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predictions: elastic constant tensor prediction and
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Efficient and accurate prediction of material properties is critical for advancing materials design and

applications. Leveraging the rapid progress of large language models (LLMs), we introduce ElaTBot,

a domain-specific LLM for predicting elastic constant tensors and enabling materials discovery as a case

study. The proposed ElaTBot LLM enables simultaneous prediction of elastic constant tensors, bulk

modulus at finite temperatures, and the generation of new materials with targeted properties. Integrating

general LLMs (GPT-4o) and Retrieval-Augmented Generation (RAG) further enhances its predictive

capabilities. A specialized variant, ElaTBot-DFT, designed for 0 K elastic constant tensor prediction,

reduces the prediction errors by 33.1% compared with a domain-specific, materials science LLM (Darwin)

trained on the same dataset. This natural language-based approach highlights the broader potential of

LLMs for material property predictions and inverse design. Their multitask capabilities lay the foundation

for multimodal materials design, enabling more integrated and versatile exploration of material systems.
Property data are essential for determining the suitability of
materials for specic applications. For example, exible elec-
tronics require materials with targeted elastic stiffness,1

thermal management systems rely onmaterials with sufficiently
high thermal conductivity,2 and electronic devices depend on
materials with appropriate band structure.3 Given the diverse
property prole required for individual applications, deep
understanding or at least robust property prediction would be
a great aid to material selection and/or alloy design. While the
former is a long-term goal of materials science, high-
throughput material property measurements and prediction,
coupled with new techniques in articial intelligence (AI) have
the potential to revolutionize materials development in the
short term.

While experimental approaches for determining materials
properties remains the gold standard, they are oen hindered
by expense and the time required to synthesize materials and
measure properties (and, at times, lead to results that are either
inconsistent or not sufficiently accurate), such as in the case of
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elastic constant measurements.4 Recent advancements in
simulation techniques and computational power have made
computational modeling a critical tool for property prediction.
Given the diversity of length and time scales that control
material properties, multi-scale modeling has emerged as an
oen efficient and sufficiently accurate approach for materials
property prediction. For example, atomistic simulations with
quantum-mechanical accuracy can accurately predict the full
elastic constant tensors and/or band gaps (using hybrid
exchange–correlation functionals), while phase-eld modeling
and other continuum based-methods enable microstructure
evolution and defect property prediction. However, challenges
(e.g., data transfer and error propagation) oen remain signif-
icant obstacles to achieving accurate, macroscopic predictions
in multi-scale modeling frameworks. The emergence of large
language models (LLMs) presents a new opportunity for mate-
rials property prediction, with the potential to close the gaps
between experiment data (e.g., sourced from literature data-
bases) and computational materials simulation approaches.5

LLMs, for example ChatGPT, have demonstrated some
remarkable successes across a wide range of materials appli-
cations, including high-throughput discovery of physical laws,6

generation of metal–organic frameworks (MOFs),7 design of
chemical reaction workows,8 determining crystal structure
(CIF, crystallographic information le),9 electron microscopy
image analysis,10 and guiding automated experiments.11 LLMs
achieve this by leveraging their capabilities such as rapid liter-
ature summarization,12 prompt engineering13 and/or
Digital Discovery
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integration with external tools.14 This approach can make them
superior to traditional machine learning (ML) models, partic-
ularly when dealing with complex and multitask processes at
scale.15 One major strength of LLMs is their foundation in
natural language-based training, ne-tuning, and application,
which lowers the barrier to entry for researchers without
a strong background in computer science or coding.16 More-
over, underlying pre-trained models encode extensive materials
science knowledge, giving LLMs remarkable ability in cases
where datasets are sparse (through transfer learning), an
achievement that previously required highly specialized
algorithms.17

Given the strong performance of LLMs on a wide range of
low-dimensional classication and regression tasks in
computer science,18 there is growing interest in leveraging LLMs
to improve numerical property prediction in materials science.
Recent studies, including LLM-Prop,19 CrysMMNet,20 and
AtomGPT,21 illustrate two major strategies. LLM-Prop and
CrysMMNet introduce architectural modications of LLMs fol-
lowed by ne-tuning, whereas AtomGPT preserves the original
LLM architecture. Despite their methodological differences, all
three approaches convert crystal structures into text descrip-
tions, and ne-tune the LLMs to predict individual material
properties such as the band gap, formation energy, or bulk
modulus. These studies demonstrate that text-based encoding
of structural information can enhance predictive accuracy.
Recent studies examined the impact of prompt design on LLM
property prediction performance,22 and have benchmarked
LLM-based methods against conventional models on out-of-
distribution datasets.23 These comparisons highlight the value
of prompt design for optimizing LLM materials property
prediction performance. Although the aforementioned works
prove that LLMs can outperform traditional models in pre-
dicting certain scalar properties, there are also contrary results,
especially when faced with small datasets.24 For example,
Jablonka et al.25 showed that while LLMs can predict properties
like HOMO–LUMO gaps, solubility, photoswitching behavior,
solvation free energies, and photoconversion efficiency, the
results were no better than with traditional ML models.
Enhancing the quantitative prediction capabilities of LLMs,
while leveraging their strengths in natural language interaction
and multitasking, can signicantly expand their potential in
materials science applications.

