
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

10
:1

7:
08

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal
Natural language
Federal Institute for Materials

Richard-Willstaetter-Strasse 11, D-12489 B

bam.de

† Electronic supplementary informatio
resources, detailed description of dataset
tables. See DOI: https://doi.org/10.1039/d5

Cite this: DOI: 10.1039/d5dd00063g

Received 13th February 2025
Accepted 2nd May 2025

DOI: 10.1039/d5dd00063g

rsc.li/digitaldiscovery

© 2025 The Author(s). Published b
processing for automated
workflow and knowledge graph generation in
self-driving labs†

Bastian Ruehle *

Natural language processing with the help of large language models such as ChatGPT has become

ubiquitous in many software applications and allows users to interact even with complex hardware or

software in an intuitive way. The recent concepts of Self-Driving Labs and Material Acceleration

Platforms stand to benefit greatly from making them more accessible to a broader scientific community

through enhanced user-friendliness or even completely automated ways of generating experimental

workflows that can be run on the complex hardware of the platform from user input or previously

published procedures. Here, two new datasets with over 1.5 million experimental procedures and their

(semi)automatic annotations as action graphs, i.e., structured output, were created and used for training

two different transformer-based large language models. These models strike a balance between

performance, generality, and fitness for purpose and can be hosted and run on standard consumer-

grade hardware. Furthermore, the generation of node graphs from these action graphs as a user-friendly

and intuitive way of visualizing and modifying synthesis workflows that can be run on the hardware of

a Self-Driving Lab or Material Acceleration Platform is explored. Lastly, it is discussed how knowledge

graphs – following an ontology imposed by the underlying node setup and software architecture – can

be generated from the node graphs. All resources, including the datasets, the fully trained large language

models, the node editor, and scripts for querying and visualizing the knowledge graphs are made

publicly available.
Introduction

Self-driving labs (SDLs) and materials acceleration platforms
(MAPs) have received much attention in recent years.1,2 Auto-
mating the synthesis of new molecules and materials on
autonomous robotic platforms that integrate articial intelli-
gence (AI) and machine learning (ML) tools in a closed loop
process has great potential for accelerating or even completely
changing the way chemical experiments will be conducted in
the future.3 However, to make these techniques viable,
appealing, and approachable for a wide variety of primarily
synthetically trained chemists and material scientists, it is
important to ensure that the entry barriers to using these new
tools are as low as possible. Hence, an intuitive way for gener-
ating automated synthesis workows on such hardware using
suitable interfaces to the robotic platforms will be a key
Research and Testing (BAM),

erlin, Germany. E-mail: bastian.ruehle@

n (ESI) available: Links to further
creation steps, and further gures and
dd00063g

y the Royal Society of Chemistry
component for the broad application of MAPs and SDLs in the
scientic community.

Natural language is perhaps one of the most intuitive ways
for humans to express their intents and interact with any given
system. The recent rise and large success of AI-based large
language models (LLMs) demonstrates this very well and paved
the way for numerous applications that rely heavily on user
interaction through natural language. Moreover, in chemistry –
like in almost all scientic disciplines – the vast majority of the
knowledge that has been generated over the past centuries is
only available in the form of unstructured natural language in
books or scientic publications rather than in structured,
machine-readable and readily interoperable data.

For these reasons, natural language processing (NLP) is an
obvious choice for generating automated synthesis workows
on robotic platforms such as SDLs and MAPs, either directly
from user input, or from previously published experimental
procedures. There are several examples, some as early as 2011,4

in which rule-based algorithms, part-of-speech (POS) tagging,
and named entity recognition (NER) are used to create struc-
tured output from unstructured experimental procedures.5–13

While POS and NER can also be done using neural network
architectures like convolutional neural networks (CNN) and
recurrent neural networks (RNN) such as long-short-term-
Digital Discovery

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00063g&domain=pdf&date_stamp=2025-05-14
http://orcid.org/0000-0003-3383-9999
https://doi.org/10.1039/d5dd00063g
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00063g
https://rsc.66557.net/en/journals/journal/DD


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

10
:1

7:
08

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
memory (LSTM) or gated recurrent unit (GRU) networks instead
of purely rule-based approaches,10,11 the introduction of the
transformer architecture14 and with it the advent of LLMs such
as the GPT model family15 revolutionized the task of NLP. In
general, transformer-based LLMs are more robust against
grammatical or typographical errors than rule-based
approaches and make the challenge of formulating precise yet
generic rules that encompass all possible ways language can be
used to convey the same meaning obsolete due to their high
dimensional latent embeddings and their attention
mechanisms.

Consequently, most recent efforts of integrating NLP with
MAPs or SDLs are focused on using LLMs. Following the
approach of generating action graphs from experimental
procedures that can be executed on robotic hardware,13 Vaucher
et al. demonstrated the usefulness of LLMs for this task with
a custom encoder–decoder transformer model with eight
attention heads16 that can generate executable actions for
a proprietary hardware backend.17 Yoshikawa et al.18 used
automated iterative prompting between a generator that queries
proprietary OpenAI LLMs and a rule-based verier for gener-
ating executable XDL code13 on robotic hardware in a MAP.

In both cases, the weights of the fully trained neural
networks are proprietary and not publicly available, and the
networks are hosted on third party servers. However, there are
certainly cases in which it is benecial to have full control over
the data in one's own IT infrastructure, for example when
considering especially sensitive data, intellectual property data,
or when running the soware on PC systems that are not or
cannot be connected to the internet to query online resources
for security reasons. Moreover, making the fully trained LLMs
publicly available gives other researchers the possibility to ne-
tune the models according to their specic needs or domain-
specic language.

