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simulation of liquid electrolytes in Li-ion batteries†
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and Seungwu Han *ab

Achieving higher operational voltages, faster charging, and broader temperature ranges for Li-ion batteries

necessitates advancements in electrolyte engineering. However, the complexity of optimizing

combinations of solvents, salts, and additives has limited the effectiveness of both experimental and

computational screening methods for liquid electrolytes. Recently, pretrained universal machine-learning

interatomic potentials (MLIPs) have emerged as promising tools for computational exploration of

complex chemical spaces with high accuracy and efficiency. In this study, we evaluated the performance

of the state-of-the-art equivariant pretrained MLIP, SevenNet-0, in predicting key properties of liquid

electrolytes, including solvation behavior, density, and ion transport. To assess its suitability for extensive

material screening, we considered a dataset comprising 20 solvents. Although SevenNet-0 was

predominantly trained on inorganic compounds, its predictions for the properties of liquid electrolytes

showed good agreement with experimental and ab initio data. However, systematic errors were

identified, particularly in the predicted density of liquid electrolytes. To address this limitation, we fine-

tuned SevenNet-0, achieving improved accuracy at a significantly reduced computational cost

compared to developing bespoke models. Analysis of the training set suggested that the model achieved

its accuracy by generalizing across the chemical space rather than memorizing trained configurations.

This work highlights the potential of SevenNet-0 as a powerful tool for future engineering of liquid

electrolyte systems.
1 Introduction

Li-ion batteries (LIBs) have revolutionized modern technology
by powering a wide range of devices, from mobile phones to
electric vehicles.1,2 Among the various components comprising
LIBs, the liquid electrolytes play a crucial role in facilitating ion
transport between the anode and cathode, enabling the
charging and discharging cycles.3–7 Commercial formulations
oen incorporate lithium hexauorophosphate (LiPF6) as the Li
salt,8 while ethylene carbonate (EC)-based solvents are estab-
lished as the industry standard due to their ability to form
a robust solid electrolyte interphase (SEI) on graphitic anodes.9

When mixed with linear carbonates such as dimethyl carbonate
(DMC), ethyl methyl carbonate (EMC), and diethyl carbonate
(DEC), these electrolytes offer the complementary advantages of
high salt dissociation from cyclic carbonates with high
eering and Research Institute of Advanced
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permittivity, alongside the enhanced ion mobility and reduced
viscosity provided by linear carbonates.10,11 The introduction of
vinylene carbonate (VC) as an additive has further enhanced SEI
stability, with its highly reactive carbon–carbon double bond
that promotes the formation of polymeric species.10

While the current recipes of liquid electrolytes satisfy various
requirements, there is still a pressing demand for further
optimizing the liquid electrolyte for LIBs to achieve enhanced
energy density, safety, cycle life, and performance across various
temperatures.12–14 For example, to increase the operation
voltage, it is necessary to lower the HOMO (Highest Occupied
Molecular Orbital) level of the electrolyte to prevent degrada-
tion, or introduce additives to form a stable cathode-electrolyte
interphase (CEI).15,16 On the other hand, incorporating bulky
anions can increase the charging speed by elevating the Li-ion
transference number,17,18 although this results in lower ionic
conductivity by retarding Li-ion movements.19 Lastly, commer-
cial EC-based electrolytes are vulnerable in low-temperature
environments, where the viscosity increases signicantly and
solidication occurs, lowering the ionic conductivity.20 In
addition, due to the sluggish desolvation of Li ions, charge
transfer between the anode and electrolyte is hindered.21
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Switching to ether-based electrolytes22 or utilizing (localized)
high-concentration electrolytes23 may resolve these problems.

In the above-mentioned cases, selecting optimal formula-
tions for liquid electrolytes oen requires a careful balance
between correlated material properties, such as viscosity and
solvation, which calls for testing of various materials and their
combinations. Considering the vast space of organic molecules
and the challenges in measuring physicochemical properties
experimentally, atomistic simulations have become highly
useful for material screening and understanding variations in
properties at the atomic level.24–26 In particular, molecular
dynamics (MD) simulations using classical potentials or density
functional theory (DFT) calculations, have been instrumental in
investigating solvation structures and physicochemical prop-
erties (i.e., diffusivity and viscosity) of electrolytes,27–29 as well as
interfacial reactions between electrodes and electrolytes.30–32

However, theoretical studies based on DFT and classical
potentials face challenges in computational cost and trans-
ferability, respectively. For example, the high computational
cost of DFT limits simulation size and time to a few hundred
atoms and tens of picoseconds.28,29 This limitation raises
concerns that the simulation may not reach equilibration
within the DFT time scale.33 For instance, the residence time of
Li and solvent molecules can extend up to a few tens of nano-
seconds,33,34 a time scale DFT cannot practically achieve. On the
other hand, while classical potentials allow simulations of tens
of thousands of atoms over hundreds of nanoseconds, they
sacrice transferability and general accuracy by tting model
parameters to DFT results or experimental data specic to
particular systems. For example, the charges in OPLS-AA
(Optimized Potentials for Liquid Simulations-All Atom) were
scaled by 80% to t to the experimental Li diffusivities in EC
electrolytes.35,36 However, this approach deteriorated the diffu-
sivities of both the Li ion and the PF−6 anion in PC solvent.35

Similar trade-offs on different properties have been reported in
other classical potentials, such as in TraPPE (Transferable
Potentials for Phase Equilibria) force elds,37 which accurately
predicted densities but showed more than 20% error in relative
permittivities. Beyond these Class I force elds, more advanced
force elds, such as Class II,38 incorporating bond and angle
anharmonicity, and APPLE&P39 (Atomistic Polarizable Potential
for Liquids, Electrolytes, and Polymers, Class-III), which is
many-body polarizable, achieve higher accuracy through addi-
tional parameters, but they demand careful parameter tuning
and still suffer from limited transferability.

Over the past decade, data-driven machine-learning inter-
atomic potentials (MLIPs) have gained signicant attention in
materials simulation by extending both the length and time
scales to those of classical potentials while maintaining accuracy
close to that of DFT.40–44 Therefore, employing MLIPs in the
simulation of liquid electrolytes is poised to overcome the diffi-
culties in DFT or classical force eldsmentioned above. However,
there are signicant challenges in developing MLIPs for liquid
electrolytes, particularly with traditional application-specic,
bespoke-style MLIPs. First, generating training sets with DFT-
based MD simulations incurs high computational costs. This is
because adequate sampling of all possible congurations,
Digital Discovery
including different molecular conformers and achieving ergo-
dicity, requires long-term simulations. Second, in order to
computationally identify optimal formulations from material
screening, it is necessary to develop MLIPs that can be applied to
a wide range of organic molecules. This in turn requires the
creation of a comprehensive training set incorporating various
combinations of solvents and salt pairs and a careful sampling of
both intramolecular and intermolecular interactions among
different chemical moieties. Thus, previous studies have relied on
many cycles of iterative learning to generate such training sets,45,46

incorporating various strategies to improve the precision of
intermolecular interactions. Consequently, most studies using
MLIPs have been limited to investigating specic solvent-salt
systems, such as glyme-based electrolytes47 and carbonate elec-
trolytes,45,48 or solvent-only systems consisting of mixtures of EC
and EMC.46 In another example using the graph neural network
interatomic potential (GNN-IP), ref. 49 analyzed the Li transport
mechanisms in deep eutectic electrolytes and lithium bis(tri-
uoromethanesulfonyl)imide (LiTFSI). It is notable that ref. 50
has extended the chemical space by incorporating ester materials
and uorine doping at various sites in carbonates. However, for
untrained uorine-doped systems, the density error reached
a maximum of 21%.

