
Digital
Discovery

COMMUNICATION

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/6
/2

02
5 

1:
30

:4
3 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal
BoTier: multi-ob
aHarvard University, Department of Biologic

Boston, MA, USA
bHarvard University, Dana-Farber Cancer I

Boston, MA, USA
cUniversity of Wuppertal, School of Mathem

Germany. E-mail: strieth-kalthoff@uni-wupp
dUniversity of Wuppertal, Interdisciplinary

Analytics, Wuppertal, Germany

† Electronic supplementary informa
https://doi.org/10.1039/d5dd00039d

Cite this: DOI: 10.1039/d5dd00039d

Received 24th January 2025
Accepted 30th April 2025

DOI: 10.1039/d5dd00039d

rsc.li/digitaldiscovery

© 2025 The Author(s). Published b
jective Bayesian optimization with
tiered objective structures†

Mohammad Haddadnia,ab Leonie Grashoffc and Felix Strieth-Kalthoff *cd
Scientific optimization problems are usually concerned with balancing

multiple competing objectives that express preferences over both the

outcomes of an experiment (e.g. maximize reaction yield) and the

corresponding input parameters (e.g.minimize the use of an expensive

reagent). In practice, operational and economic considerations often

establish a hierarchy of these objectives, which must be reflected in

algorithms for sample-efficient experiment planning. Herein, we

introduce BoTier, a software library that can flexibly represent a hier-

archy of preferences over experiment outcomes and input parame-

ters. We provide systematic benchmarks on synthetic and real-life

surfaces, demonstrating the robust applicability of BoTier across

a number of use cases. Importantly, BoTier is implemented in an auto-

differentiable fashion, enabling seamless integration with the BoTorch

library, thereby facilitating adoption by the scientific community.

1 Introduction
Multi-objective optimization (MOO) – the task of nding
a global optimum that simultaneously satisies a set of opti-
mization criteria – is a common problem in many elds of
science and engineering.1–5 As an example, a new drug needs to
simultaneously optimize target activity, side effects, bioavail-
ability and metabolic prole; similarly, a new material must
meet several demands relating to properties, stability or syn-
thesizability. Usually, such objectives are conicting, so any
optimal solution represents a trade-off between them. In many
scenarios, nding these optimal solutions is cumbersome,
especially in a setting in which experimental evaluations are
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expensive – creating a need for efficient experiment planning
algorithms. Over the past decade, Bayesian Optimization (BO)
has become the de-facto choice for sample-efficient iterative
optimization of black-box functions,6–8 and has found particular
popularity in the context of autonomous experimentation with
self-driving laboratories (SDLs).9,10

In scientic optimization problems, the primary objective(s)
are generally derived from the outcome of an experiment. In
reaction optimization (Fig. 1a), for example, this could be the
yield of the desired product, or the quantity of an undesired side
product. At the same time, secondary optimization objectives
can include preferences over input parameters, such as mini-
mizing the loading of an expensive catalyst, or minimizing the
reaction temperature to lower energy consumption.11–13 It is
worth noting that such considerations imply that certain
objectives are prioritized over others, establishing a known
hierarchy.14–16

In MOO, a solution in which further improving one objective
is detrimental to at least one other objective is called a Pareto
optimum,17 and the set of all Pareto optima is referred to as the
Pareto front (Fig. 1b). In an ideal scenario, knowing the entire
Pareto front would enable optimal post-hoc decisions,
accounting for all inter-objective trade-offs. Accordingly, the
past decades have seen signicant advances in hypervolume-
based approaches to map the Pareto front.18,19 However,
Pareto-oriented optimization may spend signicant experi-
mental resources on mapping regions of the Pareto front that
are not of interest to the researcher (Fig. 1b). Therefore, when
relative objective importances are known, scalarizing multiple
objectives into a single score can help guide the optimization to
desired regions of the Pareto front.1,13,20

In practice, such scalar scores are oen used in a manner
that can be described as implicit objective modeling (Fig. 1c
le). Here, for each observation, the multiple objective values
are rst combined into a single scalar score, and standard
single-objective BO is then employed to optimize this score over
the search space.1,20 While straightforward, this aggregate-then-
predict approach has two main drawbacks: (a) when input-
Digital Discovery
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Fig. 1 MOO with preferences over experiment inputs and outputs. (A)
Example from chemical reaction optimization. (B) Optimization with
two conflicting objectives. (C) In multi-objective BO, objectives are
often scalarized into a single score, which is used as the optimization
goal. This can be done in under implicit (“score than predict”, left) or
explicit (“predict then score”, right) objective modeling.
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based objectives are included, the relationship between score
and input parameters is provided only implicitly to the surro-
gate, and must therefore be “re-learned”. For example, in the
reaction optimization scenario shown in Fig. 1a, the surrogate
would have to learn how catalyst loading and temperature
inuence the nal score, even though this relation is known a-
priori in analytical form. This redundancy is likely to reduce
optimization efficiency. (b) The scalar score itself is articial
and may lack physical meaning, which can hinder the design of
effective priors.21,22