With the recently published Llama series of LLMs,19 very
large, fully trained networks are made publicly available,
however, these are prohibitively memory-consuming and slow
when attempting to run them on standard, consumer-grade
hardware typically used in edge computing and commonly
used laboratory IT infrastructure. Hence, there is a need for fully
open, publicly available LLMs that strike a balance between
performance, generality, and tness for purpose for the task of
automatically generating workows and executable code from
natural language inputs.

For this reason, the ne-tuning and comparison of two
different, pre-trained encoder–decoder transformer “surrogate”
LLMs for the task of generating action graphs from experi-
mental procedures written in unstructured, natural language
are investigated and described in detail here. The training data
for these models was compiled from over 1.5 million publicly
available experimental procedures from the patent literature
and annotated using a rule-based approach, as well as more
general, but also much larger LLMs. The performance of the
fully trained surrogate models is evaluated and compared using
different metrics, and the fully trained models are made freely
publicly available. Additionally, the ability of the surrogate
models to adapt to experimental procedures from the domains
Digital Discovery
of materials science, organic chemistry, inorganic chemistry,
and patents that were not part of the training or evaluation
dataset are discussed.

The action graphs generated by these models follow a simple
markup language, i.e., they represent structured output with
a clear vocabulary and syntactic rules. In principle, such inter-
mediate output can readily be turned into executable code by
either a rule-based custom “compiler” or by another LLM. Here,
the rst approach is followed, albeit with an intermediate step.
Rather than turning the action graphs generated from the
natural language input directly into executable python code,
a node setup in a node editor of a graphical user interface is
generated rst. Such node editors are oen used for creating or
representing workows in a more accessible or “visual” way
compared to classical, text-based programming. Representing
the action graphs this way makes it easier for users without in-
depth programming knowledge to modify or adjust the auto-
matically generated action graphs in an intuitive way. Moreover,
the node editor can also be used in a stand-alone way to build
entirely new workows from scratch.

Finally, the nature of the node-based setup with different
input and output elds that are grouped hierarchically under
one node, in combination with the underlying inheritance
structure of the entities corresponding to nodes and input and
output elds in an object-oriented programming language and
the soware architecture of the SDL backend, lend themselves
excellently to the generation of knowledge graphs from these
intermediate node graphs, which is also investigated in this
work. It should be noted that these automatically generated
knowledge graphs follow an ontology that is (currently)
imposed by the underlying architecture of the soware backend
of the SDL. However, in the future, a common underlying
ontology used for this type of representation could help to
further harmonize and enhance sharing synthesis workows
even across different MAP or SDL platforms.

Results and discussion
Datasets

The datasets that were used for training the NLP models are
based on the “Chemical reactions from US patents (1976-
Sep2016)” dataset.20 This dataset contains experimental
descriptions that were automatically extracted from publicly
available US patents and patent applications in the given
period. The style of writing is very similar to the style of exper-
imental procedures published in the experimental parts of
scientic articles, especially in organic chemistry journals.

In a rst approach, the dataset was annotated using Chem-
icalTagger,4 which uses a rule-based part-of-speech (POS)
tagging algorithm. The POS-tagged experimental procedures
were further processed into action graphs using a python script
that traverses the xml les generated by ChemicalTagger, parses
them for ActionPhrases, Molecules, and their associated Quanti-
ties, and combines them in a (linear) action graph. Procedures
with only one ActionPhrase (usually hSYNTHESIZEi or hYIELDi)
were excluded. This resulted in an annotated dataset with
105730734 entries consisting of experimental procedures and the
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00063g


Fig. 1 (a) Occurrence of the action tags in the cleaned datasets
annotated with ChemicalTagger and the Llama model. Some tags are
only present in the dataset created by the Llama model. (b) Mean
execution times for the different models on a GPU (A100-80 GB),
a high-end CPU in a high-performance computing (HPC) cluster
(Intel(R) Xeon(R) Gold 6342 CPU @ 2.80 GHz), and a CPU in a standard
office laptop (Intel(R) Core(TM) i5-1235U @ 2.50 GHz). The execution
time is displayed on a logarithmic scale. (c) Distribution of the number
of tokens in the experimental procedures when tokenized with the

© 2025 The Author(s). Published by the Royal Society of Chemistry

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

10
:1

7:
08

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
corresponding action graphs, named dataset_chemtagger_raw.
The dataset was further cleaned by replacing commonly
occurring non-ASCII characters such as m or × with u and x,
removing extra line-breaks, leading and trailing spaces, and
grouping actions in cases where the same action tags occurred
consecutively, giving a new dataset (named data-
set_chemtagger_cleaned) which was later used for training the
NLP surrogate models. In this dataset, the 21 action tags used
by ChemicalTagger occurred with varying frequencies, ranging
from 208870135 for the most common action hADDi to 810244 for
the least common action hPRECIPITATEi (see Fig. 1a).

In a second approach, the recently published Llama-3.1-8B-
Instruct19 model was used for creating the annotated training
data using in-context learning (ICL). The Llama v3.1 community
license explicitly allows to use the outputs of the model for
synthetic data generation and distillation. While the model
weights are made publicly available and can be downloaded and
used aer a free sign-up process, hosting the model offline and
using it for inference is still very resource intensive. Even the
smallest model of the family with 8 billion parameters requires
at least 16 GB of GPU RAM in its highest precision (fp16) just for
the model weights, plus the memory that is needed for keeping
the keys and values of each token in memory to leverage the
models long available context length. This already exceeds the
memory of most consumer-grade GPUs currently on themarket.
Moreover, the average inference time for creating an action
graph of a single experimental procedure is still long, 24
seconds when run on a high-end GPU (A100-80GB), 352 seconds
when run on a high-end CPU, or 290109 seconds (8 hours) when
run on a standard office laptop, as compared to 13, 36 and 316
seconds for a BigBirdPegasus-large model and 2, 5, and 70
seconds for a LongformerEncoderDecoder-base model (see
Fig. 1b). Additionally, while the generated action graphs were
generally of good quality, the model used its own action tags in
1940073 annotations (12.3%), even when being clearly instruc-
ted as part of its ICL prompt to only use tags from a pre-dened
list of action tags (see ESI† for details). Overall, 20956 different
tags were used by the model in the annotations, instead of the
23 tags the model was instructed to use. Having such a large
number of (unexpected) tags would make the generated action
graphs very specic and also render the automatic downstream
processing of action graphs much more complicated. This
further corroborates the efforts for training and using a much
smaller, domain-specic surrogate model for the specic task of
action graph generation, rather than querying a more general,
larger LLM using ICL.