In this work, we focus on predicting the elastic constant
tensor as a case study of quantitative prediction of a material
property. The elastic constant tensor is a fundamental property
that describes the elastic response of materials to external
forces26 and serves as a indicator of the nature of intrinsic
bonding within a material.27 Mechanical (Young's modulus,
Poisson's ratio,.), thermal (thermal conductivity), and acoustic
(sound velocity) properties can all be derived starting from the
elastic constant tensor28 (oen together with other basic mate-
rial properties). Here, we introduce ElaTBot and ElaTBot-DFT
(DFT is quantum mechanical density functional theory), LLMs
developed through prompt engineering and knowledge fusion
training. ElaTBot is designed to predict elastic constant tensors,
Digital Discovery
bulk modulus at nite temperatures, and propose materials
with specic elastic properties.

To our knowledge, ElaTBot is the rst model capable of
directly and efficiently predicting the full elastic constant tensor
at nite temperatures. ElaTBot-DFT, a variant specialized for
0 K elastic constant tensor prediction, reduces prediction error
by 33.1% compared to the material science LLM Darwin29 using
the same training and test sets. These results highlight the
potential of LLMs for numerical materials property predictions.

Training specialized LLMs

Despite the importance of elastic constant tensors in materials
science, complete elastic constant tensor data for inorganic
crystals remains scarce due to experimental and computational
limitations. Fig. 1(a) shows that elastic constant data is scarce in
the Materials Project;30 ∼7.9% as abundant as crystal structure
data and ∼17.2% as abundant as band structure data. The
elastic constants are a fourth-rank tensor with as many as 21
independent components (in static equilibrium) which is oen
represented as a symmetric 6 × 6 Voigt matrix Cij.31 Predicting
these components is far more complex than predicting scalar
properties, such as formation energy, free energy, or bulk
modulus. Fig. 1(b) lists a few ML approaches for predicting
elastic constant tensors. Chemical composition-based upon
element descriptors were used to predict specic components
or Cij,32,33 but not the full elastic constant tensor. More recent
models that leverage crystal structure descriptors to predict the
full elastic constant tensor face challenges such as long training
times and complex model architectures.28,34 These models are
oen restricted to single-task predictions of elastic properties
and lack the capabilities to propose new materials tailored to
specic properties or learn from new data without retraining.

Fig. 1(c) presents an integrated approach, combining ML
and natural language processing, for predicting material prop-
erties and identifying materials with targeted properties.
Specically, for elastic properties prediction and materials
generation, we developed two domain-specic LLMs: ElaTBot
and ElaTBot-DFT, which predict elastic properties such as the
elastic constant tensor, bulk, shear and Young's moduli, as well
as the Poisson ratio. To further improve user interaction and
task handling, we implemented an AI-driven agent capable of
utilizing tools and databases, and general LLMs to perform
complex, multi-step tasks. This agent can process new (and
unseen) data by integration of external tools and vector data-
bases. Its responses can be fed into general LLMs (e.g., GPT-4,
Gemini) to further extend its capabilities and tackle more
complex, multi-step tasks. Fig. 1(d) shows three capabilities of
our specialized LLM ElaTBot: prediction, Retrieval-Augmented
Generation (RAG)-enhanced prediction35 without retraining,
and generation.

To train the ElaTBot, we rst used robocrystallographer36 to
extract structural text descriptions, then employed Pymatgen37

to obtain compositional information. We then integrate these
elements into text-form prompts, subsequently ne-tuning the
general LLM Llama2-7b model to yield ElaTBot-DFT, a special-
ized model for predicting elastic constant tensors at 0 K.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Datasets and overview of the ElaTBot for predicting elastic properties. (a) Comparison of the number of materials in the Materials Project
database30 with available data on crystal structures, band structures, and elastic properties. The availability of elastic constant tensors data is
significantly lower than that of crystal and band structure data. (b) Overview of existing methods used to predict elastic constant tensors, which
primarily relied on element descriptors and structural features (constructed by CIF). (c) A flowchart illustrating the process of using large language
models (LLMs) to acquire material knowledge. This method enables researchers to gain domain-specific insights, allowing those without
extensive programming skills or theoretical expertise to conduct research, thereby lowering the entry barrier into materials science. (d)
Capabilities of our specialized LLM ElaTBot. By incorporating elastic constant tensors data at finite temperatures, we develop an LLM-based
agent, ElaTBot, which is capable of predicting elastic constant tensors, enhancing prediction without retraining by leveraging external tools and
datasets, and generating chemical composition for materials with specific modulus.
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ElaTBot-DFT serves as a benchmark for elastic constant tensor
prediction, particularly since other models are limited in
addressing nite-temperature predictions. Next, we employ
several steps to enhance LLM performance,38 incorporating
nite-temperature data and fusing this knowledge to develop
ElaTBot. Prompt engineering leads to a reduction of the
prediction error of the average value of the elastic constant
© 2025 The Author(s). Published by the Royal Society of Chemistry
tensor Cij (see Methods) by 33.1% for ElaTBot-DFT compared to
Darwin,29 amaterials science LLM built on the same dataset. We
ran the test set twice to ensure the reliability of the LLM results.
Through knowledge fusion, ElaTBot accurately ts the
temperature-dependent bulk modulus curves (derived from the
elastic constant tensor) for new multicomponent alloys, with
errors near room temperature approaching the average error for
Digital Discovery
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the 0 K test set. RAG-enhanced35 predictions with limited nite-
temperature data further improves ElaTBot errors for the bulk
modulus from 27.49% to 0.95% across nine alloys at various
temperatures without retraining or ne-tuning.

