
ular design,15 property prediction,16–18 and chemistry-specic
code synthesis. For instance, they can create Python code that
can be used to solve chemistry problems19 and perform robotic
experiments,20,21 and, in a small case study, were shown to
create Python code generating simple inputs for the quantum
chemistry program Gaussian.22 There have also been initial
efforts to evaluate the capability of LLMs for direct DSL code
synthesis. For example, recently, ChatGPT has been qualita-
tively assessed for generating GPAW code to be used in band
structure calculations.23 The authors noted that, despite limited
experimentation, the generated DSL code oen contained
errors or incorrect attributes. A somewhat more formal study
evaluated GPT-4 for creating a few input les for LAMMPS,
a widely used molecular dynamics soware.24 Based on a small
number target inputs and a handful of case studies, this study
demonstrated that GPT-4 could produce both accurate and
functional input les for various molecular dynamics tasks,
highlighting the potential of LLMs to assist researchers in
navigating DSLs. However, as task complexity increased, GPT-4
struggled to produce fully functional simulation inputs, oen
requiring signicant modications by the user to achieve
desired outcomes. Other issues such as mislabeling of poten-
tials and vague descriptions were also noted, indicating that the
model has limited understanding of molecular dynamics
simulations.

Importantly, this supports the notion that, despite their
prociency in general-purpose code synthesis and expertise in
elds like chemistry, LLMs tend to struggle with DSLs. We
hypothesise that this is due to the specialized nature of DSLs
and their limited coverage in the training data of the LLM, as
the corresponding model parameters are optimized during
training. While LLMs are trained on vast data, it consists
predominantly of widely used languages and general concepts.
In contrast, DSLs typically have limited documentation, little
public code, and a small user base. Consequently, this infor-
mation scarcity could translate to poor performance of LLMs on
DSLs. Furthermore, the syntax and semantics of DSLs can differ
signicantly from popular languages like Python, making it
challenging for LLMs to generalise their knowledge to DSLs.

Model architecture

An overview of our model architecture is provided in Fig. 2. We
selected as our base LLM due to its near
state-of-the-art performance when we initiated this work and its
support for netuning, which allows updating the model
parameters based on small training datasets. During the
reviewing process of this work, netuning more advanced
Digital Discovery, 2025, 4, 762–775 | 763
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Fig. 2 Overview of the model architecture. The user prompt is augmented with the system prompt through prompt engineering and, optionally,
with additional context through retrieval-augmented generation. These texts are then used as input for the finetuned large language model to
generate ORCA input files. Colors: red = objects, blue = processes, green = datasets, purple = decisions; acronyms: RAG = Retrieval-
Augmented Generation, LLM = Large Language Model, CoT = Chain-of-Thought, ToT = Tree-of-Thought, GoT = Graph-of-Thought, CoV =

Chain-of-Verification.

Fig. 3 An ORCA input file for a restricted Hartree–Fock calculation
with the corresponding sections highlighted in different colors.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/1
3/

20
25

 1
0:

28
:1

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
models such as became available. Hence, we also per-
formed netuning with for a limited number of model
congurations. A thorough description of
and our parameter choices for both and
is provided in the ESI Material.†

Given a prompt, a textual instruction, describing the
requested chemistry simulation (X), our model aims to create
the corresponding ORCA input le (ŷ). We rely on three tech-
niques to achieve this: prompt engineering to best extract the
existing knowledge of the LLM, Naive Retrieval-Augmented
Generation (RAG)25 to provide the model with external docu-
mentation about ORCA inputs, and LLM netuning on three
synthetically generated datasets to teach it the syntax and
semantics of an ORCA input (Section 1 in Fig. 2).