Therefore, scalarization would ideally be employed in
a predict-then-aggregate manner (Fig. 1c), which, requires
c ¼ j1$Hðt1 � j1Þ þ
XN
i¼2

  
ji þ

Xi�1

j¼1

max
x
0˛X

jj

�
x

0
�!

$Hðti � jiÞ

Digital Discovery
manipulating multiple posterior distributions, therefore
complicating practical implementation. In this context, Frazier
and co-workers introduced the concept of composite objective
functions,23 where a real-valued function is applied only aer
building surrogate models, and demonstrated that their
posteriors can be approximated by Monte-Carlo integration.
When applied to scalarization in MOO, we refer to this strategy
as explicit objective modeling.

Combining the principle of hierarchical MOO with the idea of
explicit objective modeling, we herein introduce BoTier as a ex-
ible framework for MOO which enables tiered preferences over
both experiment inputs and outputs. The main contributions of
this paper include (1) the formulation of an improved, auto-
differentiable hierarchical composite score; (2) its open-source
implementation as an extension of the BoTorch library; and (3)
systematic benchmarks on analytical surfaces and real-world
chemistry examples, showcasing how BoTier can efficiently
navigate MOO problems in the context of scientic optimization.
2 Formulation of BoTier
2.1 Multi-objective optimization

In MOO, the goal is to optimize several oen conicting objec-
tives simultaneously. Formally, each set of input parameters x ˛
X is associated with N objective values {ji(x)}i=1

N. Here, x repre-
sents a vector of input parameters, X is the domain from which
these parameters are chosen, and each ji(x) denotes the i-th
objective evaluated at x – which can come from either an exper-
imental evaluation at x, or from a user-dened preference over x.
2.2 Scalarization functions

Given a set of N objectives {ji}i=1
N, a scalarization function 4:

R
N /R combines these objective values into a single score that

reects user preferences, and serves as the eventual optimiza-
tion goal. In the context of hierarchical optimization, this was
pioneered by Aspuru-Guzik and co-workers, who introduced
Chimera c as an additive scalarization function.24 In eqn (1), c is
shown for the case where each objective is to be maximized. We
assume that the objectives are sorted by their hierarchy, i.e. j1 is
the most important, j2 is the second-most important, etc. Each
objective has a user-dened “satisfaction threshold” ti. The
component-wise formulation of c then ensures that the
contribution of objective ji to the score is only considered if all
superordinate objectives {jj}j<imeet their respective thresholds.
Additionally, the contribution of each objective is shied by the
highest observed values of all superordinate objectives to
ensure continuity of c. If all objectives meet their thresholds,
the primary objective is used for optimization (third summand
in eqn (1)).
$
Yi�1

j¼1

H
�
jj � tj

�!þ
 
j1 þ

XN
j¼1

max
x
0˛X

jj

�
x

0
�!

$
YN
j¼1

H
�
jj � tj

�
(1)
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Here, H(x) denotes the Heaviside step function.
Although Chimera is widely used for MOO, its current

formulation is limited to implicit objective modeling scenarios,
where c is computed for all K observations, {(j1(xk),
j2(xk),.,jN(xk))}k=1

K. Since the value of c for a single observa-
tion depends on all other observations considered at the same
time, batch-wise evaluation of c is not possible in its current
form. Moreover, its implementation is not auto-differentiable,
limiting its usefulness as a composite score for BO.
2.3 Formulation of BoTier

We address these limitations by proposing an alternative hier-
archical scalarization function designed as a composite score
for explicit objective modeling. Without loss of generality, we
assume a maximization problem for each objective, and dene

X ¼
XN
i¼1

 
min ðji; tiÞ$

Yi�1

j¼1

H
�
jj � tj

�!
(2)

As in Chimera, the product
Qi�1

i�1
Hðjj � tjÞ ensures that an

objective ji contributes to X only aer all superordinate
objectives {jj}j<i have met their satisfaction thresholds. When ji

is below its threshold ti, it becomes the limiting objective in that
region of parameter space, andmin (ji, ti) returns ji. Otherwise,
ti is added to the score, preserving continuity of X. Empirically,
we conrm that this formulation is consistent with the ranking
behavior of Chimera (ESI,† section 4). In addition, all ji can be
normalized to the range [0, 1] based on expert knowledge. This
normalization, albeit optional, places gradients of X on
a consistent scale for all x ˛ X.