We integrate ElaTBot with GPT-4o to propose/screen mate-
rials based upon bulk modulus and other requirements of tar-
geted applications. These include materials with low corrosion
rates and high biocompatibility (measured by median lethal
dose) with a bulk modulus similar to that of bone for bone
implantation, high bulk but low shear modulus materials
suitable for exoskeletons of so robots, corrosion-resistant
materials suitable for saline environments, and materials for
the protective layers of LiCoO2 electrode.
Elastic constant tensor predictions

Our model uses text-based inputs to predict the elastic constant
tensor; this requires carefully designed prompt templates. We
develop a prompt (prompt type 4 in ESI Table S1†) that incor-
porates both chemical composition and crystal structure
descriptions as inputs to the model (Llama2-7b, an open-source
general LLM). These textual descriptions were generated by
extracting relevant data from the material composition and
structure and converting these into natural language.

We conducted a series of “experiments” to assess the effects
of different input formats on model performance: JSON-
formatted (JavaScript Object Notation) structure descriptions
(prompt type 1), textual descriptions of crystal structure
(prompt type 2), textual descriptions of the composition
(prompt type 3), and textual description of both chemical
composition and crystal structure (prompt type 4). The model
was trained using a 0 K density functional theory (DFT) dataset
containing 9498 materials with elastic constant tensor data
from theMaterials Project, with 500materials for validation and
522 for testing. Fig. 2(a) and ESI Table S2† show that prompt
type 4 achieves a mean absolute error (MAE; the average of the
absolute differences between the predicted and actual values for
all data points) of 2.32 GPa and R2 of 0.965 for predicting the
average elastic constant tensor component ðCijÞ, outperforming
other prompt types (explicit denitions of the MAE and Cij are
inMethods). Compared to prompt type 1 (JSON format), prompt
type 4 reduces the MAE by 16.8% and increases R2 by 1.9%.
When compared to prompt type 2 (crystal structure descriptions
only), prompt type 4 achieves a 5.3% reduction in MAE and
a 0.8% increase in R2. Compared to prompt type 3 (composition
descriptions only), prompt type 4 yields a 13.1% reduction in
MAE and a 0.9% increase in R2. These results demonstrate that
LLMs perform better when trained with natural language-like
inputs, and that using both structural and compositional
information improves elastic constant tensor prediction. The
bulk modulus results (derived from the elastic constant tensor)
in Fig. 2(b) conrm this: prompt type 4 achieves an MAE of
7.74 GPa and an R2 of 0.963, representing a 14.4% reduction in
MAE and a 1.7% increase in R2 compared to prompt type 1.
Therefore, prompt type 4 was selected for training Llama2-7b
for our ElaTBot-DFT model.
Digital Discovery
We compared the performance of ElaTBot-DFT with two
widely-used models for predicting the full elastic constant
tensor: the random forest model, which utilizes Magpie
(Materials Agnostic Platform for Informatics and Exploration)
features based on composition,39 and the MatTen model, which
employs a crystal structure graph neural network.28 As shown in
Fig. 2(a, b), ESI Fig. S1† and Table S3,† when trained on the
dataset, ElaTBot-DFT using prompt type 4 achieves a 30.3%
reduction in MAE and a 4.4% increase in R2 for predicting the
average elastic constant tensor components ðCijÞ compared to
the random forest model. Compared to the MatTen model,
ElaTBot-DFT reduces MAE by 4.5% and improves R2 by 0.2%.
This demonstrates that, even with a relatively small dataset,
LLMs trained with well-designed textual descriptions can
outperform traditional methods, contrary to previous studies
using QA-based training approaches.25 We also examined the
symmetry of the generated elastic constant tensors that result
from the rigorous application of crystal symmetries; this
symmetry requires certain Cij components to be zero and a xed
relationship between some others. Under strict criteria (error
margin of ±2 GPa), ElaTBot-DFT achieves a symmetry accuracy
of 94%, signicantly outperforming MatTen (5%) and the
random forest model (6%) (Fig. 2(c)). Traditional numerical
models tend to produce small non-zero values due to algo-
rithmic limitations, while the natural language-based model,
ElaTBot-DFT, accurately outputs a “0” where appropriate. We
also tested the elastic stability of all of the materials in the test
(i.e., the Born condition – the elastic constant tensor is positive
denite), as shown in Fig. S9.† For the 519 materials in the test
set, 518 are found to be elastically stable for predictions of both
the random forest model and our ElaTBot-DFT model, whereas
the predictions of MatTen failed the stability test in 32 cases.