An example of an ORCA input is provided in Fig. 3. It typi-
cally contains: keyword lines, which start with an exclamation
mark and dene global options; input blocks, which are
enclosed between a percent sign and the phrase , and
offer ne control over settings; and a coordinate block, which is
enclosed within asterisks and species the molecular
geometry, charge, and multiplicity. Comments start with and
are ignored by ORCA. A more extensive explanation of ORCA
input is given in the ESI Material.†

Prompt engineering

Prompt engineering has become essential to make optimal use
of LLMs,26–28 also in code synthesis.19,29–32 An extensive overview
of related work in prompt engineering is provided in the ESI
Materials.† Previous work does not offer a clear best method,
764 | Digital Discovery, 2025, 4, 762–775
which is why we explore various approaches. To optimally make
use of , we implemented the six prompt
engineering methodologies detailed below. Each follows
a different approach to structure the prompt. To make the
results as comparable as possible, the corresponding system
prompts all have a similar structure and utilize comparable
instructions.

Basic.Wemake use of proven prompting techniques without
a central prompt engineering framework. We instruct themodel
to behave as a chemistry expert,33 describe the format of an
ORCA input le, and employ few-shot learning by showing ve
© 2025 The Author(s). Published by the Royal Society of Chemistry
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examples of prompt and input le pairs.34 While this number of
examples is arbitrary, including too many examples can lead to
a performance decline.35 This system prompt serves as the basis
for the other, more elaborate prompts.

CoT (chain-of-thought).36 This prompt denes ve linear
steps to gather the key information. The model is instructed to
type the answer to all these steps, clearly separating which part
of the user prompt refers to which part of the input.

CoVe (chain-of-verication).37 The model rst needs to make
an initial guess of the correct input le. Next, we perform the
same ve steps as in CoT. However, instead of reasoning what
terms should be used, we ask the model to verify if the initial
choices are correct or changes are required.

GoT (graph-of-thought).38 This prompt instructs to use
a nonlinear way of mapping its reasoning. It encourages to nd
the core elements of the user prompt and to create connections
between them. For every element, multiple possibilities should
be considered to consolidate the most suitable choices.

ToT (tree-of-thought).39 The model is instructed to explore
different branches of thought and to consolidate them in a nal
answer. In the rst step, the model writes down multiple ideas
for what the ORCA input should be.

The full prompts, together with an explanation of their
structure, are provided in the ESI Material.† Note that we
employ these techniques in the so-called system prompt of the
LLM (Section 2 in Fig. 2). It cannot be overridden by the user
and is utilized for every response of the LLM.
Finetuning

Finetuning (Section 3 in Fig. 2) is a form of transfer learning,40

where knowledge gained from initial training on a large general
dataset is adapted for a specic task. The model is trained in
a supervised manner on a curated dataset containing examples
of desired inputs and the corresponding outputs. When applied
to teaching a model generating ORCA inputs, this dataset
should consist of ORCA input les (y, the desired outputs) and
their corresponding textual descriptions (X, the inputs).

Unfortunately, for our targeted problem, these data pairs are
generally unavailable. Much like the reason LLMs struggle with
code synthesis for DSLs in the rst place, this derives from the
niche nature of DSLs. Therefore, we synthetically created our
training data for netuning, starting with input les. We
devised three methods:

(1). Brute-force: this method does not consider any interac-
tions between keywords and input blocks, and instead
combines documentation randomly. Specically, it randomly
combines keywords, options, and settings to produce valid
input les. To facilitate this, we scraped all options and
keywords from version 5.0.4 of the ORCA manual. Additionally,
we extracted all input blocks from the manual, capturing both
the setting option and setting value as a full line, and docu-
mented which setting lines belonged to which option block.

(2) Manual-based: this method relies on the code blocks
provided in the ORCA manual. We extracted all unique indi-
vidual keyword lines and input blocks from these examples. The
method randomly combines these entire input sections to
© 2025 The Author(s). Published by the Royal Society of Chemistry
create valid inputs. By extracting entire sections, this assumes
that meaningful combinations of keywords, options, and
settings are utilized.

(3) Rule-based: this method generates input les for specic
ORCA calculation types, using predened rules to create
coherent and accurate inputs, and uses information from the
ORCA manual to formulate these rules. As this is the most
labor-intensive approach, we decided to only implement
frequently used calculation types. We refer the reader to the ESI
Materials† for a full overview of the implemented calculation
types and their functionality.

