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Choosing a Suitable Acquisition Function for Batch Bayesian 
Optimization: Comparison of Serial and Monte Carlo Approaches†
Imon Mia,a Mark Lee,b Weijie Xu,a William Vandenberghe,a and Julia W. P. Hsu* a 

Batch Bayesian optimization is widely used for optimizing expensive experimental processes when several samples can be 
tested together to save time or cost. A central decision in designing a Bayesian optimization campaign to guide experiments 
is the choice of a batch acquisition function when little or nothing is known about the landscape of the “black box” function 
to be optimized. To inform this decision, we first compare the performance of serial and Monte Carlo batch acqusition 
functions on two mathematical functions that serve as proxies for typical materials synthesis and processing experiments. 
The two functions, both in six dimensions, are the Ackley function, which epitomizes a “needle-in-haystack” search, and the 
Hartmann function, which exemplifies a “false optimum” problem. Our study evaluates the serial upper confidence bound 
with local penalization (UCB/LP) batch acquisition policy against Monte Carlo-based parallel approaches: q-log expected 
improvement (qlogEI) and q-upper confidence bound (qUCB), where q is the batch size. Tests on Ackley and Hartmann show 
that UCB/LP and qUCB perform well in noiseless conditions, both outperforming qlogEI. For the Hartmann function with 
noise, all Monte Carlo functions achieve faster convergence with less sensitivity to initial conditions compared to UCB/LP. 
We then confirm the findings on an empirical regression model built from experimental data in maximizing power conversion 
efficiency of flexible perovskite solar cells. Our results suggest that when empirically optimizing a “black-box” function in ≤ 
six dimensions with no prior knowledge of the landscape or noise characteristics, qUCB is best suited as the default to 
maximize confidence in the modeled optimum while minimizing the number of expensive samples needed.

Introduction
Many types of scientific or engineering experiments seek to 
identify the global optimum (maximum or minimum) of an 
unknown relationship between a set of experimental inputs X 
and an output objective y = f(X), where X is a multidimensional 
vector of input parameters. The “black box” function f(X) is 
unknown and usually too complicated to be approximated by 
any specific physics-based parametric representation. In such 
cases, Bayesian optimization1 using a data-based non-
parametric surrogate regression model has emerged as a 
powerful and widely adopted machine learning method to 
guide empirical searches of parameter space seeking the 
optimal input Xopt and the optimal objective value yopt = f(Xopt). 
Bayesian optimization is particularly useful when generating 
new samples to test f(X) is expensive in cost or time, so the 
campaign success can be achieved with as small a data set as 
possible, usually a few hundred data points at most. Some 
examples of Bayesian optimization applications include new 
materials synthesis and processing,2–4 mechanical design,5 new 
drug discovery,6 and maximizing manufacturing yield.7 

In many real experiments, the cost of generating and 

experimentally evaluating a small batch of q new samples at one 
time, where usually q ≤ 10, only marginally exceeds the cost of 
a single sample. It then makes sense to use batches of q new 
samples to test f(X) and provide additional data to update the 
surrogate model in each Bayesian optimization iteration step, a 
process called batch Bayesian optimization.8 The goal for real 
experiments is to maximize confidence in the accuracy of the 
modeled global optimum using the fewest number of expensive 
experimental iterations possible.

The key component of batch Bayesian optimization lies in a 
batch acquisition function that suggests the most promising 
input parameters to test in the next experimental batch. In each 
iteration of the process, a chosen acquisition function evaluates 
existing data, the current surrogate model, and the uncertainty 
of that model to assess statistically how much new X inputs will 
contribute towards advancing the search for yopt.9 For non-
batch (q = 1) cases, the suggested next input is the X that 
maximizes the acquisition function. Many standard acquisition 
functions are available for non-batch Bayesian optimization 
problems, the most common being expected improvement (EI) 
or its logarithm (logEI)10 and, for maximization problems, upper 
confidence bound (UCB).11

For batch Bayesian optimization, how to generate a batch of 
q > 1 next X inputs that together most efficiently advance the 
optimization progress is significantly more challenging.8 Most 
batch-picking strategies fall into two general approaches: serial 
and parallel. Serial batch picking chooses the first X of a batch 
in the same way as non-batch optimization, then modifies the 
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acquisition function using some strategy to pick a second X that 
is meaningfully different from the first and iterates the 
procedure until q new X inputs are assembled. The most 
common examples of this serial approach include local 
penalization (LP),12 and heuristic or “greedy” simplifications of 
parallel batch acquisition functions known as continuous liar 
and Kriging believer.13 Parallel batch picking generalizes a non-
batch acquisition function by integrating it over a q-point joint 
probability density function obtained from the surrogate 
model’s covariance kernel.13–15 The suggested next batch is 
composed of the q X points that jointly maximize the integrated 
acquisition function. Examples of q-points parallel batch 
acquisition functions include qEI, qlogEI, and qUCB.15,16 