We further compared ElaTBot-DFT predictions with those
from the domain-specic materials LLM, Darwin, for elastic
constant tensor prediction. Domain-specic LLMs are widely
believed to outperform general LLMs on specialized problems;40

however, as shown in Fig. 2(a, b, d, e) and ESI Table S3,† Darwin
(even aer ne-tuning on the same dataset) underperforms
ElaTBot-DFT in predicting the Cij and bulk modulus. Speci-
cally, the MAEs of ElaTBot-DFT are 33.1% and 31.8% lower than
those of Darwin for Cij and bulk modulus, respectively. This
suggests that integrating the reasoning abilities of a general
LLM with ne-tuning on a specic dataset may yield better
results for tasks requiring quantitative property predictions.
Fine-tuning a model with domain-specic knowledge (like
Darwin) can lead to gaps in its abilities and knowledge loss,
which may reduce the effectiveness in specialized tasks.41

We further examined the performance of ElaTBot-DFT
across different crystal systems, as summarized in Tables S6
and S7.† Themodel demonstrates consistently strong predictive
accuracy across all crystal systems except for the triclinic
system, for which there are only three/sixty data points in the
test/training sets. The performance of ElaTBot-DFT is particu-
larly strong for the very common cubic system, with R2 > 0.97 for
both elastic constant tensor and bulk modulus predictions. The
performance is slightly lower in the orthorhombic and mono-
clinic systems, with R2 ∼ 0.94. This demonstrates that while
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Prediction abilities of ElaTBot-DFT and ElaTBot. (a and b) Performance comparison of the Llama2-7bmodel using different prompt types,
the MatTen model, random forest model, and Darwin model in predicting Cij (GPa) and bulk modulus based on MAE and R2 on the 0 K DFT test
set, all trained on the same dataset. (c) Symmetry validation for elastic constant tensors predicted by MatTen, random forest, and ElaTBot-DFT
models. Symmetry correctness is defined as components within ±2 GPa where zero values are required by the Voigt format matrix. (d and e)
Performance comparison of ElaTBot-DFT model against the pre-trained Llama2-7b model (Darwin, trained with a materials knowledge data-
base) for bulk modulus prediction, using the same test set and training data with prompt type 4. (f) The capability of ElaTBot to predict finite
temperature bulk modulus. The red line indicates predicted values, the green line shows experimental data,42,43 the blue dashed line indicates the
percentage error trend, and the black dashed line shows the average error (7.05%) for the 0 K temperature test set.
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ElatBot-DFT is broadly effective across different crystal systems,
predictive accuracy is inuenced by training/test sample sizes
(this is an issue only for less common crystal systems).

Finally, we integrated the nite-temperature dataset and
designed four tasks (ESI Table S4†) with corresponding training
text inputs (elastic constant tensor prediction, bulk modulus
prediction, material generation based on bulk modulus, and
text inlling) to conduct multi-task knowledge fusion training.
This approach equips ElaTBot with multiple capabilities,
including the ability to predict elastic constant tensors at nite
temperatures. Although the text inlling task does not directly
predict material properties, previous studies have shown that it
improves the overall multi-task performance.38 To test the
effectiveness of ElaTBot, we selected three multicomponent
alloys not in the training set (cubic Ni3Al, g0-PE16 (Ni72.1Al10.4-
Fe3.2Cr1.0Ti13.3), and tetragonal g-TiAl (Ti44Al56)) and predicted
their bulk modulus as a function of temperature (based on the
full elastic constant tensors). Given the limited nite-
temperature training data-just 1266 samples-and the vast
© 2025 The Author(s). Published by the Royal Society of Chemistry
compositional space of alloys, predicting accurate values over
a wide range of temperature and compositions is inherently
challenging. We predicted the bulk modulus at 11 temperatures
for Ni3Al and g0-PE16 and 15 temperatures for g-TiAl. Fig. 2(f)
shows the variation of prediction errors for three alloy systems
(not in the training set) as a function of temperature; the blue
dashed lines indicating the error trends. A clear increase in
prediction error with temperature is observed. We note that in
the original training set, there are 10 520 samples at 0 K and
only 1266 entries at nite-temperature conditions. The errors
are larger for the quinary g0-PE16 (Ni72.1Al10.4Fe3.2Cr1.0Ti13.3)
alloy compared with the binary Ni3Al alloy. The original training
set had 213 times more binary than quinary data. This high-
lights that the model performance is less reliable for situations
(alloy and temperature) where the test cases differ greatly from
those in the training set. Nonetheless, the model performs
remarkably well compared across a wide range of composition
and temperature, especially in light of the fact that experi-
mental data on compositionally complex materials and at high
Digital Discovery
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temperatures is rare (and expensive to generate). Fig. 2(f) also
shows that the tted lines from the predictions of ElaTBot
closely align with experimental data,42,43 particularly at low
temperatures, where ElaTBot exhibits smaller errors. This
demonstrates that incorporating the 0 K DFT dataset from the
Materials Project helps reduce prediction errors, highlighting
the effectiveness of the multi-task knowledge fusion training
approach.
RAG enhanced predictions