Recently, pretrained general-purpose GNN-IPs such as
M3GNet,51 CHGNet,52 PFP,53 GNoME,54 MACE-MP-0,55 SevenNet-
0,56 MatterSim,57 eqV2 M,58 and ORB59 have emerged, providing
generalizability across diverse chemical spaces. It has been also
shown that ne-tuning the pretrained model can achieve the
precision of bespoke models at a small cost.60–62 The general-
izability of these models largely stems from the architecture of
GNN-IPs, such as NequIP63 and MACE,64 which automatically
extracts important features from deep learning. In addition,
atomic species are embedded with learnable parameters,
allowing the model to learn chemical similarities between
elements.65 This enables the pretrained model to capture
general trends in chemical bonding.

Most of the current pretrained models were trained using
inorganic materials databases such as the Materials Project,66

Alexandria,67 and OMat24.58 Nevertheless, MACE-MP-0 demon-
strated reasonable accuracy and stability in simulating liquid
electrolytes when applied to the EC/EMC LiPF6 electrolyte and
a complete battery system.55 In another example, ref. 68
compared densities and diffusivities of 3 : 7 EC : EMC solvents
between the bespoke MACE and MACE-MP-0 models and found
reasonable agreements. However, for pretrained models exten-
sively trained on inorganic compounds, liquid electrolytes fall
into strongly out-of-distribution domains. First, as will be
detailed in this work, relevant structural motifs of organic
molecules were not fully sampled in the dataset. One may
question whether training on an organic dataset such as
SPICE69 or using molecule-based pretrained models like MACE-
OFF70 would offer a better alternative. However, SPICE contains
few Li-containing structures, and MACE-OFF lacks training on
ionic species such as Li and PF6, making these models unsuit-
able for comprehensive simulations of liquid electrolytes.
Furthermore, most pretrained models do not explicitly account
for long-range electrostatic interactions, and research on
© 2025 The Author(s). Published by the Royal Society of Chemistry
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implicit treatment is rarely addressed.71 As a result, it is unclear
how well they can describe solvation structures and dielectric
properties, which are primarily governed by Coulomb interac-
tions. Therefore, a systematic analysis on the general accuracy
of current pretrainedmodels in liquid electrolytes is in demand.

In this work, motivated by the above discussions, we system-
atically investigate the accuracy of SevenNet-0 (ref. 72) (simply
SevenNet or 7net henceforth) in applications involving liquid
electrolytes. SevenNet has achieved high performance in the
Matbench Discovery benchmark, which assesses the performance
of pretrained universal force elds on inorganic crystal discovery.73

To evaluate whether the pretrained model is suitable for extensive
material screening, we tested its performance across a diverse
range of electrolytes. Although SevenNet does not explicitly
incorporate electrostatic interactions, its message-passing traits
are expected to implicitly encode these effects up to the receptive
eld (see ref. 71), and an explicit van der Waals functional is
employed with SevenNet. Key properties such as densities, solva-
tion shell structures, and diffusivities were compared with exper-
imental data or ab initio MD (AIMD) results. While the overall
agreement with reference data was good, SevenNet exhibited force
soening and overestimated solvent density. To address this, we
also ne-tuned SevenNet, which signicantly improved the
model's accuracy. This work highlights the potential of SevenNet
for future engineering of liquid electrolyte systems.
Fig. 1 Schematic description of the solvent molecules and ions
investigated in this study. The solvents are categorized by chemical
groups (carbonate, ester, and ether) and molecular structures (cyclic
or linear) (left). Variations in the solvent set include changes in bond
order, molecular elongation, partial fluorination, and isomerism
(middle). Examples of the carbonyl oxygen (Oc), carbonyl carbon (Cc),
and ethereal oxygen (Oe) are indicated on the ECmolecule. The anions
and cations used for salts in the electrolyte systems are shown in the
right. For corresponding IUPAC names and formulas, refer to Table
S1.†
2 Results and discussion

To test SevenNet with various types of molecules employed in
liquid electrolytes, we considered a total of 20 solvents and 2
salts, as listed in Table S1† and schematically summarized in
Fig. 1. The test solvents were selected to encompass a broad
range of liquid electrolytes used in commercial batteries or in
advanced battery research. They represent four major chemical
groups: cyclic carbonates, linear carbonates, ethers, and esters.
As base molecules, we used EC for cyclic carbonates, DMC for
linear carbonates, dimethoxyethane (DME) for ethers, and ethyl
acetate (EA) for esters, as shown on the le of Fig. 1. To expand
the chemical space, we varied the molecular structures by
altering the bond order, elongating carbon chains, incorpo-
rating uorine atoms, and exploring cis–trans isomerism, as
depicted in the center of Fig. 1. For salts, LiPF6 and lithium
bis(uorosulfonyl)imide (LiFSI) were considered (see the right
of Fig. 1). For cations, we focused primarily on Li ions (Li+),
although sodium (Na+) and potassium (K+) ions were also
included in the solvation shell analysis.

The full simulation of liquid electrolytes involves various
types of bonding/nonbonding, intra-/intermolecular interac-
tions. To systematically assess the accuracy of SevenNet, we
apply the model to progressively more complex systems in the
following subsections, starting from single molecules, moving
to pure solvents, and nally to full electrolytes.
2.1 Single solvent molecules

For the simulation of organic systems, an accurate description
of a single molecule is a basic requirement. We compared the
© 2025 The Author(s). Published by the Royal Society of Chemistry
single-molecule energies and structures of SevenNet and DFT
for 20 solvent molecules. The molecule was initially placed in
a cubic box with periodic boundary conditions, where the
length of the box was set to 10 Å plus the maximum molecular
length along each axis. Since the graph connectivity in SevenNet
is truncated beyond the 5 Å cutoff, periodic images do not
spuriously appear in the local atomic environment of the target
molecule in the SevenNet calculations. In the DFT calculations,
a dipole correction was applied in all directions to remove
spurious dipole–dipole interactions between periodic images.
Structural relaxation was performed until the magnitude of the
atomic forces was reduced to within 0.02 eV Å−1. In Fig. 2a, we
compare the per-atom energies obtained by SevenNet and DFT
relaxation. The mean absolute error (MAE) is 23 meV per atom,
where the largest deviation of 51 meV per atom found with the
VC molecule. Although the energy error is larger than that of
MLIPs trained solely on molecular systems (a few meV per
atom),46,70 it does not alter the relative energy ordering of the
single molecules, offering basic evidence of accuracy of Sev-
enNet. We also compared the bond lengths and angles of
relaxed molecular structures to verify that SevenNet produced
Digital Discovery
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Fig. 2 (a) Comparison of per-atom energies (left axis) and corresponding errors (right axis) between DFT and SevenNet predictions for 20 single
solvent molecules. (b) Relative energy profiles for DMC (left) and EA (right) molecules as a function of Oc–Cc–O–C dihedral angle. See the inset
for the schematic images. (c) Force softening scales for each atom type (left axis) and the distribution of absolute errors in force components
(right axis) obtained from single-molecule SevenNet MD trajectories. MAEs of the force components are indicated by white-filled circles.
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molecular geometries correctly. The MAEs for bond lengths and
angles are 0.005 Å and 0.7°, respectively, indicating highly
accurate structural predictions that underscore the robustness
of SevenNet for short-range interactions.