Serial batch acquisition functions are usually computed and 
maximized using deterministic numerical methods, i.e., without 
stochastic sampling. These calculations become 
computationally more difficult and less accurate when the 
dimension of X exceeds 5 or 6.17 Since parallel batch acquisition 
functions integrate over a probability density function, their 
calculation and maximization are well suited to be done by 
stochastic Monte Carlo methods and therefore offer an 
attractive alternative, especially for high dimensional X.15,17,18 
For this reason we call parallel batch acquisition functions such 
as qlogEI and qUCB “Monte Carlo” acquisition functions.

In this paper, we conduct a direct comparison of serial and 
parallel batch acquisition functions in batch Bayesian 
optimization campaigns. The black box functions being 
optimized include two analytic mathematical functions, one of 
them evaluated with and without normally distributed noise, 
that are proxies for input dimensionalities and functional 
landscapes typically encountered in real experiments on 
materials synthesis optimization, and one empirical regression 
model built from real experimental data. The first mathematical 

model is the Ackley function in 6 dimensions.19 Ackley 
epitomizes a “needle-in-haystack” functional landscape 
because it is a highly heterogeneous function, oscillating near 
its minimum value through most of its domain except for a 
sharp peak that occupies a small fraction of its domain 
hypervolume. The second mathematical model is the Hartmann 
function, also in 6 dimensions.20 Hartmann represents a “false 
maximum” landscape because it has a secondary maximum 
with an objective value nearly degenerate with its true 
maximum, but at a different X. The empirical model is a 4-
dimensional ensemble regression model built using data from 
an experiment to fabricate flexible halide perovskite solar cells 
with maximum power conversion efficiency (PCE).21 This PCE 
model embodies the real-world difficulties of having only a 
small number of data points due to the time and cost expense 
of performing experiments, the inclusion of noise and possible 
systematic errors that may not be well quantified, and an 
unknown landscape not guaranteed to be mathematically 
analytical. Details of this PCE model and its construction are 
given in Ref. 21 and Note 1 in the ESI†. Figure S1 in the ESI† 
shows projected maximum ground truth landscapes for all 
three models. 

For the serial batch acquisition function, we use UCB/LP 
because UCB has been reported to outperform EI or logEI for 
non-batch Bayesian optimization on a wide range of synthetic 
functions.3,22–24 (For completeness, the ESI† (Figure S2) shows 
learning performance using logEI/LP.) LP is used because it has 
a sounder intellectual basis than heuristic serial batch picking 
approaches and, in our experience, outperforms continuous liar 
and Kriging believer in test cases on synthetic data.25 For Monte 
Carlo batch acquisition functions, we use qUCB and qlogEI for 
noiseless problems, and add a noise-integrated version of 
qlogEI called qlogNEI for evaluations of the Hartmann function 

Fig. 1   Block diagram of the Bayesian optimization workflow to compare performance of different batch acquisition functions on various 
test functions that serve as proxies for functional landscapes typically encountered in real materials synthesis optimization experiments. 
The initial functional evaluations and Gaussian process regression (GPR) model use Latin Hypercube sampled (LHS) points from each 
function’s domain.
_______________________________________________________________________________________________________________
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with noise as well as for the PCE model since it was built on data 
with real-world noise.26 We do not test qEI because it offers no 
advantages over qlogEI, but is more prone to numerical 
instability.27 

qUCB is found to give the best overall performance: 
producing reliable results in all functional landscapes tested, 
converging with relatively few iterations, and showing 
reasonable noise immunity. Thus, when the general landscape 
and noisiness of the black-box function are a priori unknown, as 
is the case for real-world experiments, we recommend qUCB as 
the default acquisition function choice. 

Results and Discussion
Setup of batch Bayesian optimization process
The code used to generate all results shown in this study is 
publicly available on GitHub (see Data availability statement). 
All code was implemented in Python and run in normal mode 
(CPU only) on the Lonestar6 system of the Texas Advanced 
Computing Center. We used the Emukit package for UCB/LP 
(and logEI/LP) and the BoTorch package for the Monte Carlo 
batch acquisition functions. Computational time and memory 
usage are given in the ESI† (Note 2).