Two of these approaches strongly rely on the ORCA manual.
Soware documentation usually focuses on common use cases
and simple input examples to demonstrate the core function-
ality. Hence, this introduces a bias towards frequent input les
and likely neglects edge cases for both the manual-based and
the rule-based input le generation. However, the brute-force
approach does not suffer signicantly from this bias. A more
in-depth comparison of the generated input les can be found
in the ESI.† Across all three approaches, we employed the same
method to generate a coordinate block. We created the

dataset with coordinate sections for random
small molecules and selected one of them stochastically. This
dataset consists of valid molecules with up to three atoms and
was created from random SELFIES,41 followed by conversion to
SMILES.42 The Cartesian coordinates were then generated with

.43 We opted for small molecules with up to three atoms
because this dramatically reduces simulation times while
allowing for the full range of ORCA simulations (except for
dihedral angle constraints). Notably, we also generated radicals
to support open-shell methods such as unrestricted Hartree–
Fock calculations. However, we excluded ions and heavy atoms
like bromine and iodine.

Aer we appended the coordinate block, we ran the gener-
ated ORCA input to see whether it is executable and ORCA
nishes the corresponding simulation without errors, ensuring
they represent valid data. Importantly, for executable les, we
replaced the coordinate block with a comment containing the
SMILES of the molecule. We did this because generating
meaningful Cartesian coordinates with LLMs is challenging as
they consist solely of oating-point numbers. Since tools like

readily generate valid coordinates, training an LLM for
this would be inefficient. Additionally, we believe that LLMs
would not be well-suited for that. By including the SMILES in
our modied inputs, we focused instead on teaching the model
to associate certain basis sets with specic elements.

Overall, for each method, we generated 500 input les: 500
for the brute-force approach, 500 for the manual-based method,
and 500 for the rule-based technique. We kept these inputs
separate to compare the performance of each input generation
method. With the synthetic input les in hand, we still needed
to generate the corresponding NL prompts. Given an
augmented input (i.e., the coordinate block is replaced with
a SMILES comment), we rst extract all individual parts: the
keywords, the options of the different input blocks, the corre-
sponding setting lines, and the SMILES. We map these to
Digital Discovery, 2025, 4, 762–775 | 765

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00366g


Fig. 4 An overview of our prompt generation methodology for a given ORCA input file. The input file is split into keyword line arguments, input
blocks, and coordinate block. The corresponding information is used to extract definitions from the available reference material for ORCA.
Processing through GPT-4o yields synthetic prompts. Colors: red = objects, blue = processes, green = datasets, purple = decisions; acronyms:
LLM = Large Language Model.
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textual descriptions via documentation from the ORCA manual
using the following hardcoded steps:

(1) Write down the SMILES of the molecule aer a ‘#’
character.

(2) Write down all keywords with their description in the
format ‘@keyword = description@’.

(3) Write down all options in question and provide their
denition in the format used for keywords. For each option,
write down the corresponding settings and enclose the
description of the full block between two ‘%’ characters.

Through these steps, we obtain a crude prompt, which we
use as starting point to create a user-like prompt with GPT-4o.
The full process of user prompt creation is depicted in Fig. 4,
with a simple example illustrated in Fig. 5. Further details are
provided in the ESI Material.† Manual checking of a small
subset of the generated user prompts showed them to incor-
porate the simulation instructions of the input les with high
delity. However, the total number of generated prompts is too
high for efficient manual checking.

These datasets were the foundation for rening the base
LLM. When netuning on any of our three synthetic datasets,
we used the same system prompt across all examples for the
model to learn generating consistent responses. With the
prompt engineering technique, the user prompt is the input of
the model and the desired ORCA input le is the corresponding
Fig. 5 An example of an initial input file (a), the corresponding crude pro
highlighted in different colors to keep track of what part of the synthetic

766 | Digital Discovery, 2025, 4, 762–775
output (i.e., the label). In contrast, for systematic prompt engi-
neering, it is necessary to create additional synthetic responses
as the model is taught to reason about the desired ORCA input
in its output. Hence, we altered y to start with the steps dened
in all our prompts and used hard-coded rules to create answers
based on the target input. This process is detailed in the ESI
Material.†
RAG