Retrieval-Augmented Generation (RAG)35 provides an effective
method for LLMs to access up-to-date databases, enabling the
most current RAG-enhanced prediction without model retrain-
ing. RAG integrates information retrieval with generative
models, enhancing the knowledge scope and accuracy of LLM35

output. The retrieval module extracts relevant data from
external sources, which is then combined with the generative
model to deliver more accurate predictions or text generation
(Fig. 3(a)). This approach allows LLMs to stay current with new
Fig. 3 Integration of Retrieval-Augmented Generation (RAG) with ElaTBo
perform RAG are as follows: (1) document loading: external documents o
the documents are broken down into smaller, manageable chunks to opti
for fast and efficient searching; (4) retrieval: the system identifies and re
ElaTBot generates a more accurate and informed response by incorpo
modulus with and without the RAG method for Ni3Al, g0-PE16 (Ni72.1Al10.
bulk modulus error percent decreased from 27.49% to 0.95% in 9 alloys

Digital Discovery
data or literature, by incorporating knowledge rather than solely
relying on pre-trained models.

Fig. 3(a) compares the ElaTBot bulk modulus predictions for
g-TiAl at 170 K with and without RAG support. Since the nite
temperature data was not in the original ElaTBot training set,
the model automatically queries our external database, nds
bulk modulus data for g-TiAl at similar temperatures (the 170 K
data was removed from the database for comparison purposes).
The predicted value (110.77 GPa) differs by only 0.1% from the
true value, whereas without RAG, the error increases to 2.4%. To
ensure a fair comparison, we customized the RAG prompt in
order to isolate its inuence from training prompts. Further
testing on alloy data at various temperatures (see Fig. 3(b–d)
and ESI Table S5†) demonstrates that RAG reduces the average
error from 27.49% to 0.95%. RAG prediction performance can
be improved by increasing the quantity and quality of data. This
is demonstrated in Table S8,† where increasing the number of
data points by 32% led to a 50% decrease in the error, compared
with experiments. By incorporating RAG, ElaTBot achieves RAG-
t for enhanced prediction. (a) The steps involved in enabling ElaTBot to
r data sources are ingested into the system for further use; (2) splitting:
mize retrieval; (3) storage: these chunks are stored in an indexed format
trieves the most relevant chunks in response to the query; (5) output:
rating the retrieved information. (b–d) Differences in predicted bulk

4Fe3.2Cr1.0Ti13.3) and g-TiAl (Ti44Al56) as a function of temperature. The
with different temperatures after using RAG.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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enhanced prediction capabilities, allowing it to reason well
beyond its training set that contained minimal similar data.

Material discovery

The knowledge-fused ElaTBot may also be applied to inverse
materials design. By combining the domain-specic LLM
(ElaTBot) with a general LLM (GPT-4o), we can search for
materials with specic bulk modulus for various applications.
Fig. 4(a) shows an example where we identify orthopedic
materials for bone replacement with a bulk modulus similar to
that of bone (<50 GPa).4 Using the “material generation task”
prompt template from ESI Table S4,† we identify the bulk
modulus target as <50 GPa and request the ElaTBot agent to
generate potential material compositions. This process can be
automated via a Python script to obtain multiple material
compositions. The generated compositions are then passed to
GPT-4o (dialogue record in ESI Fig. S3†) with more specic
requirements, such as corrosion resistance and biocompati-
bility; i.e., a corrosion rate <0.3 mm per year and an LD50

(median lethal dose) <3 g per kg body weight.44 This results in
Fig. 4 Integration of a domain-specific LLM (ElaTBot) with a general LL
ElaTBot to generate material compositions with a target bulk modulus
specific application requirements. Examples of applications include: (a) g
discovering materials with high bulk modulus and low shear modulus, (c)
for the protective layers of LiCoO2 electrode in lithium battery.