Linear solvents exhibit cis–trans conformers, and structural
differences affect dipole moments,74,75 inuencing the partici-
pation of solvent in Li-ion solvation.76 We select two molecules,
DMC and EA, since linear carbonates and esters generally
exhibit larger energy barriers between conformers compared to
other types of molecules. In Fig. 2b, by performing dihedral-
angle-constrained ionic relaxations, we scan a total of 180° in
10° intervals for the Oc–Cc–O–C dihedral angle in DMC and EA
(see the inset). It is seen that SevenNet underestimates the
torsion barrier by 0.04 eV and 0.12 eV for DMC and EA,
respectively. This underestimation of barriers may be related to
the soening of potential energy surface (PES) in pretrained
models that were primarily trained on low-energy structures.62

To investigate the accuracy of atomic forces, we conducted
a 0.5 ns MD simulation of a single molecule in an NVT ensemble
using SevenNet. A Nosé–Hoover thermostat77 and a timestep of
0.5 fs were employed. The temperature was set to 600 K to sample
high-energy structures, and 500 snapshots were extracted at
intervals of 1 ps. Subsequently, single-point DFT calculations were
performed on these snapshots. The parity plots for energy and
force for each single-moleculeMD are provided in Fig. S1 and S2.†
Energy shis observed in Fig. S1† are in agreement with Fig. 2a.
The soening scales and the corresponding absolute error
distributions of the force components are shown in Fig. 2c. The
Digital Discovery
soening scale is dened as the slope of the linear function tted
to the force parity plot. The ideal value is one, and those below
one indicate that the forces predicted by SevenNet were system-
atically smaller than those calculated by DFT. To examine
whether force error and soening depend on specic atom types,
atoms were classied into 19 categories (Fig. S3†). To be specic,
the oxygen atomswere divided into carbonyl (Oc) and ethereal (Oe)
oxygens (see Fig. 1). The carbon atoms were categorized based on
their bonding environments; for example, CCOFH represents
a carbon atom bonded to one carbon, one oxygen, one uorine,
and one hydrogen atom. Double-bonded carbons in VC were
classied separately. Fluorine atomswere labeled according to the
type of carbon atom to which they are bonded; for instance, FCOFH
refers to uorine atoms bonded to a CCOFH carbon atom. In
Fig. 2c, most atom types exhibit some degree of force soening;
however, the extent of soening varies among atom types.
Notably, pronounced soening is observed for uorine atoms in
FOFH2 and FCFH2 local structures. Additionally, molecules con-
taining partially uorinated carbon moieties, such as diuor-
omethyl uoromethyl carbonate (TFDMC), show relatively larger
force errors (Fig. S2†), which is consistent with the observations in
Fig. 2c. As will be discussed below, this signicant level of so-
ening may stem from the limited representation of these chem-
ical moieties in the training set.
2.2 Pure solvents

Next, we simulated pure solvents composed of a single type of
organic molecule to obtain their theoretical densities. Liquid
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Parity plot comparing pure solvent densities calculated using
SevenNet to experimental values, categorized by chemical groups. MD
simulations were conducted at 298 K, except for EC (313 K), FEC (313
K), DME (293 K), and DEE (293 K). The blue circles, orange triangles,
green squares, and red pentagons represent cyclic carbonates, linear
carbonates, ether, and ester, respectively. The black ‘×’ symbols
indicate the values obtained with fine-tuned SevenNet. (b) Pressure
distributions for DFEC, FEC, DMC, and PC from individual SevenNet-
MD and AIMD simulations conducted in the NVT ensemble over 15 ps
at experimental densities. Temperatures are set to match the experi-
mental values in Table S5.† Vertical dashed lines indicate the mean
values of each distribution. (c) Parity plot comparing pure solvent
densities predicted by SevenNet (blue circles), BAMBOO (orange
triangles), QRNN (green squares), and OPLS4 (red pentagons) versus
experimental values.
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density plays a critical role in determining the physicochemical
properties of electrolytes. For example, a density decrease of just
0.1 g cm−3 can result in a twofold increase in diffusivity for
acetonitrile at 298 K.78 The initial congurations for the liquid
simulations were generated using MolView79 and PACKMOL.80

The number of molecules was chosen so that the total number
of atoms was closest to 1000. To determine the length of the
cubic simulation box without relying on experimental data, we
rst obtained V0 by adding the van der Waals volumes81 of all
atoms in the simulation box. The initial box length was then set
to 1.1 × V1/30 . This volume estimate ensures that neighboring
molecules are close enough for inter-molecular connectivity
within the graph neural network, while still providing sufficient
space to prevent molecular overlap (the actual numbers of
molecules and the sizes of the simulation boxes for each
simulation are summarized in Table S2.†). For propylene
carbonate (PC) and uoroethylene carbonate (FEC), two chiral
conformers were considered in equal proportions. For the cis–
trans conformers of linear carbonates and the syn/anti
conformers of esters, the Boltzmann distribution, with poten-
tial energies calculated using SevenNet, was used to determine
the initial ratio (see Tables S3 and S4†). This procedure was
crucial during the equilibration step, as the conformer ratio
could not equilibrate within a feasible time scale due to the
large energy barrier (∼0.4 eV) between conformers, which is
signicantly higher than the thermal energy at room
temperature.

The initial structures were relaxed under loose conditions
(maxijFij < 2.0 eV Å−1), followed by MD simulations for 1 ns in
the NPT ensemble with a timestep of 2 fs at the target temper-
ature and a pressure of 1 atm as pre-equilibrations. The Nosé–
Hoover thermostat and barostat82 were applied as implemented
in the LAMMPS package.83 To ensure a fair comparison with
experimental data, the simulation temperatures were matched
to the experimental conditions. Specically, all simulations
were conducted at 298 K, except for EC (313 K), FEC (313 K),
DME (293 K), and 1,2-diethoxyethane (DEE) (293 K). To main-
tain stable simulations and prevent large positional uctua-
tions with a timestep of 2 fs, the atomic mass of tritium (3H, 3
a.u.) was assigned to hydrogen atoms. We emphasize that this
modication was applied only during the pre-equilibration
stage using 2 fs timestep throughout the study, except for the
cases described in Section 2.3.1. Both the equilibration and the
production run were performed with the original hydrogen
mass and a 1 fs timestep. To determine the equilibrium density
of the system, an additional 0.4 ns simulation was performed in
the NPT ensemble with a reduced timestep of 1 fs. Following 0.2
ns equilibration, the density was calculated by averaging the
instantaneous density values (recorded every 10 fs) during the
last 0.2 ns production run. Throughout all equilibration and
production runs, no spurious reactions were observed, con-
rming the stability of the simulations.

Fig. 3a presents computed liquid densities. Since reference
densities obtained with DFT are scarce, we compared with
experimental data sourced from ref. 10, 50 and 84–90 (see Table
S5† for the actual values and errors). To identify systematic
trends, we classied the solvents into four chemical groups;
© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery
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cyclic carbonates, linear carbonates, ethers, and esters. Fig. 3a
shows that the densities computed using SevenNet generally
overestimates compared to experimental values. However, the
degree of overestimation is not random but consistent within
chemical groups. To be specic, cyclic solvents, including cyclic
carbonates and g-butyrolactone (GBL), exhibit smaller devia-
tions, ranging −3–7%, while linear solvents show higher over-
estimation by 9–15%.