RAG is a general means to provide LLMs with additional context
by adding information retrieved from external data sources to
the system prompt.44Our version of RAG, illustrated in Section 1
in Fig. 2, uses a database of two documents that we considered
useful context: the ORCA manual (version 5.0.4) and the ORCA
Input Library website.45 Such a documentation-based version of
RAG has previously been shown to be effective for code
synthesis.46 The manual is the main documentation for ORCA.
It provides extensive and authoritative information on the
available functionalities, commands, and parameters. We used
all pages except for the parts where keyword and option de-
nitions were provided. We excluded these because they were
already used to construct our user prompts. Hence, including
them could inate model performance articially if the model
learned to rely on direct overlaps between the prompts and
mpt (b), and the final prompt (c). The components of the input file are
prompt the corresponding information is used for.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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documentation. By omitting this data, we ensure a more real-
istic performance evaluation. In addition, the ORCA Input
Library offers a comprehensive overview of the possible calcu-
lations in ORCA. It contains many practical examples and input
le templates as guidance for users. However, a signicant part
of its content was created and tested for ORCA version 4.2.1.
This means that some input le changes between ORCA
versions 5.0.4 and 4.2.1 have not been adapted. This can cause
misleading RAG context in some cases when inconsistent
information is retrieved from the two data source. Nevertheless,
the corresponding differences are sufficiently small to warrant
the inclusion of the ORCA Input Library because of its otherwise
highly valuable information. To be able to use the ORCA Input
Library as a document, we saved all its pages as PDF.

Both these documents were split by page, each of which was
embedded using the model, the
state-of-the-art embedding model by OpenAI at the time of
writing.47 The resulting embeddings were indexed using
FAISS,48 a library designed to readily cluster dense vectors.
These clustered vectors permit a FAISS similarity search
between the user prompt and the indexed embedding vectors to
quickly retrieve relevant documentation. The K most similar
pages (one of our hyperparameters) are retrieved and added to
the user prompt for the model to make use of during the ORCA
input generation.

Finally, we opted to add extra instructions to the system
prompt whenever RAG was used. Aside from introducing what
type of data we retrieve the external context from, we instruct
the LLM to indicate what part of the context is used for what
part of the input with explanation. We also instructed the model
only to use the context when relevant. The exact instructions we
used are found in the ESI Material.†
Results and discussion

To evaluate the performance of both and
in generating ORCA input les, we explored the effect of

netuning with different synthetic datasets, different prompt
engineering methods, and RAG onmodel performance. The full
experimental setup, including hyperparameters, data overviews,
and explanations of all our metrics is provided in the ESI
Materials.†
Table 1 Impact of prompt engineering techniques on the basemodel,
evaluated via F1avg on the validation set. The best value is bolded

Prompt engineering Validation F1avg

None 0.083
Basic 0.199
CoT 0.214
CoVe 0.199
GoT 0.207
ToT 0.212
Experiments

Whereas netuning was performed by training with our
synthetic data, we wanted to have independent data to compare
model performance during hyperparameter optimization (vali-
dation) and evaluate nal model performance (testing). Thus,
validation and testing were performed using the

dataset, which comprises 588 input les gath-
ered from both ioChem49 and internal sources. Therefore, all
input les used in validation and testing were real-world data.
These real-world input les were more complex than the
synthetic input les, and generally tend to contain more
keywords, more input blocks, and more setting lines (details in
the ESI Materials†) These input les were preprocessed for
© 2025 The Author(s). Published by the Royal Society of Chemistry
model compatibility and the corresponding prompts were
created using our prompt generation scheme. Finally,

was split 50/50 to create both a validation and
a test set.

Using the validation set, we conducted a grid search by
evaluating all systematic combinations of hyperparameters on
a pre-dened grid of allowed values to nd the best hyper-
parameters. Aerwards, we netuned , our base
LLM, independently using the three training datasets (brute-
force, manual-based, rule-based), and probed the impact of
both RAG and prompt engineering on model performance in all
possible congurations. At the time of writing, GPT-4o could
not be netuned yet, however, it became available for netuning
during the review process. Accordingly, we used it both in its
standard conguration as a strong baseline and netuned in
a limited number of model congurations.