© 2025 The Author(s). Published by the Royal Society of Chemistry
a list of compositions that satisfy both the bulk modulus and
orthopedic material criteria, along with explanations for each
recommendation. Fig. 4(b–d) and ESI Fig. S4–S6† show that this
process can be extended to discover materials with high bulk
modulus (∼250 GPa) and low shear modulus, new corrosion-
resistant materials with bulk modulus similar to stainless
steel (∼160 GPa),45 or materials for the protective layers for
LiCoO2 electrode in lithium battery that could be used to
stabilize high-capacity battery electrodes by providing structural
support and accommodating volume changes during charge/
discharge cycles in lithium batteries. We generated protective
layer materials for LiCoO2 with bulk moduli ranging from 40 to
120 GPa in increments of 20 GPa, with 500 materials per
modulus value. Aer screening, our workow identied several
promising candidates. Notably, materials such as Li2S,46

Li3SbS4,47 CaF2,48 Mg2SiO4,49 BaTiO3,50 Ti2AlC,51 and LiNbO3
52

fall within or near the generated bulk modulus range and have
been experimentally validated as effective protective layers for
electrodes. These applications demonstrate the potential of
integrating domain-specic and general LLMs to accelerate new
material discovery and design.
M (GPT-4o) for materials discovery. The process begins by requesting
. Next, GPT-4o refines the results to identify compositions that meet
enerating orthopedic materials with bulk modulus similar to bone, (b)
finding new corrosion-resistant materials, and (d) identifying materials
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Based on the prediction and generation abilities above, we
developed a multi-function agent interface (Fig. S2†) that allows
researchers to predict, generate, or engage in RAG-enhanced
prediction through natural language dialogue, without the
heavy load of coding.

Discussion

We demonstrated the potential of LLMs in predicting elastic
constant tensors and discovering materials with targeted elastic
properties. By introducing ElaTBot-DFT (to accurately predict
elastic constants at 0 K) and ElaTBot (extention to nite
temperatures), we showcase the ability of LLMs to predict
material properties and discover materials with specied
properties. Our results show that LLMs, even when trained on
relatively small datasets, can outperform traditional ML
approaches with carefully curated textual descriptions. The
success of our LLM-based approach can be attributed to several
key features. First, the Transformer architecture incorporates
mechanisms such as LayerNorm, residual connections, and
dropout to enhance model generalization capabilities. Second,
representing crystal structures as text tokens rather than
numerical features enables more accurate predictions, partic-
ularly for exact zero values that traditional numerical models
struggle to represent precisely. Third, the textual representation
naturally facilitates multimodal integration of crystal structures
and chemical compositions. Finally, the text-based approach
simplies the development of multi-functional models that can
perform numerous tasks traditionally requiring separate
numerical models. Furthermore, the combination of domain-
specic and general LLMs opens new avenues for materials
discovery, while the incorporation of RAG enhances real-time
learning and improves the scope and accuracy of LLM
predictions.

Despite these promising results, several challenges remain,
particularly in ensuring the stability of continuous quantitative
predictions. For example, minor variations in temperature,
such as between 500.12 K and 500.13 K, may lead to inconsis-
tencies in property predictions like the bulk modulus. To
address these issues, future work will focus on generating larger
datasets,53 developingmulti-agent systems for incremental task-
solving,54 exploring novel digital encoding methods for LLMs,55

and guiding LLMs to learn materials laws (such as the general
trend of decreasing elastic constant tensor values with
increasing temperature). These improvements, along with the
addition of constraints or regularization techniques, may
enhance the stability of numerical predictions.

Our work presents a fresh perspective on using LLMs for the
quantitative prediction of material properties and facilitating
inverse material design. A key benet of domain-specic LLMs
is the ability to interact with and generate results through
natural language, without requiring users to have extensive
knowledge of the underlying ML techniques. This lowers the
barrier to entry for computational materials design and fosters
broader participation in the eld. The integration of domain-
specic and general-purpose LLMs allows for access to
broader research data, enhancing the synergy between
Digital Discovery
materials science and AI. These advancements have the poten-
tial to revolutionize both elds by accelerating innovation,
discovery, and application.
Methods
Data acquisition and processing

We trained ElaTBot-DFT, Darwin, the random forest model and
the MatTen model using material data containing elastic
constant tensors from the Materials Project (MP). Initially, 12
128 materials with elastic constant tensor data calculated by
DFT were available from MP (Fig. 1(a)). Aer ltering out
unreasonable entries, 10 520 valid samples remained. From this
set, we allocated 9498 to the training set, 500 to the validation
set used during training, and 522 to the test set (521 for MatTen
because it does not support structures with element Ne). The
partitioned dataset includes the material_id for each entry,
ensuring consistency across all methods with identical training/
validation/test sets. The partitioning methodology involved
extracting 5% of the materials from each crystal system as the
test set, with the remaining data forming a combined pool for
training and validation sets. This combined pool was rst
shuffled and then 5% of these data were randomly selected to
form the validation set with a xed random seed. The distri-
bution of materials with different crystal systems is shown in
Fig. 5(a). We compared the performance of all models on the
test set using the mean absolute error (MAE) and the coefficient
of determination (R2). To prepare the data for model input, we
followed procedures appropriate for each model. For ElaTBot,
we constructed textual descriptions based on the scheme in
Table S1,† using pymatgen37 and robocrystallographer36 to
convert composition and structural information into textual
descriptions (see ESI Fig. S7†). Darwin was trained with the
same prompt type 4 used for ElaTBot. The random forest model
was trained using Magpie feature vectors, which were derived
from the elemental composition with pymatgen and mat-
miner.56 For the MatTenmodel, we constructed crystal structure
graph neural networks following the original settings.28