More details about the (semi-)automatic annotation of the
dataset with the help of the Llama-3.1-8B-Instruct and Llama-
3.1-70B-Instruct models as well as manually performed substi-
tutions for data cleanup can be found in the ESI.†

The nal dataset (dataset_llama_cleaned) that was used for
training the surrogate models contained 26 different tags (the
pre-trained BigBirdPegasus and LED tokenizers. The cut-offs at 512
and 1024 tokens used during fine-tuning are indicated with a dashed
line.

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00063g


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

10
:1

7:
08

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
“original” 21 ChemicalTagger action tags, plus the newly added
tags hMIXi, hADJUSTPHi, hREPEATi, hSONICATEi, and hCEN-
TRIFUGEi), occurring with frequencies varying between
207000427 for the most common action hADDi to 10453 for the
least common action hCENTRIFUGEi (see Fig. 1a).
Models

Two different surrogate models were trained on the two cleaned
datasets, namely a BigBirdPegasus model21 and a Long-
formerEncoderDecoder (LED) model.22 Both models have been
used in the past for sequence-to-sequence language modelling
tasks (such as machine translation or text summarization) and
shown excellent performance.

Both are transformer models based on the BART architecture
with a BERT-like encoder and a GPT-like decoder but handle the
attention mechanism differently to circumvent the quadratic
dependency on sequence length, i.e., by using block-sparse
attention or local attention to tokens within a certain window-
size, respectively.

Pre-trained versions of both models and tokenizers were
used for the ne-tuning approach (see the Methods section for
details), but the action tokens were added to the respective pre-
trained tokenizers. Aer tokenization of the datasets, the mean
length of the input sequences was 187 tokens when using the
BigBirdPegasus tokenizer and 221 tokens when using the LED
tokenizer (see Fig. 1c). Given the length distributions of the
tokenized datasets, a maximum sequence length of 512 for
training the BigBirdPegasus model was used (longer sequences
were truncated). Hence, the original full attention instead of
BigBird's block-sparse attention is used since there is no benet
in using block-sparse attention for sequence lengths less than
1024 tokens. For the LED model, a maximum sequence length
of 1024 is used, since the window size of the pre-trained model
was set to 1024, and the sequences have to be padded to
a multiple of the window size. To keep the total training time
similar for both models despite the longer sequence length
used for the LED model, the “base” version of the LED model is
used, as compared to the “large” version of the BigBirdPegasus
model. The models were then trained individually on the
training split of the datasets (see Methods section for training
hyperparameters and details) and evaluated on the evaluation
split.
Table 1 Evaluation metrics of the surrogate models trained on the two d
Llama models as the ground truth. The results for the raw and cleaned
Llama-3.1-8B-Instruct are also given for comparison

Model or dataset ROUGE1 ROUG

Llama_raw 0.9777 0.964
ChemicalTagger_raw 0.7850 0.616
ChemicalTagger_cleaned 0.7895 0.622
BigBirdPegasus_Llama 0.9483 0.904
LED-Base-16384_Llama 0.9529 0.912
BigBirdPegasus_ChemicalTagger 0.7883 0.620
LED-Base-16384_ChemicalTagger 0.7898 0.623

Digital Discovery
Evaluation metrics

Aer training was completed, the surrogate models were eval-
uated on the evaluation split of the dataset using the ROUGE
and BLEU scores. Both are commonly used metrics that range
from 0 to 1 (higher is better) to assess the quality of text
generated by NLP models, e.g., in machine translations or text
summarization. The action graphs generated by Llama-3.1-8B-
Instruct for the validation split were used as ground truth
labels. The results are shown in Table 1.

As already stated for the “Chemical reactions from US
patents (1976-Sep2016)” dataset, duplicate reactions are
frequent in the dataset due to the same or highly similar text
occurring in multiple patents, and many reactions from patent
applications also appear later in granted patents. This means
that no strict separation of training and validation data can be
guaranteed, and the metrics reported here for the validation
dataset might be articially inated. This is however hard to
avoid in practice, and the metrics are only used here for a rela-
tive comparison of the models trained in this work without
attempting a comparison with the scores reported by other
authors.

It should also be noted that the ChemicalTagger dataset
contained 5 tags less than the Llama dataset, including the very
frequently used tag hMIXi. Since the evaluation split of the
Llama dataset was used as ground truth for calculating the
scores, the maximum achievable score for the surrogate models
trained on the ChemicalTagger dataset is less than 1.0. Hence,
for a better comparison, the scores the ground truth labels from
the validation split of the ChemicalTagger dataset achieved
when compared to the ground truth labels of the Llama dataset
are also given (rows 2 and 3 in Table 1). Interestingly, the
surrogate models trained on the ChemicalTagger datasets
achieved very similar (and in some cases even slightly higher)
scores than the validation split of the ChemicalTagger dataset
itself, indicating the ability of the models to leverage the
context-sensitive token embeddings they learned during the
pre-training phase to match (or even outperform) rule-based
annotations. Lastly, these data also reveal that the raw output
of these specialized surrogate models comes close to the raw
output of the more general and much larger LLM (Llama_raw)
while using only a fraction of the time and computational
resources and not requiring any ICL prompt engineering, post-
processing, or iterative prompting to remove unwanted action
ifferent datasets when compared to the cleaned dataset created by the
datasets created by ChemicalTagger and the raw dataset created by

E2 ROUGEL ROUGELsum BLEU

1 0.9759 0.9759 0.9366
5 0.7129 0.7129 0.5817
9 0.7163 0.7163 0.5835
6 0.9350 0.9350 0.8781
6 0.9402 0.9402 0.9096
8 0.7153 0.7153 0.5649
2 0.7166 0.7166 0.5841

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00063g


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

10
:1

7:
08

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
tags, syntax errors, or other “hallucinated” output oen gener-
ated by the Llama models (see also ESI† for more details on
required data clean-up steps for the output generated by Llama
models).