Our implementation of X employs continuously differen-
tiable approximations for both min (x1, x2) and H(x) (see (ESI),†
section 1), enabling the automatic propagation of gradients
through X(x) using the PyTorch framework. This approach
supports gradient-based techniques for optimizing any acqui-
sition function computed on top of X, ensuring robust opti-
mization even in high-dimensional spaces. Therefore, BoTier
integrates seamlessly with the widespread BoTorch ecosystem
for BO, and can be exibly combined with different single- or
multi-task surrogate models, and acquisition functions. When
applied in the context of explicit objective modeling, X can be
evaluated over both experiment inputs and model outputs (i.e.,
posterior distributions) using Monte-Carlo integration (see
ESI,† section 1.3 for details).25,26 We provide BoTier as a light-
weight Python library, which can be installed from the Python
Package Index (PyPI).
Fig. 2 Benchmarks of MOO strategies on four analytical surfaces,
each extended by an input-dependent objective (see ESI† for details).
Top panel: best observed value of X as a function of the number of
experimental evaluations. All statistics were calculated on 50 inde-
pendent campaigns on each surface. Intervals are plotted as the
standard error. Bottom panel: Number of experiments required to
satisfy the first objective (n = 1, green); the first two objectives (n = 2,
dark green); or all three objectives (n = 3, blue).
3 Experimental use cases

We evaluated the applicability and limitations of BoTier through
benchmark studies on analytical test surfaces and real-life
optimization problems from chemistry and materials science.
Our investigations focused on two key algorithmic choices and
their inuence on sample efficiency in multi-objective BO: (a)
© 2025 The Author(s). Published by the Royal Society of Chemistry
the use of BoTier compared to other MOO strategies; and (b) the
application of explicit compared to implicit objective modeling.

All empirical optimization runs were performed using BO
workows implemented in BoTorch. Unless otherwise noted, we
employed a Gaussian Process (GP) surrogate model with the
Expected Improvement (EI) acquisition function and a batch
size of 1. Each run was repeated 50 times from different random
seed points to ensure statistical signicance. Sobol sampling
was used as a model-free baseline. The complete code for
reproducing all experiments is available on our GitHub
repository.

First, we evaluated several MOO strategies on four analytical
multiobjective surfaces from the BoTorch library. These multi-
dimensional (2—10D) benchmark functions typically exhibit
non-linear, non-convex behavior within a bounded search
space. To simulate a scenario with both input- and output-
dependent objectives, each of these two-objective problems
was augmented by a third objective that depends solely on the
function inputs (see ESI†). Fig. 2 summarizes the general trends
observed across all surfaces; a detailed, problem-specic
comparison between the algorithms is provided in the ESI.†
Across all tasks, we found that BoTier, when used in an implicit
objective modeling scenario, already led to faster convergence
Digital Discovery
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toward the optimum value ofX compared to Chimera (Fig. 2, top
row). Likewise, the number of experiments needed to nd
conditions that satisfy the rst objective, the rst two objectives,
or all three objectives, was consistently lower (Fig. 2 bottom
row). In every case, using BoTier under explicit objective
modeling further accelerated optimization. We initially attrib-
uted this improvement to the surrogate model no longer
needing to “re-discover” known correlations between inputs
and objectives. Surprisingly, this nding persisted for the
original two-objective problems in which all objectives depend
solely on experiment outputs (see ESI,† Section 2.2). Although
a systematic analysis is beyond the scope of this study, these
ndings suggest that learning two independent distributions is
seemingly simpler than capturing a more complex joint distri-
bution, as required in the case of implicit objective modeling. In
fact, multi-output GP surrogates, that try to capture correlations
between objectives, did not improve optimization performance
Fig. 3 Evaluation of different MOO strategies for chemical reaction optim
optimization problems. Number of experiments required to satisfy the firs
the median objective values across 50 independent runs, with shaded are

Digital Discovery
compared to single-task GP models in most cases (Fig. S12 and
S17†).