Importantly, ORCA inputs lack the hierarchical complexity
and linguistic properties that typical code and NL translation
metrics assess (e.g., word order), making these metrics unsuit-
able here. Instead, the presence of specic terms necessary for
correct execution is key for ORCA inputs. Hence, we framed this
task as a classication and evaluated accuracy solely based on
the presence or absence of predicted words via the F1 score,
which accounts for both errors resulting from missing words
and errors resulting from superuous words. Accordingly, we
evaluated all models via the F1total and F1avg scores on the

test set, and determined the fraction of
executable input les. In contrast to F1total, F1avg weighs all
three ORCA sections equally rather than assigning more weight
to the section containing more terms.
Hyperparameter optimization

Due to the large number of possible model congurations with
all the prompt engineering techniques considered, to reduce
computational expense, we decided to identify the most effec-
tive approach for prompt engineering with the
base model before netuning with any particular system
prompt (Table 1). Importantly, all prompt engineering tech-
niques improved performance over using no prompt engi-
neering and lead to similar levels of performance. This suggests
that providing the model with information about ORCA inputs
and guidance on what to do is essential for enabling the model
to employ its limited pre-trained knowledge productively. CoT
outperformed the other techniques, with a marginal, but likely
Digital Discovery, 2025, 4, 762–775 | 767
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Fig. 6 Scatter plot of validation loss for against F1avg
score during the hyperparameter search over 600 different
configurations.

Fig. 7 Validation performance of all models using RAG as a function of
retrieved documentation pages (K).

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/1
3/

20
25

 1
0:

28
:1

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
insignicant, improvement over ToT. As every prompt engi-
neering method requires separate netuning later on, we
decided to only proceed with CoT for all subsequent experi-
ments. Nevertheless, CoT and ToT show essentially equal
performance and would be equally good choices going forward.

Apart from identifying the best prompt engineering tech-
nique, we also made two key observations during hyper-
parameter optimization. First, Fig. 6 shows a scatter plot
correlating the validation loss obtained from the OpenAI API
during netuning against the corresponding validation F1avg
score. Note that the loss metric used for training

is not made public by OpenAI. We observe
signicant uctuations in validation performance over different
parameter settings, oen resulting in extremely low F1avg
scores. This observation aligns with the ndings of Yao et al.,50

who demonstrated that netuning is very meticulous and can
increase the tendency towards hallucinations. The plot also
illustrates that, counter to our expectations, a lower validation
loss does not necessarily correspond to a better F1avg score.
Many models achieving the best F1avg scores exhibited high
losses, while, conversely, some of the worst models showed low
losses. From this, we concluded that the training loss of

was not a reliable metric for selecting our best
model. Therefore, we decided against the validation loss avail-
able through the OpenAI API for determining the best param-
eters for testing. Instead, we optimized the validation F1avg
score directly.

Second, Fig. 7 shows the validation performance of all our
model congurations utilizing RAG as a function of the number
of retrieved documentation pages. It shows that non-netuned
models tend to slightly increase in validation performance as K
increases. However, for the netuned models, we generally
observe a decline in performance as K grows until the model
context window is lled (K =Limit). The only exception is the
brute-force model with CoT, where retrieving ve documenta-
tion pages shows best validation performance. It seems that the
768 | Digital Discovery, 2025, 4, 762–775
netuned models handle external context poorly. We hypothe-
size that they either ‘forget’ how to handle the additional
context or get ‘confused’ by it. This could be explained by the
models not being trained to use RAG. Alternatively, RAG might
only be really useful when the model has little knowledge about
ORCA input les.
Base model congurations

Table 2 summarizes the performance of the base models
( and ) in all possible congurations with
RAG and CoT. A detailed analysis of the corresponding ORCA
errors encountered when executing the generated inputs is
provided in the ESI Materials.†

We nd that the base model performed
poorly in ORCA input le synthesis, producing few functional
les and struggling with accurate synthesis of settings and
options. The relatively respectable F1keywords score is likely
because the keywords are oen specied literally in the prompt.
This poor performance supports the notion that LLMs are not
well-suited for DSL code synthesis due to insufficient exposure
in their pre-training. When we combine the poor base model
with RAG, we observe a higher fraction of executable les
compared to the baseline, even outperforming
the base model in this regard. Intuitively, this makes
sense as we provide external information about ORCA inputs
including numerous functional examples. Using RAG also leads
to slight improvements in the F1 scores. While improvements
are insignicant for predicted options and settings, the addi-
tional context helped the model to improve keyword prediction,
likely by referencing a broader range of valid keywords from the
added information. We observe a similar impact of RAG on

, however, the performance increase is signicantly
smaller compared to .