Example outputs for experimental procedures from the
domains of materials science, organic chemistry, inorganic
chemistry, and a patent that were not part of the training or
evaluation dataset are given in the ESI (Table S3),† demon-
strating the ability of the models to also adapt to procedures
from other domains. In general, the models trained on the
Llama dataset produced better outputs and struggled less with
inconsistent uses of spaces or other characters in the example
procedures.

For example, in the part of an experimental procedure that
read “Amixture of [.] and K 2 CO 3 (138 g, 1.0 mol) in DMF (500
mL) was heated at 95 °C” (Example 5 in Table S3†), both models
trained on the ChemicalTagger dataset failed to annotate the
addition of K2CO3 (as well as the subsequent addition of DMF)
correctly, while the models trained on the Llama datasets
correctly annotated this step. This is clearly a limitation of the
training dataset rather than the models themselves, perhaps
such examples were also incorrectly annotated by Chem-
icalTagger or the parser script extracting the action graphs from
the ChemicalTagger xml les.

Another noteworthy example was that the models trained on
the ChemicalTagger dataset used hRECOVERi for the centrifu-
gation step in the procedure that read “The nanoparticles were
collected by centrifugation (10 min at 7197 rcf) [.]” (Example 1
in Table S3†), since there is no hCENTRIFUGEi tag in the
training data annotated with ChemicalTagger. Interestingly, the
models trained on the Llama datasets, that included the
hCENTRIFUGEi tag, did not annotate this step at all.

Lastly, it should be highlighted that especially the BigBird-
Pegasus model trained on the Llama dataset was capable of
some remarkable generalizations that were most likely never
presented to the model during the ne-tuning phase.

In several (but not all) cases, it could detect repeated actions
and added the corresponding actions several times. For
example, in the procedure that read “Aer washing the
precipitate with cold water (2× 25mL) [.]” (Example 6 in Table
S3†), it was the only model that created the annotation “hWASHi
cold water 25 mL cold water 25 mL”, with the other models
annotating this action as “hWASHi cold water 2 × 25 mL”.
Likewise, in the procedure that read “[.] washed 2× with water
(2 × 90 mL), 2× with ethanol (2 × 90 mL) and 2× with toluene
(2 × 90 mL) [.]” (Example 1 in Table S3†), it created the
annotation “hWASHi water 2 × 90 mL water 2 × 90 mL ethanol
2 × 90 mL ethanol 2 × 90 mL toluene 2 × 90 mL”, i.e., correctly
repeating the washing steps with water and ethanol twice.
Strangely it did not do the same for toluene though. While the
correct meaning of repeating the action could perhaps also be
deduced in a post-processing step from the fact that the
volumes in the annotations created by the other models have
a “2×”modier, it is interesting that the BigBirdPegasus model
was the only one to create two separate actions here.

Even more remarkable is the annotation it produced for the
part of the procedure that read “[X] and [Y] were suspended in
© 2025 The Author(s). Published by the Royal Society of Chemistry
a 1 : 1 mixture of water and tert-butyl alcohol (12 mL)” (Example
6 in Table S3†). Here, it produced the annotation “hADDi [X] [Y]
water 6 mL tert-butyl alcohol 6 mL”, i.e., correctly reasoning that
12 mL of a 1 : 1 mixture of water and tert-butyl alcohol implies
adding 6 mL of water and 6 mL of tert-butyl alcohol.
From action graphs to node graphs

The action graphs that are generated by the ne-tuned LLM
models represent a very simple, structured markup language.
They are very generic in nature, and not tailored or restricted to
specic hardware interfaces, APIs, or programming languages.
However, due to the structured nature of the output with
a clearly dened vocabulary and syntactic rules, these action
graphs can be readily converted into other formats, such as
XDL13,18 or – as demonstrated here – a node graph, by using
standard rule-based text parsing, similar to what a compiler
would do. These can then be further translated into executable
code (e.g., python scripts) that can be run on the specic
hardware of a self-driving lab, as demonstrated below.

Node graphs that can be created and edited in node editors are
a popular and accessible way of representing workows with
dynamic inputs and outputs and are oen used for “visual
programming” in elds such as graphics design, video editing,
games design, and machine learning. They group functional
subunits (such as classes and methods) into nodes, whose output
can be used as the input for other nodes by simply connecting the
two nodes together. While arguably more restricted and less
exible than writing code in “traditional”, text-based program-
ming languages, the visual representation and simplicity of con-
necting nodes with lines makes them generally easier to use and
more accessible for people who are not familiar with program-
ming languages. Especially in use cases in which the underlying
workows are typically very similar and the use is limited by other
external constraints, such as the availability of hardware modules
in an SDL, the somewhat limited exibility of the node graphs is
usually an acceptable trade-off. These characteristics make them
very interesting as part of a graphical user interface (GUI) for
setting up reactions on an SDL, without requiring the user to
know any “traditional” text-based programming language, the
underlying hardware components, or even the API used for
communicating with the hardware components.