In addition to the 10 520 data points for elastic constant
tensors at 0 K, we manually extracted 1266 experimental elastic
constant tensor data points at nite temperatures from ref. 57.
The distribution of elastic constant tensor data at different
temperatures for this dataset is shown in Fig. 5(b). To enable
multitasking in ElaTBot, we designed four tasks (Fig. 5(c)) and
converted material composition and structural information
into textual descriptions as outlined in ESI Table S4.† Given the
limited availability of nite-temperature data, we did not create
a separate test set for this subset. Instead, we evaluated
predictive performance on unseen alloy compositions,
including cubic phase Ni3Al, g0-PE16, and tetragonal phase g-
TiAl.
Model training and evaluation

We trained the ELaTBot-DFT and ElaTBot models using four
NVIDIA V100, both based on the Llama2-7b pre-trained model.
Training the ElaTBot model required approximately 24 hours
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Dataset and model architecture for ElaTBot and ElaTBot-DFT. (a and b) Data distribution for Materials Project (MP) 0 K DFT dataset and
finite temperature dataset. For ElaTBot-DFT, we used data from the MP dataset, converting it to prompt type 4 (shown in Table S1†). The
transformed textual descriptions were separated to the training set, validation set, and test set and then used for training ElaTBot-DFT. For
ElaTBot, as shown in the lower part of (b), we combined data from the MP dataset and the finite temperature dataset, then converted it into
question and answer (Q&A, each Q&A pair is a task and we designed four tasks) as input and output for training ElaTBot, enabling ElaTBot to
acquire multiple capabilities. (c) Number of Q&A entries used for training ElatBot, categorized by the specific tasks in the training. The elastic
constant tensor prediction task involves training the ElatBot to predict elastic constant tensors based on textual descriptions of materials. The
bulk modulus prediction task requires the ElatBot to predict the bulk modulus from material textual descriptions. The material generation task
aims to enable the ElatBot to generate material chemical formulas based on given bulk modulus and temperature. The description infilling task,
given a description of the chemical formula and compositions, masks the formula with [MASK], and the ElaTBot is then expected to fill in [MASK]
with the correct chemical formula. (d) Model architecture for training ElaTBot-DFT. (e) Knowledge fusion training workflow for ElaTBot, detailing
how external data and tools are integrated to enhance model capabilities.
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on four NVIDIA V100 GPUs (this incurred a total cost of 331
RMB z45 USD on the Bohrium platform). On the other hand,
training the ElaTBot-DFT model (only based on DFT data at 0 K)
on the same platform required 5 hours (cost: 88 RMB z12
USD). These costs reect the computational resource efficiency
of our approach. The Darwin model, also built on Llama2-7b,
was ne-tuned using a material science literature database.
For comparison, we implemented the random forest model
using scikit-learn58 and employed a crystal structure graph
neural network for the MatTen model. The training process for
© 2025 The Author(s). Published by the Royal Society of Chemistry
ElaTBot-DFT is shown in Fig. 5(d), and that of ElaTBot is shown
in Fig. 5(e). To ensure a fair comparison, we standardized both
the training duration and the number of samples processed
across all models. Techniques such as early stopping were used
to nalize the model when performance gains stagnated.
Hyperparameters for model training are detailed in the ESI.†

For ne-tuning, we applied LoRA+,59 a parameter-efficient
adaptation technique that extends basic LoRA.60 LORA+ allows
the adapter matrices to be ne-tuned at different learning rates,
reducing GPU memory usage by approximately half without
Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00061k


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/1
0/

20
25

 1
:4

6:
26

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
compromising data input capacity, thereby accelerating
training. A detailed comparison between LoRA and LoRA+ is
provided in Fig. S8 of ESI.†

The LLMs (ElaTBot-DFT, ElaTBot, and Darwin) were
managed using the Llama-factory61 framework, which facilitates
model loading and parameter tuning. The architectural
advantages of the Transformer architecture of Llama-2,
including LayerNorm, residual connections, and dropout
mechanisms limit overtting on small datasets. We imple-
mented warm-up strategies (a neural network training tech-
nique where the learning rate is gradually increased to the
initial learning rate during the rst few training epochs62) and
a cosine learning rate scheduler (that gradually reduces the
learning rate during training63) to ensure smooth gradient
updates when training on small datasets. The random forest
and MatTen models were trained directly using Python and
PyTorch. The LLMs were optimized by calculating cross-entropy

loss, L CE ¼ �PN
i¼1 yi logðpiÞ, where yi is the true label and pi is

the predicted probability. The random forest model used

squared error loss, L SE ¼ 1
N

XN

i¼1
ðyi � ŷiÞ2, where yi is the true

value and ŷi is the predicted value. TheMatTenmodel employed

mean squared error loss L MSE ¼ 1
N

XN

i¼1
ðyi � ŷiÞ2 for optimi-

zation, consistent with the method specied in ref. 28. These
losses guide the models in learning to accurately predict the
elastic constant tensor.