Employing CoT prompt engineering boosts F1 scores,
however, the improvement is more modest compared to RAG,
and the fraction of executable les hardly increases. Based on
previous literature,36,51,52 we expected larger performance
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Test performance of the different configurations of and . F1avg is the mean of F1keywords, F1options, and F1setting.
When CoT is not used, ‘basic’ prompt engineering is used instead. For all metrics, the best performance across the and the

models, respectively, is bolded

Base model CoT RAG % executable F1total F1avg F1keywords F1options F1settings

GPT-3.5 Turbo 7 7 3.401 0.217 0.182 0.344 0.171 0.029
7 3 11.905 0.242 0.194 0.374 0.176 0.031
3 7 3.741 0.229 0.193 0.366 0.177 0.035
3 3 14.626 0.229 0.188 0.359 0.166 0.037

GPT-4o 7 7 5.872 0.378 0.279 0.545 0.227 0.066
GPT-4o 7 3 10.884 0.383 0.296 0.544 0.241 0.103
GPT-4o 3 7 7.570 0.382 0.281 0.558 0.222 0.063
GPT-4o 3 3 10.204 0.390 0.284 0.567 0.214 0.070
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improvements. We explain this marginal improvement by the
LLMs simply lacking knowledge about the desired chemistry
simulation, making it unable to exploit the advantages of
reasoning. Nevertheless, CoT is still valuable for its added
explainability despite limited performance improvement.
Combining RAG and CoT results in the highest fraction of
executable les for , but it only improves F1
scores for .
Finetuned model congurations

The performance of our netuned models, in
all possible congurations, and our netuned ,
in a few select congurations, is provided in Table 3. Again, we
provide a detailed analysis of the different ORCA errors
encountered when executing the corresponding input les in
the ESI Materials.†

Looking at the results, across all three ne-
tuning datasets, we see consistent performance increase,
solidifying our expectation that teaching the base model ORCA
input synthesis is essential due to its limited pre-trained
knowledge. Importantly, these improvements are achieved
Table 3 Test performance of the different finetuned and
and F1setting. When CoT is not used, ‘basic’ prompt engineering is used in
and the models, respectively, is bolded

Base model CoT RAG Finetuning % executab

GPT-3.5 Turbo 7 7 7 3.401
7 7 Brute-force 15.306
7 7 Manual-based 10.544
7 7 Rule-based 11.225
7 3 Brute-force 25.122
7 3 Manual-based 15.926
7 3 Rule-based 10.884
3 7 Brute-force 17.006
3 7 Manual-based 21.769
3 7 Rule-based 22.048
3 3 Brute-force 26.191
3 3 Manual-based 15.986
3 3 Rule-based 15.646

GPT-4o 7 7 7 5.872
GPT-4o 3 7 Manual-based 18.027
GPT-4o 3 3 Manual-based 15.306

© 2025 The Author(s). Published by the Royal Society of Chemistry
with only 500 synthetic ORCA input les, highlighting the large
potential of synthetic datasets to enhance real-world DSL
synthesis performance. Overall, the manual-based models
perform best, likely because the corresponding training data
includes keywords and input blocks commonly used in real-
world les, as they are extracted from documentation examples.

This is in marked contrast to the brute-force dataset, which
shows lower F1 scores. We argue that this is because many of
the randomly selected keywords and input blocks are not used
in real-world calculations. Interestingly, the brute-force
approach was able to generate more executable input les
compared to the other datasets. This is surprising as this
approach combines documentation in the most random way.
However, as all our netuning datasets only included execut-
able les, the specic combinations of keywords, settings, and
options do not need to be meaningful to increase performance
on generating executable inputs.