To demonstrate the usefulness of this approach, a node
graph editor for our recently published MAP for nano- and
advanced materials syntheses MINERVA23 is implemented. The
inputs and outputs of the nodes are automatically generated by
inspecting the signatures of the constructors and methods of
the underlying subunits of the API that are represented by the
nodes. This makes code maintenance easier, since any changes
to the call signatures and any additional parameters that might
be added to methods in the future will be automatically incor-
porated into the nodes as inputs. Additionally, it helps with
user-friendliness and documentation by directly using the text
from the docstrings of the classes and methods as tooltips for
the individual node inputs. Lastly, it makes translating the node
graph back to executable python code that can be directly run
on the SDL straightforward.
Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00063g


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

10
:1

7:
08

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
To construct an executable node graph from an action graph,
the generic action tags used by the action graph have to be
mapped to operations that can be performed by the hardware of
the respective MAP or SDL. For our MAP, the action tags are
mapped to the high-level methods dened by our API, namely
‘Add Chemical’, ‘Heat’, ‘Infuse While Heating’, ‘Remove
Supernatant and Redisperse’, ‘Sonicate’, ‘Centrifuge’, and
‘Transfer Content to Container’ (see ref. 23 for details). Here,
certain domain-specic assumptions were made to take into
account that our MAP is designed for nano and advanced
materials synthesis and also to accommodate the resulting
limitations imposed by the available hardware modules of our
MAP. For example, the action tags hEXTRACTi, hPARTITIONi,
hREMOVEi, hCONCENTRATEi, hFILTERi, hDRYi, hCEN-
TRIFUGEi, and hRECOVERi are all simply mapped to the
‘Centrifuge’ node, followed by a ‘Transfer Content to Container’
node for transferring the supernatant to a waste container. In
general, this will not be a valid approach, since in organic
chemistry, hEXTRACTi and hPARTITIONi usually refer to
a liquid–liquid extraction or partitioning a substance between
two immiscible liquids, hREMOVEi and hCONCENTRATEi
usually refer to the rotary evaporation of a solvent, and for
a hFILTERi step, it has to be deduced whether the solids or the
ltrate contain the compound of interest. However, in nano-
and advanced materials synthesis, it is usually safe to assume
that the user is interested in the solid parts (i.e., the nano-
materials), and that the solids can be separated from the solu-
tion via centrifugation, followed by removing the supernatant.
Moreover, in our MAP, centrifugation is currently the only
available method for separating or extracting a solid material
from a synthesis solution. Following the same reasoning,
hPURIFYi and hWASHi are represented by a ‘Centrifuge’ node
followed by ‘Remove Supernatant and Redisperse’ node,
Fig. 2 Schematic representation of the pipeline for generating (i) an
action graph, (ii) a node graph, and (iii) executable Python code from
natural language input.

Digital Discovery
hDISSOLVEi is represented by an ‘Add’ node followed by a ‘Heat’
node for stirring, hADDi, hPRECIPITATEi, and hQUENCH i are
all represented by an ‘Add’ node, a hHEATi tag followed by an
hADDi tag is represented by an ‘InfuseWhile Heating’ node, and
a single hHEATi, hCOOLi, hMIXi and hSTIRi action is repre-
sented by a ‘Heat’ node, potentially using a stirring speed of
0 rpm for a simple heating step or 25 °C (room temperature) as
the heating temperature for a simple stirring step, depending
on the parameters provided under this action tag.

As mentioned above, the exact implementation of repre-
senting the action graph as a node graph is highly specic to the
domain and the underlying hardware and soware platform of
the MAP. The action tokens in the training datasets of the NLP
models, and hence the generated action graphs, were inten-
tionally kept generic to make the action graphs less domain and
hardware specic and more broadly applicable in different
scientic domains, and this substitution is only done when
generating the node graphs specic for the MAP.

During creation of node graphs from action graphs, certain
heuristics and error correction measures are implemented as
well to handle imprecise experimental descriptions or missing
parameters from the synthesis protocol and the user is
informed of the measures taken through a warning message.
For example, imprecise time (e.g., overnight), temperature
(room temperature), or stirring speed (vigorous stirring) speci-
cations can be replaced with default values, such as 16 hours,
25 °C and 600 rpm, while missing process parameters can be
substituted with pre-dened default values (e.g., always using
8000 rpm if no centrifugation speed is specied). These
substitutions and pre-dened default values are oen also
domain-specic, and more details for the current imple-
mentation can be found in the ESI.†

These MAP-specic node graphs can then be further pro-
cessed to generate executable code. In our case, this step is
rather straightforward since the nodes are directly generated
from the high-level methods of the python API controlling our
MAP, but in principle, they can also be used to generate e.g.,
XDL code that can then be executed. It should be noted that in
general, some user input is still required before converting the
node graph to executable code. Besides cleaning up any incor-
rect actions, this typically also involves specifying the positions
of the required starting materials and reagents on the platform,
as well as the reaction vessels that should be used during the
reaction. For commonly used chemicals (such as solvents) and
“xed” containers (such as waste containers) that are always
connected to the same ports of a valve, these can of course also
be hard-coded into the node generation process and be saved as
part of the hardware conguration of the MAP. The same
applies to cases in which always the same chemicals are used
for the reactions run on the MAP, e.g., during one synthesis
campaign. Since our MAP is very material-agnostic23 and is
generally used in a research-centered environment with
constantly changing reactants, reagents, and target materials,
this step is typically le to the user in our MAP. A full example of
this processing pipeline from natural language input to an
action graph (Example 2 in Table S3, ESI†), a node graph
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00063g


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

10
:1

7:
08

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
(Fig. S4, ESI†), and executable python code (Table S4, ESI†) is
given schematically in Fig. 2 and in more detail in the ESI.†
From node graphs to knowledge-graphs (and ontologies)