To clarify whether the discrepancy in predicted densities is
primarily due to limitations of the SevenNet model or inherent
inaccuracies in the DFT functional (PBE-D3), we examined the
pressure distributions (average of diagonal components of the
virial stress) by SevenNet and DFT for FEC, diuoroethylene
carbonate (DFEC), DMC, and PC liquids, when the volumes are
adjusted to match with the experimental densities. The
temperatures were set to 298 K (DEFC, DMC, and PC) or 313 K
(FEC). For the feasibility with DFT calculations, we chose
a smaller simulation cell containing 30 solvent molecules and
the initial congurations (with equal chirality for PC and FEC)
were equilibrated under SevenNet for 1 ns. Equilibrations are
performed using a 2 fs timestep assigning tritium mass to
hydrogen atoms. From these equilibrated structures, we ran 20
ps production simulations in NVT ensembles independently
with either SevenNet or DFT with a 1 fs timestep and the orig-
inal hydrogen mass, recording the pressure every 10 fs during
the nal 15 ps to gather 1500 data points.

Fig. 3b shows the pressure distributions of both DFT and
SevenNet for each solvent, with vertical dashed lines marking
the mean values of each distribution. The pressure values
include dynamic contributions, meaning that the thermal
effects at the reference temperature are fully accounted. For
DFT, the average pressure remains close to zero in all solvents,
suggesting that the experimental volume is close to the equi-
librium density predicted by PBE-D3. The absolute pressures
are 0.77 and 0.50 kbar for DMC and PC, respectively. Given the
bulk moduli of 1.6 GPa for DMC91 and 2.4 GPa for PC92 at 298 K,
the corresponding density errors for DFT are on the order of 5%
and 2%, respectively. However, a more rigorous convergence
study exploring larger simulation cells and longer time scales,
would be needed for quantitative accuracy. A previous work
demonstrated that bespoke MLIPs can predict densities of
EMC-rich solvent mixtures to within about 5% of experiment at
the PBE-D3 level, using a relatively small cutoff radius of 10 Å for
the D3 term.46

In contrast, SevenNet predicts more negative pressures for
DMC and PC in Fig. 3b, indicating a signicant compressive
stress that drives the system toward higher density. This shi is
correlated with the degree of density overestimation observed
for PC and DMC when using SevenNet (see Fig. 3a). Further
single-point DFT calculations on SevenNet-generated snapshots
also conrmed that these pressure discrepancies arise from
inaccuracies in the SevenNet model rather than from funda-
mental errors in the DFT reference (Fig. S4†). The constant shi
observed in the normal stress parity plots indicates a systematic
error in pressure prediction, as the pressure is computed from
the average of the normal stress components. The trends in
both mean error in normal stress and average pressure aligned
Digital Discovery
closely. Consequently, while slight errors in the DFT reference
cannot be completely ruled out, we conclude that the dominant
source of density overestimation in SevenNet is an imperfect
learning of stress. These systematic shis in pressure and
normal stress are likely attributable to insufficient sampling of
intermolecular interactions in the predominantly inorganic
training set. As discussed in the following section, we found
that ne-tuned SevenNet reduced this discrepancy, suggesting
that improved training strategies can bring the predicted pres-
sures and densities closer to the DFT and also experimental
values.

In Fig. S5 and S6,† we calculated potential energy curves for
EC and DMC dimers across eight types of interactions (H–H,
Oc–H, Oc–Oc, Oc–Oe, Oe–H, Oe–Oe, orthogonal, and planar
orientations). It is found that SevenNet has a deeper potential
well near equilibrium, with some equilibrium distances being
shorter than those from DFT. Thus, the pressure deviations in
the above can be attributed to the stronger intermolecular
bonding in SevenNet compared to DFT.

We compared the performance of SevenNet in predicting
liquid densities with other computational methods, namely
QRNN,45 OPLS4,45 and BAMBOO50 (Fig. 3c). QRNN and OPLS4
are quantitatively more accurate, showing errors of −5–2% and
−2–4%, respectively. We note that a portion of the QRNN
training set was generated at high pressures and another
portion with ±20% scaling in intermolecular distances,
implying that QRNN may have learned the equilibrium volume
from these training sets (this training method was also used in
ref. 46 and 68.). The BAMBOOmodel generally provided density
estimates closer to experimental data than SevenNet, with the
exception of the uorinated linear carbonate group. A density
alignment method was employed for BAMBOO, wherein the
model was trained to match experimental densities for systems
such as EC, PC, FEC, DEC, DMC, and EA, which are plotted
together in Fig. 3c. While this alignment method enabled
accurate predictions for in-domain systems, it limited general-
izability to less similar systems, as evidenced by the TFDMC
case, where the model overestimates density by 20%. In
contrast, SevenNet exhibited moderate and regularized accu-
racy across all solvent systems.
2.3 Full electrolytes

In this subsection, we applied SevenNet to simulate full elec-
trolytes composed of solvents and ion salts. First, we investi-
gated the solvation shell structures for dilute electrolytes. Next,
at a conventional concentration of Li salt, we analyzed the effect
of solvent type on Li solvation, with a focus on salt dissociation.
Finally, diffusion coefficients were obtained and compared with
experimental values. To avoid potential artefacts, uorinated
solvents were excluded from further analysis due to the force
soening observed in Section 2.1. For all electrolytes, the
densities were adjusted to match experimental values, thereby
eliminating errors associated with density mismatch.

2.3.1 Solvation shell structures in dilute solutions. The
solvation structure of ions plays a critical role in electrolyte
systems, inuencing both ion dissociation and the stability of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Solvation structures of Li(ECc)4 and Li(EMCc)3(PF6) solvation
types obtained by SevenNet, compared with DFT results.28 (a) RDFs
(solid lines) of Li–Oc and Li–Oe, along with their CNs (dashed lines) for
each solvation type. Examples of Li–Oc and Li–Oe distances are
illustrated in the inset. (b) Angular distributions of Oc–Li–Oc and Li–
Oc–Cc angles for each solvation type. Examples of angles are illus-
trated in the inset.

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/9
/2

02
5 

9:
39

:1
5 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
electrode interfaces, which directly impacts ionic conductivity
and battery cycle life. In ref. 28, solvation shell structures
around Li ions were investigated in detail by AIMD. In this
subsection, we benchmark SevenNet against these reference
results by adopting the same simulation protocol. In detail, the
initial structure consisted of 63 EC (42 EMC) molecules and one
LiPF6 salt, corresponding to dilute conditions (0.2 M). Experi-
mental densities of pure EC (1.32 g cm−3 at 313 K) and EMC
(1.01 g cm−3 at 298 K) were used,10 yielding cubic-cell lengths of
19.28 Å for EC and 19.52 Å for EMC. To obtain various solvation
types, ten independent simulations were performed: ve start-
ing with a dissociated ion pair and the other ve with an
associated pair. Each structure was equilibrated for 7.5 ps at 330
K in the NVT ensemble, followed by a 30 ps production run with
a timestep of 0.5 fs to ensure consistency with the simulation
scheme in ref. 28 and enable a fair comparison. Here, the
dispersion interaction was excluded like ref. 28. Snapshots were
saved every 5 fs, generating 6001 snapshots for each production
run. A total of 60 010 snapshots were collected for each solvent.

In liquid electrolytes, Li ions undergo various types of
solvation environments since there can be multiple coordi-
nating oxygens in a solvent molecule, and anion can also be
introduced in the solvation shell. Each solvation shell type has
distinct structural features, like radial and angular distributions
related to Li–O, as studied by AIMD.28 Following the reference,
we classied the collected snapshots into ve types of solvation
shell: Li(ECc)4, Li(ECc)3(PF6), Li(EMCc)3(PF6), Li(EMCc)3(EMCe),
and Li(EMCe)2(PF6). Such classication was based on the
composition of the rst solvation shell of a Li ion and the
coordinating oxygen type. For example, if a Li ion is coordinated
with four EMC molecules—three via Oc and one via Oe—then it
is designated as Li(EMCc)3(EMCe). When both Oc and Oe of
a single solvent molecule simultaneously coordinated a Li ion,
the coordinating oxygen type was designated as Oc, where
coordination by two Oe atoms was classied as Oe-type
coordination.