Unexpectedly, the rule-based models underperformed
compared to the manual-based approach, despite the rule-
based dataset being designed to represent real-world data.
This is likely due to the limited subset of calculations we
model configurations. F1avg is the mean of F1keywords, F1options,
stead. For all metrics, the best performance across the

le F1total F1avg F1keywords F1options F1settings

0.217 0.182 0.344 0.171 0.029
0.382 0.267 0.527 0.147 0.128
0.390 0.261 0.535 0.133 0.113
0.333 0.237 0.475 0.199 0.037
0.221 0.177 0.310 0.128 0.112
0.311 0.228 0.424 0.133 0.128
0.282 0.206 0.407 0.184 0.028
0.384 0.264 0.535 0.137 0.121
0.426 0.286 0.588 0.145 0.125
0.361 0.254 0.506 0.207 0.047
0.282 0.205 0.326 0.106 0.105
0.330 0.223 0.459 0.104 0.106
0.298 0.205 0.425 0.158 0.032
0.378 0.279 0.545 0.227 0.066
0.513 0.330 0.691 0.157 0.140
0.473 0.308 0.632 0.151 0.141

Digital Discovery, 2025, 4, 762–775 | 769
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employed, which resulted in less diverse keywords and settings,
as characterized by the low variability and high skewness of this
dataset (cf. ESI Materials†). Consequently, this translated to
worse generalisation performance.

Whereas the base models showed little performance
improvement with prompt engineering, netuning combined
with CoT yields the highest F1 scores across all three netuning
datasets. The percentage of executable les also increases
across all datasets with CoT-based netuning, with the largest
increase seen in the rule-based and manual-based datasets.
Notably, the manual-based netuning dataset, when combined
with CoT, achieves the highest F1 scores of all
models. We explain this performance improvement by the
netuning teaching the model how to make use of the CoT
prompt, learn mappings of descriptions, and dissect the
different parts of an ORCA input le. Moreover, we hypothesize
that the netuned model has more knowledge about ORCA to
use in its reasoning, making CoT more effective.

Conversely, using RAG generally results in signicantly lower
F1 scores. Nevertheless, it improves the number of executable
les for both the brute-force and the manual-based datasets,
but not for the rule-based dataset. Combining RAG with CoT
again generally degrades all performance metrics compared to
using CoT alone. An exception is observed with the brute-force
dataset, where the fraction of executable les increases signi-
cantly, reaching its highest value. This is in line with our nd-
ings from the hyperparameter optimization, where we found
that, generally, the netuned models performed worse as more
documents were retrieved.

Finally, we also observe a substantial performance increase
for when netuned with the manual-based dataset.
While the resulting fraction of executable input les is slightly
smaller compared to the corresponding netuned

model, netuning leads to the highest F1
scores, outperforming the best netuned
model by a signicant margin. When looking at the bigger
picture, we nd very encouraging performance of our proposed
model architecture. Our best netuned model
outperforms the base model in all metrics signicantly,
except for the F1 score for input options. Both baseline models
benet substantially from netuning with a very limited sample
of computer-generated training data.
Limitations

As this study is a rst systematic foray in DSL synthesis for
quantum chemistry simulations, we identied several limita-
tions of our approach. Here, we discuss the most important
ones. A full overview is provided in the ESI Materials.†

First, the performance of our best models, while out-
performing the baselines both with respect to accuracy and the
generation of executable input les, are still insufficient for real-
world deployment, especially when facing inexperienced users.
At the current level, the majority of the generated input les are
not executable with ORCA. While users could try to simply
submit the same prompt and rely on the probabilistic nature or
submit a modied prompt, this does not necessarily lead to an
770 | Digital Discovery, 2025, 4, 762–775
executable input le. Perhaps the most promising action users
could take is to provide the ORCA output as additional infor-
mation in the prompt together with the previously generated
input to allow for the LLM to self-correct. However, this is not
a user-friendly solution and, therefore, at the current perfor-
mance level, these models are not practical yet. Further work is
needed to reach an appropriate performance level to avoid
cumbersome workarounds and really reduce the time
researcher spend on input le generation.