Using the class-based hierarchy and inheritance structure of the
classes and methods underlying the nodes, their input and
output eld types, as well as their connections in the node
graphs, an application- or domain-level ontology and knowl-
edge graph can be automatically deduced from the node graphs
as well, besides executable code. Again, the exact implementa-
tion will be very domain specic, but in our case, all connec-
tions between nodes represent a “is_used_by” respectively
“uses_material_from” relationship. The only exception is the
connection between ‘Container’ nodes and ‘Chemical’ nodes
that represent a “contains_chemical” respectively
Fig. 3 (a) Full knowledge graph obtained from the node graph shown in
has_property – robot arm’) of the knowledge graph. (c) Example quer
(‘Shortest Path from Flask Node to Remove_Supernatant_and_Redisper

© 2025 The Author(s). Published by the Royal Society of Chemistry
“is_contained_in” relation. The node input parameters all
represent a “has_property” relationship, while the type of the
input variable associated with this eld (e.g., a oat, bool,
Container, Chemical, Volume, etc.) represents a “is_a”
relationship.

By following the inheritance structure of the individual
classes and their method resolution order (MRO), the graph can
be expanded down to the very basic (abstract) base classes. For
example, in our API, the “Volume” class inherits from the
abstract base class “Quantity” (i.e., “Volume”-“is_a”-“Quan-
tity”), and requires the two inputs – “value” and “unit” – in its
constructor (i.e., “Volume”-“has_property”-“value” and
“Volume”-“has_property”-“unit”). The value itself is of type oat
(i.e., “value”-“is_a”-“oat”), the unit is of type string (i.e., “unit”-
“is_a”-“string”). Ultimately, both oats and strings (as well as all
other custom or built-in classes and types in Python) are
Fig. S1† with all entities and their connections. (b) Example query (‘? –
y (‘? – is_a – Quantity’) of the knowledge graph. (c) Example query
se Node’) of the knowledge graph.

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00063g


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

10
:1

7:
08

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
“objects” (this relationship is excluded from the graph since it
carries no added information in this context).

Lastly, the elds have values associated with them repre-
sented by a “has_value” relationship (e.g., for a volume of 5 mL:
“value”-“has_value”-“5” and “unit”-“has_value”-“mL”). This
way, a knowledge graph can be constructed from the underlying
ontology. Fig. 3 shows an example of a full knowledge graph as
well as three example queries of this graph that were generated
from the node graph shown in Fig. S1 in the ESI.†

Methods
Dataset generation

The datasets for surrogate model training were generated from
the “Chemical reactions from US patents (1976-Sep2016)”
dataset20 by extracting the experimental procedures using
a python script. A rst dataset was created by rule-based part-of-
speech (POS) tagging with ChemicalTagger,4 followed by
exporting the results as xml, and constructing the desired
action graph using a rule-based parsing of the POS-tagged xml
le. A second dataset was created by annotating the same
experimental procedures with the Llama-3.1-8B-Instruct and
Llama-3.1-70B-Instruct models19 using in-context learning
(ICL), as well as somemanual clean-up instead of the rule-based
approach outlined above (see ESI† for details). Both datasets
were further post-processed to clean up artifacts as explained in
the ESI† and then used for model training and validation.

Benchmarking

For comparing execution times on a high-end GPU (A100, 80
GB), a single, high-end CPU in an HPC cluster (Intel(R) Xeon(R)
Gold 6342 CPU @ 2.80 GHz, using 12/24 logical cores and no
restrictions on RAM (750 GB total available)), and a standard
office laptop CPU (12th Gen Intel(R) Core(TM) i5-1235U @ 2.50
GHz, using 12/12 logical cores and 16 GB of RAM), inference was
run three times for three different inputs with raw input lengths
before tokenization of 508, 650, and 860 characters (chosen
from the 25th, 50th, and 75th percentile of the dataset), and the
execution times were averaged. For the surrogate models, the
models ne-tuned on the ChemicalTagger dataset were used.
For the Llama-3.1-8B-Instruct model, ICL prompt template 1
(see ESI†) was used. No batching was applied. The time does not
include loading the models and tokenizers or any pre- or post-
processing, but it includes creating the pipeline and running
tokenization and inference.

LLM netuning

As the starting point of the BigBirdPegasus model,21 a check-
point of Google's BigBirdPegasusForConditionalGeneration
aer netuning for summarization on the big_patent dataset24

is used. As the starting point for the Longformer Encoder
Decoder (LED) model,22 the pretrained led-base-16384 model
from AllenAI25 is employed. The action tokens are added to the
tokenizer, the generated dataset is randomly split into training
and validation sets (90 : 10) and the models are trained on A100-
80 GB GPUs for 8850225 steps (5 epochs) on the training split,
Digital Discovery
using a batch size of 8, an initial learning rate of 5 × 10−5 with
a 0.05 warmup ratio, and a cosine weight decay. All other
hyperparameters used the default values.

Conclusions

Two new, large, (semi-)automatically annotated datasets were
created from experimental procedures that were extracted from
patents and patent applications. These datasets were used to
train surrogate LLMs on the task of creating action graphs, i.e.,
simple structured output, from the unstructured input. The
LLMs that were trained, a BigBirdPegasus and a Longformer
Encoder Decoder model, strike a good balance between
performance, generality, and tness for purpose and can be
hosted and run on standard consumer-grade hardware. The
generated action graphs were generally of high quality, with
some remarkable generalizations especially from the BigBird-
Pegasus model. Moreover, the training dataset (and hence the
trained models) were kept rather broad in scope and their
applicability to experimental procedures from different
domains was investigated, namely materials science, organic
chemistry, inorganic chemistry, and patent literature.