The radial distribution function (RDF) g(r) and the coordi-
nation number (CN) of an atom type B around an atom type A is
dened as follows:93

gðrÞ ¼ 1

rB

1

4pr2
dNðrÞ
dr

(1)

CN = N(rcut) (2)

where N(r) is the average number of particle B within a sphere
centered on particle A with a radius of r, and rB is the number
density of B atoms. The cutoff threshold rcut of Li–O was set to
2.6 Å and 4.2 Å for Li–P, which were obtained from the rst
minimum of RDF.

The bond length distributions of Li and oxygen of two
representative solvation types, Li(ECc)4 and Li(EMCc)3(PF6), are
presented in Fig. 4a. (The corresponding results for other
solvation types are shown in Fig. S7.†) Overall, the distributions
of Li–Oc and Li–Oe distances and CNs (right axis) show good
agreements with DFT results. In experiments, slightly longer
© 2025 The Author(s). Published by the Royal Society of Chemistry
bond lengths of 2.04–2.08 Å were reported in concentrated
solutions of LiPF6 salt in PC and DMC.94,95

The distributions of Oc–Li–Oc and Li–Oc–Cc angles in Fig. 4b
also agree well with DFT. The Oc–Li–Oc angle peaked at
approximately 107°, minimizing steric hindrance within the
near-tetrahedral coordination environment. This angle remains
consistent regardless of the presence of PF−6 in the rst solva-
tion shell. Meanwhile, the Li–Oc–Cc angle deviates from 180°,
likely due to the partial negative charges on the two Oe atoms
bonded to Cc, which attract positively charged Li ions. This
angle varies depending on the solvent: 132° in EC and ranging
from 149° to 156° in EMC. This difference reects the steric
hindrance imposed by the bulky, linear structure of the EMC
molecule. A similar trend has been observed experimentally,
with PC exhibiting a Li–Oc–Cc angle of 138° and DMC showing
an angle of 153°.94,95 On the other hand, ReaxFF produced
a sharper peak near 90°, suggesting a more rigid Li–Oe inter-
action,28 highlighting limitations in ReaxFF.

We extended our study to examine other alkali metal ions,
Na+ and K+. By replacing Li with Na or K in 63 EC + 1 LiPF6
simulations, we conducted a 7 ps equilibration MD run fol-
lowed by a 25 ps production run for each cation. The distribu-
tions of the cation-oxygen distance are shown in Fig. S8.† The
Na–O and K–O bond lengths are 2.34 and 2.74 Å, respectively,
aligning closely with AIMD results of 2.35 and 2.80 Å.29

Compared to the Li–O distribution, the rst peak is broadened
and reduced in intensity, indicating weaker interactions
between the cation and oxygen atoms as the ionic radius of the
cation increases. This weaker solvation of Na+ and K+ relative to
Li+ arises from the delocalization of outer-shell electrons in
larger cations, which hinders lone-pair sharing from oxygen
atoms.29

These results demonstrate that SevenNet effectively recog-
nizes the Li atom in the solvent as a cation and accurately
Digital Discovery
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Fig. 5 Variations in solvation environment in the EC/DMC binary
solvent system with 1 mol kg−1 LiPF6. (a) Average CNs of Li contributed
by EC and DMC solvents and (b) the degree of ion dissociation as
a function of xEC. Experimental values for 1 mol kg−1 LiPF6 (ref. 96) are
shown alongside results from other force fields (APPLE&P39 and Class-
II force field100) for 1 M LiPF6. Circle markers represent the dynamic
degree of dissociation ad, while triangle markers represent the static
degree of dissociation as. Error bars represent the standard deviation
of 3 simulations. Representative solvation structures for fully dissoci-
ated and associated cases are displayed on the right side of the plot.
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captures Coulomb interactions with negatively charged oxygen
atoms, despite being trained without explicit charge informa-
tion. Building on our previous analysis of both molecular
structures and solvation shell congurations, we conclude that
SevenNet demonstrates high accuracy in capturing the
geometric properties of the system, which implies that short-
range interactions are accurately represented.

2.3.2 Effect of solvent type on Li solvation. In this subsec-
tion, we investigated electrolytes with high Li salt concentra-
tions used in commercial batteries. Depending on the solvents,
the degree of ion dissociation between cations and anions var-
ies, resulting in structures such as solvent-separated ion pairs
(SSIPs), contact ion pairs (CIPs), and aggregates (AGGs), as
illustrated in Fig. S9a.† Mixing cyclic solvents with high
dielectric constants and linear solvents with lower dielectric
constants inuences ion dissociation and the composition of
the rst solvation shell.96,97 Accurately simulating these
phenomena is essential for identifying optimal electrolytes,
which oen balances multiple objectives, such as high ionic
conductivity and robust SEI formation.3,10

As a concrete example, we selected the EC/DMC binary
solvent system with 1 mol kg−1 LiPF6, varying the EC molar
fraction, xEC = NEC/(NEC + NDMC), where Na is the number of
amolecules. This system has been widely studied to explore the
competition between two different solvent types within the Li
solvation shell.39,96,98,99 Recent experimental and computational
studies have conrmed that EC is preferred for Li solvation over
DMC, reducing cation–anion cross-correlation and enhancing
ionic conductivity, particularly at low xEC values.96,99

All simulations were performed in the NVT ensemble at
experimental densities (like the case with pure solvents, Sev-
enNet overestimated the density of solvent-salt systems, as
shown in Fig. S10† for EC/LiFSI electrolyte). The conformer ratio
of DMC for each composition was obtained from the experi-
ment.96 The temperature was set to 298 K to match the experi-
mental conditions. The number of solvent and salt molecules
was adjusted to correspond to a LiPF6 concentration of 1 mol
kg−1, ensuring the total number of atoms remained below 1000.
Li ions were placed by dividing the simulation domain into
distinct regions and randomly distributing the Li ions within
these regions, as illustrated in Fig. S11.† This approach pre-
vented the generation of initial structures where Li ions were
clustered on one side. The specic numbers of solvent and salt
molecules, along with the simulation box lengths, are summa-
rized in Table S6.†

Equilibration was performed over 1.4 ns, starting with an
initial 1 ns using a 2 fs timestep and a hydrogen atomic mass of
3 a.u., as described earlier, followed by an additional 0.4 ns of
equilibration. A production run of 1 ns was conducted, with
snapshots saved every 100 fs. The CNs for EC, DMC, and
PF−6 anions were calculated and averaged across all snapshots
for each simulation. To ensure statistical reliability, three
independent runs were carried out, each starting from a distinct
initial conguration.