Second, we did not test the performance of all the imple-
mented prompt engineering techniques on netuned models.
Despite the low impact of prompt engineering beyond the
‘Basic’ approach on the base model, we suspect that perfor-
mance differences would likely be more pronounced on ne-
tuned models. Hence, follow-up work should investigate the
impact of different prompt engineering approaches more
comprehensively. Nevertheless, we do not expect substantial
performance improvements from alternative prompt engi-
neering techniques.

Additionally, as mentioned before, we observed that the
internal loss used by was a poor indication of
nal model performance. This is particularly problematic as the
model parameters are updated based on the gradient of the
loss, potentially even moving away from better model parame-
ters during netuning. While both and
still provided us with strong base models that permit netun-
ing, open-source models would provide more insight regarding
the loss, and even enable us to modify it.

Furthermore, we used a limited amount of synthetic data for
this rst case study. Notably, it has been shown for the BERT
model53 that the size of the netuning dataset can impact
performance drastically,54 which we did not take advantage of.
The corresponding data generation methods could have been
exploited further to create more synthetic training data. This
would provide additional insights about the change in model
performance with training samples. Combining data from
multiple generation methods is also a promising avenue
towards further performance improvements.

Finally, all the user prompts used for quantitative evaluation
were synthetic. Given the novelty of our approach, the absence
of such data is natural. While we believe that they are suffi-
ciently realistic, future work is necessary to collect prompts
from actual users.

Conclusions

In this study, we proposed a model and developed a Python
package for code synthesis of domain specic languages, and
applied it to the quantum chemistry program ORCA. We
devised three methods for synthetic data generation of
increased sophistication. We explored the effects of netuning,
prompt engineering, and retrieval-augmented generation on
the performance of both and in
synthesizing ORCA input les and showed that our best models
were able to outperform the pristine base models signicantly.

Our results highlight the importance of netuning to
improve performance, even when using small synthetically
© 2025 The Author(s). Published by the Royal Society of Chemistry
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generated datasets. While chain-of-thought prompting does not
substantially outperform basic prompt engineering, its combi-
nation with netuning leads to synergistic improvements. In
contrast, we nd that RAG, while benecial as a standalone
enhancement, can degrade performance when used with ne-
tuned models, highlighting the importance of careful method
integration.

While our best-performing model is still insufficient for an
end user product, our study is a rst-of-its-kind and provides
a comprehensive general framework for synthetic data genera-
tion andmodel setup, paving a clear path towards the goal of an
LLM for DSL code generation in chemistry. There are several
limitations to be addressed in future research. We believe that
the most promising avenue is increasing the size and diversity
of synthetic datasets. Additionally, applying our methodology to
open-source LLMs, perhaps even models specialized on code
synthesis, would allow to implement a meaningful loss function
and ultimately lead to better models. Furthermore, exploring
advanced RAG techniques, which incorporate mechanisms
allowing for ranking and ltering the information provided to
the LLM, or integrating context during netuning present
promising future avenues. Finally, and perhaps most impor-
tantly, the approach we developed, while applied to ORCA, is
general, and thus allows for straightforward expansion to other
widely used quantum chemistry simulation programs such as
ADF,55 Gaussian,56 or Q-Chem.57 This could reveal whether the
netuned knowledge is transferable across different DSLs,
offering broader application of our methodology in chemistry
and beyond. Accordingly, we encourage others to use our
approach as foundation for tackling similar problems.
Data availability

The code used for generating the datasets and running the
experiments presented in this article is available at our GitLab
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for this study is found in commit . This repository
also includes the specic brute-force, manual-based and rule-
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A. O. Gunina, M. W. D. Hanson-Heine, P. H. P. Harbach,
A. Hauser, M. F. Herbst, M. Hernández Vera, M. Hodecker,
Z. C. Holden, S. Houck, X. Huang, K. Hui, B. C. Huynh,
M. Ivanov, A. Jász, H. Ji, H. Jiang, B. Kaduk, S. Kähler,
K. Khistyaev, J. Kim, G. Kis, P. Klunzinger, Z. Koczor-
Benda, J. H. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk,
C. M. Krauter, K. Kue, A. Kunitsa, T. Kus, I. Ladjánszki,
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