Further, the possibility of using a node editor for creating,
visualizing, and modifying synthesis workows for MAPs and
SDLs is presented. The node graphs can either be created
automatically from the action graphs generated by the LLMs or
from scratch by the user. They offer an intuitive way of creating
automated synthesis workows that can be run on robotic
hardware without requiring classical programming skills.

By dynamically creating the nodes in the node editor from
the API of the soware backend underlying the MAP or SDL, it is
rather straightforward to generate executable code from these
node graphs that can then be used to directly run the planned
experiment(s) on the hardware platform. Moreover, the nature
of the node graph itself as well as the fact that the nodes are
dynamically generated from the API and hence allow following
the inheritance structure or MRO of the underlying classes in
the soware backend make it possible to extract knowledge
graphs that follow an ontology directly constructed from the API
respectively its soware architecture.

All resources generated in this work, including the training
and validation datasets, the fully trained neural networks, and
the implementation of the node editor and the scripts for
generating, visualizing, and analyzing the automatically gener-
ated knowledge graphs are made publicly available.

While the concept of creating the action graphs, node
graphs, and knowledge graphs is very general, the nal imple-
mentation and hence also the knowledge graphs and ontologies
they follow are domain specic and hardware and soware
dependent. A common ontology for the different subdomains,
such as nanomaterial synthesis, could help in the future to
make knowledge graphs and even entire synthesis workows
platform independent and readily interoperable between
different MAPs or SDLs with different soware backends. Each
SDL or MAP platform couldmap their hardware-specic process
implementation to such a common description (controlled and
shared vocabulary) or ontology, and every other platform could
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00063g


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

10
:1

7:
08

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
map from the same description or ontology to their available
hardware implementation and the interfaces exposed by their
API. That way, every lab has to dene these specic mapping
steps only once and could then exchange synthesis protocols via
this “common language”. Another extension that seems natural
in the context of node graphs and the generated knowledge
graphs is the storage of the underlying data in graph databases,
a step that is also planned to be further investigated in the
future. Moreover, by using extracted knowledge graphs from
a multitude of reactions, or even taking advantage of the quick
inference times of the surrogate LLMs for building an extensive
knowledge graph database from previously published proce-
dures, it can be envisioned that these knowledge graphs can be
used as input for AI models such as graph neural networks26,27

or directed acyclic graph transformers28 for learning new, causal
relationships for inference.

Data availability

Data for this article, including the annotated datasets, the fully
trained LLMs, the python code of the node editor, and a jupyter
notebook for visualizing and querying the knowledge graphs
are available on Github at https://github.com/BAMresearch/
MAPz_at_BAM/tree/main/Minerva-Workow-Generator, on
huggingface at https://huggingface.co/bruehle, and on Zenodo
(DOI: https://doi.org/10.5281/zenodo.15228014) at https://
zenodo.org/records/15228014. Further data can also be found
in the ESI.†

Conflicts of interest

There are no conicts to declare.

Acknowledgements

We thank the HPC Center and IT Services at BAM for providing
the computational resources used in this work. The Materials
Acceleration Platform Center at BAM (MAPz@BAM) is gratefully
acknowledged.

Notes and references

1 J. Wagner, C. G. Berger, X. Du, T. Stubhan, J. A. Hauch and
C. J. Brabec, The evolution of Materials Acceleration
Platforms: toward the laboratory of the future with
AMANDA, J. Mater. Sci., 2021, 56, 16422–16446.

2 M. Abolhasani and E. Kumacheva, The rise of self-driving
labs in chemical and materials sciences, Nat. Synth., 2023,
2, 483–492.

3 S. P. Stier, C. Kreisbeck, H. Ihssen, M. A. Popp, J. Hauch,
K. Malek, M. Reynaud, T. p. m. Goumans, J. Carlsson,
I. Todorov, L. Gold, A. Räder, W. Wenzel, S. T. Bandesha,
P. Jacques, F. Garcia-Moreno, O. Arcelus, P. Friederich,
S. Clark, M. Maglione, A. Laukkanen, I. E. Castelli,
J. Carrasco, M. C. Cabanas, H. S. Stein, O. Ozcan, D. Elbert,
K. Reuter, C. Scheurer, M. Demura, S. S. Han, T. Vegge,
S. Nakamae, M. Fabrizio and M. Kozdras, Materials
© 2025 The Author(s). Published by the Royal Society of Chemistry
Acceleration Platforms (MAPs): Accelerating Materials
Research and Development to Meet Urgent Societal
Challenges, Adv. Mater., 2024, 36, 2407791.

4 L. Hawizy, D. M. Jessop, N. Adams and P. Murray-Rust,
ChemicalTagger: A tool for semantic text-mining in
chemistry, J. Cheminf., 2011, 3, 17.

5 D. M. Jessop, S. E. Adams, E. L. Willighagen, L. Hawizy and
P. Murray-Rust, OSCAR4: a exible architecture for
chemical text-mining, J. Cheminf., 2011, 3, 41.

6 T. Rocktäschel, M. Weidlich and U. Leser, ChemSpot:
a hybrid system for chemical named entity recognition,
Bioinformatics, 2012, 28, 1633–1640.

7 D. M. Lowe and R. A. Sayle, LeadMine: a grammar and
dictionary driven approach to entity recognition, J.
Cheminf., 2015, 7, S5.

8 R. Leaman, C.-H. Wei and Z. Lu, tmChem: a high
performance approach for chemical named entity
recognition and normalization, J. Cheminf., 2015, 7, S3.

9 M. Krallinger, O. Rabal, A. Lourenço, J. Oyarzabal and
A. Valencia, Information Retrieval and Text Mining
Technologies for Chemistry, Chem. Rev., 2017, 117, 7673–
7761.