Moreover, we evaluated BoTier against a threshold-based,
non-hierarchical composite score: a penalty-based scalariza-
tion introduced by deMello and co-workers.27 The widespread
Pareto-oriented Expected Hypervolume Improvement (EHVI)
acquisition function was tested as a reference.28 While optimi-
zation behavior varied by problem (see ESI,† Sections 2.2 and
2.3), several trends emerged: Compared to BoTier, the penalty-
based scoring oen takes more evaluations to satisfy the early
objectives in the hierarchy. The identication of points that
satisfy all objective criteria is achieved at a comparable experi-
mental budget, highlighting the general efficiency of explicit
objective modeling. As expected, EHVI, lacking preferences for
any “region” of the Pareto front, required substantially more
experiments to identify Pareto-optimal points that satisfy all
criteria (see Fig. 2 and ESI†). These benchmarks conrm the
ization. (A) Optimization performance on different emulated reaction
t n objectives. (B) Case study of a Suzuki–Miyaura coupling. Plots show
as indicating the 20th and 80th percentiles. See ESI† for further details.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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feasibility of BoTier's formulation and its effectiveness as
a composite score in explicit objective modeling.

Encouraged by these results, we tested BoTier on chemical
reaction optimization scenarios which are highly relevant to
self-driving laboratories. Following the emulator strategy
described by Häse et al.,29 rst, a supervised ML model was
trained on an external, labeled dataset. The resulting model was
then used as an emulator, substituting for actual wet-lab
experiments, and could be queried with any set of input
parameters proposed during a BO campaign. Specically, we
investigated the following problems: condition optimization in
a heterocyclic Suzuki–Miyaura coupling,29 an enzymatic alkox-
ylation reaction,29 a synthesis of silver nanoparticles monitored
via spectrophotometry,30 and an amine monoalkylation.31 All
optimization runs were performed using a GP surrogate with
the EI acquisition function, running 50 iterations from different
random seed points, as described above.

Fig. 3b illustrates the Suzuki–Miyaura coupling example,
which is optimized over reagent stoichiometry, catalyst loading,
base loading and reaction temperature. Process chemistry
considerations dene a three-tier objective hierarchy, consist-
ing of (1) maximized product yield, (2) minimized cost of all
reactants and reagents, and (3) minimized reaction tempera-
ture. Benchmarking different MOO algorithms on this problem
shows that BoTier is the only strategy capable of identifying
reaction conditions that simultaneously meet all thresholds. By
contrast, a statistical, model-free Sobol sampling baseline (see
ESI† for further details) rapidly found high-yielding conditions,
but failed to keep cost and temperature low. Similarly, neither
Chimera with implicit objective modeling nor the evaluation of
the full Pareto front (EHVI) identied satisfactory conditions in
the given budget.

Similar trends were observed for the other emulated prob-
lems (Fig. 3a). Notably, we observed cases in which BoTier and
EHVI satisfy the criteria at similar rates (Fig. 3a, panels 2 and 4);
which occurred when the objectives did not strongly compete
(see Fig. S21 and S23† for further details). Overall, if a hierarchy
between objectives exists, BoTier proved to be a robust scalari-
zation function which, across all cases investigated, never per-
formed worse, but oen notably better than existing MOO
methods – particularly when used as a composite score in
explicit objective modeling.

4 Outlook and perspectives

We have introduced BoTier as a exible composite score for
hierarchical multi-objective BO. Based on our benchmark
studies, we formulate the following empirical guidelines for
MOO:

(1) Use hierarchical objectives when a hierarchy exists. If
the objectives, whether input- and output-dependent,
are subject to a well-dened priority structure, BoTier
offers a robust objective to encode and optimize these
preferences. Our benchmarks show that, in these cases,
hierarchical methods can more rapidly identify desir-
able optima than approaches that seek to map the
entire Pareto front.
© 2025 The Author(s). Published by the Royal Society of Chemistry
(2) Favor explicit over implicit objective modeling
whenever possible. Across all problems studied,
explicit objective modeling consistently outperformed
implicit objective modeling approaches, oen
yielding substantial speedups. In no case did an
implicit modeling approach prove superior. We fore-
see that this effect will be even more pronounced
when incorporating priors over physically meaningful
quantities.

To encourage broader adoption, BoTier is provided as
a lightweight, open-source extension to the BoTorch library.
Looking ahead, we are exploring its applications in self-driving
laboratories, where hierarchical optimization can be especially
valuable for balancing complex objectives including materials
properties, synthetic feasibility, cost, and sustainability. We
anticipate that BoTier will be a valuable addition to the opti-
mization toolbox for autonomous research systems.
Data availability

The soware package is available on Github under https://
github.com/fsk-lab/botier, and can be obtained from the
Python Package Index (PyPI) at https://pypi.org/project/botier.
BoTier 1.0.0 was used for all experiments presented in this
study. The release, including all code, scripts and datasets,
has been archived on Zenodo at the following DOI: https://
doi.org/10.5281/zenodo.15305205.
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