Fig. 2.   Learning progression data on Ackley comparing UCB/LP against qUCB, qlogEI, and qlogEI+TuRBO. Plots (a)-(d) are µ(X*), the 
maximum values of the mean posterior surrogate model, with X* being the input value that produces the maximum µ(X), up to that 
iteration of the campaign. Plots (e)-(h) are Euclidean distance magnitudes between the true Xmax and X*. The ground truth Xmax and ymax 
are indicated by yellow dashed lines. Gray points show the spread in learning progress of the 99 batch Bayesian optimization runs starting 
from the 99 LHS initial data sets. Green, red, and blue points indicate the runs ranked in the top 25th, 50th, and 75th percentile, 
respectively.
______________________________________________________________________________________________________________
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Figure 1 depicts a block diagram of the batch Bayesian 
optimization workflow. In all cases the procedure used a 
Gaussian process regression surrogate model with an ARD 
Matern 5/2 kernel. Kernel hyperparameters were optimized by 
maximizing log-likelihood. For all problems, at each iteration, X 
training data were normalized to the [0, 1]d hypercube, where 
d = 6 for Ackley and Hartmann functions and d = 4 for the PCE 
model, and y training data were standardized before 
computing the posterior surrogate model. New batch 
selections Xnew were then unnormalized to make new 
evaluations, y = f(Xnew), to add to the training data set for the 
next iteration. For UCB/LP and qUCB, the 
exploration/exploitation parameter  was set at 2. Finding the 
X value that maximizes UCB/LP for each serial pick in the batch 
was done by a deterministic quasi-Newtonian method in 
Emukit. Finding the q points that jointly maximize the MC batch 
acquisition functions was done by a stochastic gradient descent 
method in BoTorch. Reasons for the choices made for these 
Bayesian optimization settings are given in Note 3 of the ESI†.

In each batch Bayesian optimization campaign, the first 
surrogate model was built from an initialization training data set 
{X, f(X)} of 24 X points selected from each test function’s 
domain by Latin hypercube sampling. This avoids clustering of X 
points that can result from purely random sampling and is a 
commonly used method to select initial processing parameters 
in materials synthesis experiments when no previous 
knowledge exists.28 To collect statistics of learning performance 
arising from the choice of initial training set, 99 such 
initialization sets were generated, which were used as the 
common starting points to test each acquisition function on a 
given ground truth model. After initialization, in each 
subsequent Bayesian optimization iteration, the posterior mean 
surrogate model was updated with additional batches of q = 4 
data points selected by the batch acquisition function under 
test and the corresponding surrogate model. The number of 
iterations in each campaign was capped at 50, so the number of 
sampled data points is 224 for each run.

For qlogEI to show learning progression on Ackley, we found 
it necessary to adaptively narrow the domain search 
hypervolume in each iteration. Several domain-narrowing 
methods have been proposed to handle “needle-in-haystack” 
problems.29,30 We implemented a trust region BO (TuRBO) 
strategy coded using the BoTorch package.31

The robustness of the batch acquisition functions against 
output noise was examined with the Hartmann function by 
adding a normally distributed random value to f(X) in every 
evaluation of the Hartmann function. The mean of this noise 
distribution was zero. Noise amplitude was controlled by setting 
the noise distribution standard deviations to values between 1% 
to 20% of the Hartmann function’s peak-to-peak amplitude.

Results and discussion on Ackley function

The inverted Ackley function has its true maximum at Xmax = [0, 
0, 0, 0, 0, 0] with a true maximum objective value ymax = f(Xmax) 
= 0. Its domain is the hypercube [–32.768, 32.768]6, with side 
length L = 65.536, and its range is [–22.3, 0], giving peak-to-peak 

amplitude ∆y = 22.3. A maximum projection surface plot of the 
Ackley function is shown in Fig. S1(a) in the ESI†. Ackley is a 
highly heterogeneous function; y < –18 through the vast 
majority of its domain, with a large central peak centered on 
ymax that occupies only ~0.08% of its domain hypervolume and 
drops steeply from its central maximum.

Figure 2 summarizes the batch Bayesian optimization 
learning progression on Ackley for UCB/LP compared to qUCB, 
qlogEI, and qlogEI+TuRBO. Each plot shows results from all runs 
for each acquisition function under test starting from the same 
99 initial training data sets. In Fig. 2 µ(X*) is the maximum 
objective value predicted by the mean posterior surrogate 
model µ(X), and X* is the input vector that produces the 
maximum µ(X), up through the nth iteration. The left column 
plots Figs. 2(a)-(d) show µ(X*) at each iteration relative to ymax 
= 0, indicated by the yellow dashed line. Figs. 2(e)-(h) show the 
Euclidean distance magnitude between X* and Xmax at each 
iteration, so zero indicates the model has found Xmax. After the 
final (50th) iteration, the 99 runs are percentile ranked by how 
close the final X* – Xmax is to zero, with the 99th percentile 
being the best. Green, red, and blue points highlight the runs 
ranked 25th, 50th, and 75th percentile, respectively.