10 S. Mysore, E. Kim, E. Strubell, A. Liu, H.-S. Chang,
S. Kompella, K. Huang, A. McCallum and E. Olivetti,
Automatically Extracting Action Graphs from Materials
Science Synthesis Procedures, arXiv, 2017, preprint,
arXiv:1711.06872, DOI: 10.1021/acs.chemrev.6b00851,
http://arxiv.org/abs/1711.06872.

11 I. Korvigo, M. Holmatov, A. Zaikovskii and M. Skoblov,
Putting hands to rest: efficient deep CNN-RNN architecture
for chemical named entity recognition with no hand-
craed rules, J. Cheminf., 2018, 10, 28.

12 L. Weston, V. Tshitoyan, J. Dagdelen, O. Kononova,
A. Trewartha, K. A. Persson, G. Ceder and A. Jain, Named
Entity Recognition and Normalization Applied to Large-
Scale Information Extraction from the Materials Science
Literature, J. Chem. Inf. Model., 2019, 59, 3692–3702.

13 S. H. M. Mehr, M. Craven, A. I. Leonov, G. Keenan and
L. Cronin, A universal system for digitization and
automatic execution of the chemical synthesis literature,
Science, 2020, 370, 101–108.

14 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser and I. Polosukhin, Attention is All
you Need, arXiv, 2020, preprint, arXiv:1706.03762, DOI:
10.48550/arXiv.1706.03762.

15 T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever and
D. Amodei, in Advances in Neural Information Processing
Systems, ed. H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan and H. Lin, Curran Associates, Inc., 2020, vol. 33,
pp. 1877–1901.

16 A. C. Vaucher, F. Zipoli, J. Geluykens, V. H. Nair, P. Schwaller
and T. Laino, Automated extraction of chemical synthesis
Digital Discovery

https://github.com/BAMresearch/MAPz_at_BAM/tree/main/Minerva-Workflow-Generator
https://github.com/BAMresearch/MAPz_at_BAM/tree/main/Minerva-Workflow-Generator
https://huggingface.co/bruehle
https://doi.org/10.5281/zenodo.15228014
https://zenodo.org/records/15228014
https://zenodo.org/records/15228014
https://doi.org/10.1021/acs.chemrev.6b00851
http://arxiv.org/abs/1711.06872
https://doi.org/10.48550/arXiv.1706.03762
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00063g


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/7
/2

02
5 

10
:1

7:
08

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
actions from experimental procedures, Nat. Commun., 2020,
11, 3601.

17 IBM RXN for Chemistry, https://rxn.res.ibm.com/rxn/robo-
rxn/welcome, accessed 11 November 2024.

18 N. Yoshikawa, M. Skreta, K. Darvish, S. Arellano-Rubach,
Z. Ji, L. Bjørn Kristensen, A. Z. Li, Y. Zhao, H. Xu,
A. Kuramshin, A. Aspuru-Guzik, F. Shkurti and A. Garg,
Large language models for chemistry robotics, Auton.
Robots, 2023, 47, 1057–1086.

19 Introducing Llama 3.1, https://ai.meta.com/blog/meta-
llama-3-1/, accessed 9 August 2024.

20 D. Lowe, Chemical reactions from US patents (1976–Sep 2016),
2017, gshare, Dataset, DOI: 10.6084/
m9.gshare.5104873.v1.

21 M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti,
S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang and
A. Ahmed, Big Bird: Transformers for Longer Sequences,
arXiv, 2021, preprint, arXiv:2007.14062, DOI: 10.48550/
arXiv.2007.14062.

22 I. Beltagy, M. E. Peters and A. Cohan, Longformer: The Long-
Document Transformer, arXiv, 2020, preprint,
Digital Discovery
arXiv:2004.05150, DOI: 10.48550/arXiv.2007.14062, http://
arxiv.org/abs/2004.05150.

23 M. Zaki, C. Prinz and B. Ruehle, A Self-Driving Lab for Nano-
and Advanced Materials Synthesis, ACS Nano, 2025, 19,
9029–9041.

24 google/bigbird-pegasus-large-bigpatent $ Hugging Face,
https://huggingface.co/google/bigbird-pegasus-large-
bigpatent, accessed 9 August 2024.

25 allenai/led-base-16384 $ Hugging Face, https://
huggingface.co/allenai/led-base-16384, accessed 9 August
2024.

26 Z. Ye, Y. J. Kumar, G. O. Sing, F. Song and J. Wang, A
Comprehensive Survey of Graph Neural Networks for
Knowledge Graphs, IEEE Access, 2022, 10, 75729–75741.

27 H. Jin, K. Raghavan, G. Papadimitriou, C. Wang, A. Mandal,
M. Kiran, E. Deelman and P. Balaprakash, Graph neural
networks for detecting anomalies in scientic workows,
Int. J. High Perform. Comput. Appl., 2023, 37, 394–411.

28 J. Yu, M. Gao, Y. Li, Z. Zhang, W. H. Ip and K. L. Yung,
Workow performance prediction based on graph
structure aware deep attention neural network, J. Ind. Inf.
Integr., 2022, 27, 100337.
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://rxn.res.ibm.com/rxn/robo-rxn/welcome
https://rxn.res.ibm.com/rxn/robo-rxn/welcome
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://doi.org/10.6084/m9.figshare.5104873.v1
https://doi.org/10.6084/m9.figshare.5104873.v1
https://doi.org/10.48550/arXiv.2007.14062
https://doi.org/10.48550/arXiv.2007.14062
https://doi.org/10.48550/arXiv.2007.14062
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2004.05150
https://huggingface.co/google/bigbird-pegasus-large-bigpatent
https://huggingface.co/google/bigbird-pegasus-large-bigpatent
https://huggingface.co/allenai/led-base-16384
https://huggingface.co/allenai/led-base-16384
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00063g

	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...

	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...

	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...
	Natural language processing for automated workflow and knowledge graph generation in self-driving labsElectronic supplementary information (ESI)...