The predicted elastic constant tensor is expressed in Voigt
form:

Cij ¼

2
6666666666664

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

3
7777777777775

The average value of elastic constant tensor Cij are calculated
as follows:

Cij ¼ 1

36

X6

i¼1

X6

j¼1

Cij

The bulk modulus K are calculated by pymatgen37 as follows:

Kvoigt ¼ 1

9

X3

i¼1

X3

j¼1

Cij

The mean absolute error (MAE) and coefficient of determi-
nation (R2) are used to evaluate the model performance. The
MAE is calculated as follows:

MAE ¼ 1

n

Xn

i¼1

jyi � ŷij
Digital Discovery
R2 is

R2 ¼ 1�
Pn
i¼1

ðyi � ŷiÞ2

Pn
i¼1

ðyi � yÞ2
;

where yi represents the labeled average value of the elastic
constant tensor or bulk modulus from the dataset for each data
point i. ŷi is the predicted average value of the elastic constant
tensor or bulk modulus from the models for each data point i.
The symbol �y represents the mean of yi across all data points,
and n is the total number of data points. The symmetry of the
elastic constant tensor is checked by comparing the predicted
tensors with the Voigt format matrix. Different crystal symme-
tries imply that certain components of Cij are zero and specic
relations exist between Cij components (e.g., see ref. 31).

For nite-temperature predictions, ElaTBot generated elastic
constant tensors for Ni3Al and g0-PE16 at T = 90, 113, 142, 162,
192, 223, 253, 283, 303, 333, and 363 K, and for g-TiAl at T = 30,
50, 70, 90, 110, 130, 150, 170, 190, 210, 230, 250, 270, 290, and
298 K. Due to the limited training data and the discrete nature
of the prediction of ElaTBot, we did a linear t to the predicted
values and used this to evaluate the deviation from experi-
mental data and analyze error trends.
Materials generation and RAG-enhanced prediction

We used gradio64 to build a user-friendly chat interface for
interacting with ElaTBot. This interface allows users to predict,
generate, and perform RAG-enhanced prediction tasks through
natural language input without the need to engage directly with
code. While a default prompt, used during training, is pre-
loaded into the interface, users can modify it as needed for
specic tasks.

The RAG-enhanced prediction ability of ElaTBot was enabled
through the integration of RAG, which allows the model to
perform real-time learning without requiring retraining. The
knowledge base consists of nite temperature, experimentally-
measured, elastic constant tensor data for three materials
from the literature: Ni3Al at T = 90, 113, 142, 162, 192, 223, 253,
283, 300, 303, 333, 363, 400, 500, 600, 700, 800, 900, 1000 and
1100 K, g0-PE16 at T = 90, 113, 142, 162, 192, 223, 253, 283, 300,
303, 333, and 363 K, and g-TiAl at T = 30, 50, 70, 90, 110, 130,
150, 170, 190, 210, 230, 250, 270, 290, and 298 K.42,43,65 To ensure
a rigorous, unbiased evaluation of our RAG-based system, the
database accessed by the RAG system excluded 18, randomly
selected data points from the full knowledge base; these 18
points formed the test-set shown in ESI Table S5.† For materials
absent from the constructed knowledge base (specically those
not related to the three example alloy systems investigated in
this study), the RAG was not activated. To ensure reliability in
cases of uncertainty, the prompt included the explicit instruc-
tion: ‘If you don't know the answer, just say that you don't
know.’ In instances where the language model responded with
‘don't know’ even aer RAG was applied, the agent system
reverts to using the base LLM without retrieval assistance. The
RAG module was implemented using langchain,66 and follows
© 2025 The Author(s). Published by the Royal Society of Chemistry
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a multi-step process including document loading, splitting,
storage, retrieval, and output generation. This process enhances
the ability of ElaTBot to update its knowledge and handle new
data efficiently, as outlined in Fig. 3(a).

Code availability

All codes used in the paper are publicly accessible on GitHub
(https://github.com/Grenzlinie/ElaTBot).

Data availability

The method section provides the models and algorithms
employed in this study, while specic parameter implementa-
tions are available in ESI.† The data, codes, and processing
scripts used in this study can be found at Figshare (DOI: https://
doi.org/10.6084/m9.gshare.28399757.v1).
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