Fig. 5a shows the computed compositions of the Li solvation
shell as a function of xEC. The sum of CNs of Li aligns well with
experimental trends96 and APPLE&P MD simulations
Digital Discovery
(Fig. S12†).39 Notably, EC molecules were strongly favored in the
solvation shell at low xEC. For instance, at xEC = 0.13, the local
fraction of EC in the Li solvation shell is 0.25 (SevenNet) and
0.32 (experiment), signicantly higher than the bulk EC ratio of
0.13. Over the entire range of 0 < x EC < 0.7, the total CN of Li
remains approximately 4. A comparison of CNs obtained using
different force elds is presented in Fig. S12.†

Next, we computed the degree of ion dissociation, whose
denition subtly varies across the literature.39,101 The static
degree of ion dissociation, as, is dened as the fraction of free
ions,39 which in turn is dened as having no counterions in its
rst solvation shell, corresponding to the SSIP solvation state.
Some studies focused specically on free cations,101which tends
to yield slightly higher values of as compared to free ions.39 On
the other hand, the dynamic degree of ion dissociation, ad, also
referred to as the degree of uncorrelated motion, is dened as
the ratio of ionic conductivity to the Nernst–Einstein conduc-
tivity.39,97 Both measures are directly comparable to experiment:
as via Raman spectroscopy96 and ad via NMR experiments
combined with impedance measurements.97 While as and ad

are not directly interchangeable, they exhibit similar trends
© 2025 The Author(s). Published by the Royal Society of Chemistry
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with varying solvent composition, as observed in both compu-
tational39 and experimental96 studies. For instance, in the GBL/
DMC system with LiFSI salts, as and ad were found to be
comparable at xGBL > 0.4.96 However, as xGBL approached zero,
as decayed more rapidly than ad. In our study, we employed the
fraction of free cations, as, to represent the degree of ion
dissociation, as calculating ad requires long-term MD
simulations.

Fig. 5b presents computational results alongside experi-
mental data and results from other force elds. An increase in
the degree of ion dissociation with higher xEC is observed,
consistent with experimental trends.96 These results are not
inuenced by the initial ion pair conguration, whether disso-
ciated or associated. APPLE&P predicted both as and ad

approaching zero at low xEC but produced relatively lower values
of as (or ad) at higher xEC.39 In contrast, the Class-II force eld
predicted largely dissociated Li ions even at xEC = 0.1,100 which
signicantly disagrees with experimental data (to note, the
results in ref. 39 and 100 were obtained at a salt concentration
of 1 M, not 1 mol kg−1. Here, 1 mol kg−1 of LiPF6 corresponds to
1.02–1.16 M, depending on xEC). The observed dissociation
trend is consistent with the decreasing coordination of PF−6 ions
with increasing xEC in Fig. 5a.

In Fig. S9b† and the accompanying text, we conducted
a similar analysis of the degree of ion dissociation for EC, PC,
DMC, and DEC with 1 M LiPF6 salts, using solvents of similar
donor numbers.102 The dominance of LiPF6 ion pairs in solvents
with low dielectric constants, such as DMC and DEC, and their
dissociation in high dielectric constant solvents, such as EC and
PC, are consistent with the results for EC/DMC mixtures and
align with infrared spectroscopy analysis.103 Additionally, steric
hindrance from bulkier alkyl groups leads to relatively weaker
salt dissociation in PC and DEC compared to EC and DMC, as
the Li–O interactions are hindered by the increased bulkiness of
the solvent molecules.104,105 These results demonstrate that the
pretrained potential effectively captures the dynamic variations
in dielectric shielding between cyclic and linear solvents, sug-
gesting that it implicitly learns long-range interactions to
a certain extent.

2.3.3 Diffusivities. The diffusivity of anions and cations in
electrolytes is an important property that determines battery
performance. We theoretically obtained the self-diffusion coef-
cient (D) for Li+ and PF−6 in pure solvents like PC and DMC as
well as mixed solvents of EC/DMC, for which the experimental
data are available. As in the previous subsection, we employed
the experimental densities, while results with the theoretical
densities are also discussed.

For single solvent electrolyte systems, simulations were
performed in the NVT ensemble, following a procedure largely
similar to that used for the EC/DMC 1 mol kg−1 LiPF6 system
described in the previous subsection. The temperatures were set
according to where the experimental diffusivities were
measured: 293 K for PC or DEC106 and 298 K for DMC.107

Experimental densities were used to generate initial
congurations,108–110 and the numbers of solvent and salt
molecules were adjusted to achieve a 1 M LiPF6 concentration
with total number of atoms close to 1000. Detailed information
© 2025 The Author(s). Published by the Royal Society of Chemistry
on the number of molecules and the simulation box lengths are
listed in Table S7.† An equilibration run of 1.4 ns was followed
by a 1 ns production run, similar to the EC/DMC 1 mol kg−1

LiPF6 simulation. Snapshots were sampled every 100 fs for
calculation of ion diffusivity. Five independent runs were con-
ducted with different initial congurations for statistical
average.

For the EC/DMC 1 mol kg−1 LiPF6 binary solvent electrolyte
system, longer production runs were found to be essential for
diffusion analysis, likely due to the more complex solvation
nature of ions in binary solvents compared to single solvent
electrolyte systems. Starting from the NVT MD simulations
described in the former subsection, four compositions were
selected, and the production runs for each composition were
extended to 7 ns across three independent runs to obtain reli-
able diffusivity data.

From the MD trajectories during the production run, the
self-diffusion coefficient was calculated by the mean squared
displacement (MSD) for each ion type. In detail, with a given
time window s and position vector ri(t) of a particle i at time t,
the squared displacement was averaged over all particles with
the same type and all available time origins:111

MSD(s) = hjri(t + s) − ri(t)j2it,i (3)

¼ 1

Ns

XT�s

t¼0

1

N

XN

i¼0

jriðtþ sÞ � riðtÞj2 (4)

where Ns is the number of available time windows and N is the
number of particles of interest. We then obtained D using the
Einstein relation.112

D ¼ lim
t/N

MSDðtÞ
6t

(5)

The linear regression of an MSD–s curve using appropriate
bounds efficiently captures the linear region of diffusion.111 We
set the lower and upper bound as 10% and 60% of the total
production time, respectively, ensuring accurate identication
of the linear region in the MSD–s curve yielding an R2 value
mostly above 0.98 (Fig. S13†). This approach lters out the
short-time regime including ballistic motion and the noisy
long-time tail due to fewer available time origins, ensuring
a reliable diffusivity estimate.

In Fig. 6a and b, we present the calculated diffusivities of Li+

and PF−6 (DLi and DPF6, respectively) when 1 M LiPF6 is desolved
in PC, DMC, or DEC solvents. The corresponding MSD–s curves
with the R2 values obtained from the linear regression are pre-
sented in Fig. S13.† Relatively large standard deviations in
diffusivity values, up to 50%, are attributed to statistical errors
arising from the relatively short MD time scale compared to
typical classical force eld simulations. For comparison, other
computational37,39,45 and experimental108,113 results are also
provided. The actual diffusivity values, along with predicted and
experimental densities, can be found in Table S8.† Among the
computational approaches, SevenNet achieved reasonable
accuracy in a consistent way. In comparison, other computa-
tional methods showed larger discrepancies with experiment
Digital Discovery
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Fig. 6 Comparison of diffusivities of (a) Li and (b) PF6 obtained using SevenNet at experimental density (orange), QRNN45 (blue), OPLS4 45 (green),
TraPPE37 (red), APPLE&P39 (purple), and experiments108,113 (black). Error bars indicate the standard deviation across five simulations. The black dots
on the orange bar indicate the calculated diffusivity at the equilibrium density obtained from SevenNet-NPT simulations. (c) Diffusivity of solvents
and ions in EC/DMC (1 mol kg−1 LiPF6) electrolyte at 298 K. Values were averaged over 3 simulations. The actual diffusivity values and standard
deviations can be found in Table S9.† Experimental values were adopted from ref. 96. The results by BAMBOO are also displayed.50
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although they accurately predicted pure solvent density. This
might be attributed to the general overestimation of viscosity in
the QRNN and OPLS4 models and the overestimation of relative
permittivity in the TraPPE model. The former slows molecular
movement, while the latter affects solvent dynamics. In
contrast, the APPLE&P model demonstrated less than 4% error
in the density of 1 M LiPF6 in the DMC solvent and achieved
accuracy comparable to SevenNet. SevenNet also successfully
captured the general trend of higher anion diffusivities
compared to cations, consistent with previous studies.28 This
phenomenon likely results from the strong solvation of Li ions
by the solvents, which hinders their mobility relative to
PF−6 ions. Consistently, the higher permittivity of PC enhances
solvation and suppresses Li-ion diffusivity relative to the DMC
solvent. In Fig. 6a and b, the diffusivities obtained when the
SevenNet equilibrium density was used are marked in black
dots in the middle of the bar. The diffusivity was signicantly
reduced by 50–70%, underscoring the critical role of density.
Fine-tuning with explicitly sampled intermolecular interac-
tions, or developing a pretrained model incorporating both
organic and inorganic datasets, are potential solutions to this
problem.

In Fig. 6c, the diffusivity of ions in the EC/DMC (1 mol kg−1

LiPF6) binary solvent system shows good agreement with
experimental values, albeit with slight underestimation.96 The
overall decrease in diffusivity with increasing xEC reects
reduced electrolyte mobility as the concentration of the highly
viscous EC solvent increases, indicating that the variation in
viscosity is also well described by SevenNet. Notably, the general
trend of DDMC > DEC > DPF6 > DLi is consistent across all
compositions. The lowest diffusivity of Li+ suggests its largest
hydrodynamic size, even greater than that of the PF−6 anion, due
to strong coordination with surrounding solvent molecules.96
2.4 Analysis on the training dataset

In the preceding subsections, the overall performance of Sev-
enNet in simulating liquid electrolytes was found to be
Digital Discovery
satisfactory. To investigate whether this accuracy arises from
adequate sampling in the training set, we analyzed the Mate-
rials Project Trajectory (MPtrj) dataset52 for the presence of
relevant solvent molecules and chemical moieties. We rst
identied molecular units embedded in the inorganic
compounds that include O, C, and H atoms. The detailed
procedure is described in the text accompanying Fig. S14.†
Among the 20 solvent molecules studied in this work, only the
DME molecule was found in four compounds (Fig. S14a†). To
explore the presence of similar types of molecules, we manually
inspected molecular units consisting of 6–24 atoms, including
O, C, and H, and identied similar motifs, such as ether, ester,
and ve-membered ring groups (Fig. S14b†). However, no
carbonate groups were found.

We further examined the presence of the local chemical
moieties classied in Fig. S3.† As shown in Fig. S15,† structures
containing species such as Oc/Cc, C]C, and CCH3 were preva-
lent in the training set. This abundance of these chemical
moieties can be understood by general chemistry. However,
several moieties were scarce in the training set, in particular
uorinated ones. For example, only 32 structures contained the
COFH2 moiety, and the CCFH2 moiety was absent. Such data
scarcity may explain the pronounced soening for the uorine
atoms in Fig. 2c.

Extending the analysis to the Li solvation shell, we identied
structures in the MPtrj training set containing Li–Oc or Li–Oe, as
well as oxygen atoms bonded to Na+ and K+, which share similar
chemical properties with Li+. Specically, we found 183 and 63
structures containing Li–Oc and Li–Oe moieties, respectively
(see Fig. S16† for representative structures). The Li–Oc struc-
tures predominantly included carbonate ions and their deriva-
tives. Notably, a substantial number of these structures
contained transition metals coexisting with Li+, Na+, and K+,
which are commonly used in LIB cathodes. The exhaustive
search for new cathode materials has likely contributed these
structures to the databases. The Li ions are mostly charged in
the corresponding structures, which allowed SevenNet to learn
Coulomb interactions between Li+ and Oc or Oe.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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The foregoing analysis indicates that signicant portions of
molecular units or chemical moieties were directly sampled in
the MPtrj dataset, suggesting that relevant local chemical
bondings were mostly captured. However, non-local bondings
that contribute to the formation of whole molecular units and
intermolecular interactions, in particular between organic
molecules, were not sufficiently sampled. This suggests that the
model learned large parts of the PES by generalizing across the
chemical space, facilitated by deep learning and learnable
atomic embeddings.

To understandmodel generalization in terms of latent space,
we paid attention to COF2H and Li solvation shells. The COF2H

moiety was absent in the training set but exhibited a notable
degree of force accuracy (see Fig. 2c). This means that the model
interpolate or extrapolate from other structures in the training
set. For Li solvation shells, while the training set included
structures containing Li–Oc and Li–Oe moieties, it remained
uncertain how the model handled multiple Li–O interactions
within solvation shells.

For both test cases, we analyzed the atomic descriptors in the
latent space to examine relative proximity or similarity between
structures. We rst extracted 128-dimensional invariant atomic
descriptors, which served as input vectors for the output block
producing atomic energies. Dimensionality reduction tech-
niques, including Principal Component Analysis (PCA) and
Uniform Manifold Approximation and Projection (UMAP),114

were employed. Using PCA, we reduced the dimensionality to 31
components, retaining 95% of the original variance, and
applied a whitening scheme. As shown in Fig. S17a,† SevenNet
positioned the COF2H moiety—absent in the training set—
between the COFH2 and COF3 moieties. Furthermore, as the F : H
ratio shied from 3 : 0 to 0 : 3, the PCA data points for each
moiety aligned linearly. That is to say, SevenNet interpolated
untrained regions by leveraging knowledge derived from
trained regions. This brings some evidence to why foundational
models perform so unexpectively well on untrained domain.

Next, we performed UMAP analysis115 on both the training
set and sampled structures from the simulation on the Li
solvation shells. Euclidean distances between atomic descrip-
tors were used to construct a high-dimensional graph, where
similar descriptors were positioned closer together, and
dissimilar descriptors were placed farther apart. In particular,
we examined distinct solvation types identied in Section 2.3.1
by extracting MD trajectories (Fig. S17b†) for separate analysis.
For each solvation type, the structure with the minimum
potential energy among all snapshots was selected. The analysis
in Fig. S17b† revealed that the Li environments within solvation
shells formed distinct clusters in the latent space. The struc-
tures in the training set interpreted as being similar to these Li
environments typically featured multiple oxygen atoms bonded
to either Li or Na. While the training set did not include the
same Li–solvent structures encountered during MD simula-
tions, the model effectively learned rst-neighbor interactions
from these examples, where multiple oxygen atoms are bonded
to a Li ion.

The above analysis on the latent space indicates that Sev-
enNet might infer untrained regions by generalizing knowledge
© 2025 The Author(s). Published by the Royal Society of Chemistry
from trained regions. However, full understanding of the
generalization is beyond the current scope because of the black-
box nature of deep learning models.
2.5 Fine-tuning the pretrained model

In the previous sections, we have demonstrated the capabilities
and limitations of SevenNet on liquid electrolytes. Intermolecular
interactions, particularly liquid density, are critical to the physi-
cochemical properties of liquid electrolytes. However, SevenNet
was less accurate for the intermolecular interactions, leading to
the overestimation in the liquid density and underestimation of
diffusivities. It has been shown that ne-tuning pretrained
models can achieve accuracies comparable to bespoke
models.60–62 As an example of ne-tuning in the present applica-
tions, we selected the DMC solvent, which exhibited signicant
overestimations of density in Fig. 3a. In this simple ne-tuning for
DMC, the model may lose some generalizability across different
systems; however, our primary goal is to assess whether its density
predictions can be improved with relatively modest efforts.

To construct the training set for ne-tuning, we conducted
MD simulations using SevenNet for 100 ps in the 298 K NVT
ensemble with 360 atoms and the experimental density.
Subsequently, DFT single-point calculations were performed on
50 snapshots extracted from the last 50 ps at intervals of 1 ps.
These 50 structures were further modied by scaling the lattice
parameters, while maintaining xed intramolecular distances,
by factors of 0.9 and 1.1.46 This procedure generated a total of
150 structures for the ne-tuning training set.

We ne-tuned the model using the same parameters as
SevenNet, with adjustments to the learning rate and stress loss
weight. The learning rate started at 10−4 and decreased linearly
to 10−6 over 600 epochs. Furthermore, the weight of the stress
loss was increased from 0.01 to 1.0 to enhance the ne-tuning
effect on solvent density. For ne-tuning, we did not freeze
any weights, allowing the model to adjust solely to the new ne-
tuning training set. To monitor knowledge retention from the
original SevenNet model, we evaluated the MAEs on a test set of
19 072 structures containing O, C, and H, ltered from the
SevenNet training set (see Fig. S18†). The ne-tuned model
(hereaer referred to as SevenNet-FT) aer 50 epochs, achieved
MAEs of 0.032 eV per atom, 0.086 eV Å−1, and 0.57 kbar for
energy, forces, and stresses, respectively. Notably, the stress
MAE decreased from 2.78 kbar (SevenNet) to 0.57 kbar
(SevenNet-FT). In terms of computational cost, the entire ne-
tuning procedure, including training set generation, required
only a few hours on a moderate computing node.

Using SevenNet-FT, we obtained the liquid densities
following the procedure described in Section 2.2, and the
results are shown in Fig. 3a as ‘×’markers. The liquid densities
of linear carbonates align well with experimental results,
whereas those of other solvents are underestimated. The
normal stress parity plots for pure solvents (Fig. S19†) reveal
signicant improvements for linear carbonates, moderate
improvements for cyclic carbonates, ethers, and esters, but only
minor improvements for solvents containing uorine atoms.
This behavior may be attributed to the ne-tuning training set,
Digital Discovery
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which includes only DMC molecules composed of O, C, and H
atoms, thereby limiting its applicability to cyclic carbonates and
uorinated systems. This suggests that explicitly including
more relevant intermolecular interactions in the ne-tuning
dataset can signicantly improve density predictions for the
targeted molecular class. Additionally, forgetting of knowledge
from SevenNet was not fully prevented during the ne-tuning
process (Fig. S18†), which may have contributed to the under-
estimation of densities for PC, FEC, and DFEC. This forgetting
could potentially be mitigated by replay methods116,117 or elastic
weight consolidation,118 although implementing these strate-
gies is beyond the scope of the present work.

3 Conclusions

In summary, we applied a pretrained universal interatomic
potential, SevenNet, to the simulations of liquid electrolytes in
LIBs. Even though SevenNet was mostly trained on the inor-
ganic compounds, it demonstrated sound predictive capabil-
ities for key properties such as solvation structures and
diffusivities. However, it also exhibited limitations, particularly
in predicting liquid density. These limitations stem from under-
sampled intermolecular interactions in the training set; ne-
tuning with relevant structures leads to improvements.
However, the weak and long-range nature of these interactions
makes them inherently difficult for MLIPs to select appropriate
descriptors or to obtain effective learned representations,
posing a challenge for predicting liquid densities. As such,
accurate density prediction requires extensive sampling and
careful force eld representation,46 underscoring the challenge
of achieving high accuracy. Moreover, accurate description of
density may require higher-level theories beyond DFT or
exploring alternative machine learning architectures.

Despite these challenges, the model's ability to generalize
across chemical spaces improved the accuracy in the strongly
out-of-distribution domains. Analysis of latent space suggested
that SevenNet leverages learnings from related chemical moie-
ties and structural motifs to interpolate and predict untrained
regions. Fine-tuning SevenNet for specic cases, as demon-
strated with DMC solvents, signicantly improved accuracy in
density and stress predictions, with minimal computational
costs. This approach paves the way for tailoring pretrained
models to specialized applications, making them useful tools
for material discovery and optimization in electrolyte engi-
neering. Another potential approach would be to train a model
using both an inorganic crystal database and a molecular
database69 through multi-delity training,119 which will be
explored in a future study. In conclusion, this work underscores
the potential of SevenNet for advancing the engineering of
liquid electrolyte systems, thereby accelerating the development
of next-generation LIBs.

4 Methods
4.1 DFT calculation

All DFT calculations in this work were performed using the
Vienna ab initio simulation package (VASP), employing the
Digital Discovery
projector-augmented wave (PAW) pseudopotentials.120 The
Perdew–Burke–Ernzerhof (PBE) exchange-correlation func-
tional, based on the generalized gradient approximation (GGA),
was used for electrons.121 For condensed phases of organic
molecules, the van der Waals dispersion interaction plays an
important role in determining quantities such as density and
viscosity. Since semilocal functionals such as PBE do not take
into account the dispersion interactions, we added the
Grimme's D3 dispersion correction with Becke–Johnson (BJ)
damping.122,123 The dispersion and coordination cutoff radii in
the D3 correction term were set to 50.2 and 20.0 Å, respectively.
The PBE-D3 functional shows similar accuracy to the PBE0-D3
(hybrid GGA) functional in predicting dimer interaction ener-
gies, while also achieving density predictions for organic crys-
tals124 and ionic liquids125 that fall within 1% of experimental
values. For molecules and dimers in vacuum, spin-polarized
calculations were performed with a cutoff energy of 520 eV,
while for bulk liquid conguration, a spin-unpolarized setting
was used. However, we found that the spin-polarization was
negligible in all isolated molecules (differences of <1 meV per
atom and <3 meV Å−1 for energies and atomic forces, respec-
tively). The Brillouin zone was sampled only at the G-point.
Concerning the specic PAW pseudopotentials, those without
suffixes were used except for Li_sv, in alignment with the
calculation settings in Materials Project.
4.2 Pretrained model

In this work, we utilized a pretrained model SevenNet-0 (version
11July2024),56,72 which is based on the architecture of NequIP.63

SevenNet has achieved high performance in the Matbench
Discovery benchmark, which assesses the performance of pre-
trained universal force elds on inorganic crystal discovery.73 As
a GNN-IP, SevenNet initializes node and edge features from
atomic numbers and relative position vectors, respectively. An
edge connects two nodes if their interatomic distance is less
than a pre-dened cutoff radius. Starting from these features,
multiple message-passing layers aggregate information from
connected nodes and edges. Aer the last message-passing layer
updates node features, they are used to predict total energy by
the readout layer. Forces and stresses are derived from the
energy gradient. Although the SevenNet model hyper-
parameters remain identical to its previous version in ref. 56,
the training dataset has been updated to the MPtrj dataset
without dataset splitting. The learning rate was initialized at
0.01 and decreased linearly to 0.0001 over 600 epochs. As
a result, SevenNet achieves the MAEs of 0.011 eV per atom,
0.041 eV Å−1, and 2.78 kbar for energy, forces, and stresses,
respectively.

We employed the Atomic Simulation Environment (ASE)
interface126 and the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) package,83 in conjunction with
SevenNet, to compute the structural and dynamical properties
of solvents and electrolytes. The ASE interface was used for
static calculations such as (constrained) relaxation while the
LAMMPS package was used for MD simulations. To account for
dispersion interactions absent in the MPtrj dataset, we
© 2025 The Author(s). Published by the Royal Society of Chemistry
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integrated an in-house CUDA implementation of Grimme's D3
dispersion correction with BJ damping122,123 into SevenNet,
ensuring that the calculations were performed at the PBE-D3
level of theory, which is identical to the DFT calculation in the
previous section. The parameter set for the dispersion interac-
tion was consistent with that used in the DFT calculations (see
above).
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