From Fig. 2, it is clear that UCB/LP and qUCB perform 
comparably well, with both significantly outperforming qlogEI. 
In terms of finding Xmax, Figs. 2(e) and (f) show that X* – Xmax 
for UCB/LP and qUCB both converge to near zero, within a few 
percent of the domain hypercube side length L = 65.536, in 
fewer than ~15 iterations for nearly all 99 initial sets. In terms 
of how accurately ymax can be modeled, Ackley presents a 
difficult challenge for surrogate models because its maximum 
sits on a very steep peak, so relatively small values of X* – Xmax 
can yield µ(X*) << ymax, causing the surrogate model to 
systematically underestimate ymax. In Fig. 1(a), UCB/LP shows 
the best final µ(X*) estimate of ymax, converging to within ~ 2 of 
ymax (< 10% of the amplitude ∆y = 22.3) for all 99 initial 
conditions by the final iteration. qUCB performs a close second, 
converging to within ~ 3 of ymax (< 15% of ∆y) for all 99 initial 
conditions. 

By contrast, Fig. 2(c) and (g) show that qlogEI fails to model 
anything close to ymax or Xmax after 50 iterations for most of the 
99 initial conditions. In fact, qlogEI essentially fails to show 
further learning progress after 5 to 10 iterations in most cases. 
This is consistent with Ref. 24, where qEI failed to model 6-
dimensional Ackley. Upon augmenting with TuRBO, Fig. 2(d) 
and (h) show that learning is partially restored for qlogEI for 

Table 1.   Summary of normalized instantaneous regret (IR) and 
normalized cumulative regret (CR) in y and X on Ackley for each 
batch acquisition function, averaged over the results of all 99 
campaigns starting with different initial data sets. Box and violin 
plots visualizing the IR and CR distributions for the 99 campaigns 
in each case are given in the ESI† (Figure S3a).

Acq. Fn. IR(y)/∆y CR(y)/∆y IR(X)/L CR(X)/L
UCB/LP 0.017 4.9 0.0016 1.2
qUCB 0.026 5.1 0.016 2.7
qlogEI 0.56 32 0.18 11

qlogEI+TuRBO 0.34 17 0.14 6.5
_____________________________________________________
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many, but far from all, 99 initial conditions. While qlogEI with 
TuRBO can converge within roughly 3 of ymax, there is much 
larger variation depending on the initial conditions. The 
performance of UCB/LP and qUCB remain obviously superior to 
qlogEI even with TuRBO. 

Table 1 summarizes the learning progression graphically 
depicted in Fig. 2 using the quantitative metrics: instantaneous 
regret (IR), which measures how accurately the final optimal 
point is modeled, and cumulative regret (CR), which measures 
how fast the batch Bayesian optimization process converges 
onto the optimal point, in both y and X. The values given in 
Table 1 are averaged over all runs from the 99 initial conditions. 
IR(y) and CR(y) are normalized to the Ackley amplitude, y = 
22.3, and IR(X) and CR(X) are normalized to the Ackley domain 
side L = 65.536. The closer IR and CR are to zero, the better the 
final accuracy and convergence rate of the process.

The metrics in Table 1 show that while UCB/LP generates the 
best average final surrogate model, both UCB/LP and qUCB 
produce accurate and reliable estimations of the true Ackley 
maximum within 20 to 30 iterations, independent of initial 
conditions. For both, IR(X)/L and IR(y)/∆y are << 1.

An interesting question is why UCB/LP outperforms qUCB on 
Ackley, especially in producing a nearly perfect IR(X)/L metric. 
A possible answer lies in the stochastic nature of Monte Carlo 
based compared to deterministic serial batch-picking 
algorithms. Local penalization (LP) adaptively becomes more 
exploitative and less explorative as new data become available, 
biasing its batch picks to increase sampling density in domain 
regions that generate higher objective values.12 Consequently, 
as soon as one point in the steep central maximum region is 
found, LP biases all subsequent batch picks to exploit that 
domain region in greater detail, giving a better surrogate model 
reconstruction of Ackley’s central peak and hence better 
performance as measure by IR(y) and IR(X). By contrast, the 
stochastic nature of Monte Carlo evaluation and optimization of 

qUCB results in greater scattering of batch picks in all iterations. 
Even after one point in the central maximum region is found, 
qUCB may assign only a single new point in the next iteration 
batch to exploit the nearby region and stochastically scatter 
other batch points to explore the domain. As a result, the region 
near the maximum is not tested in as much detail compared to 
UCB/LP, giving a less accurate surrogate model reconstruction 
of the central peak, though possibly a better model of the 
overall function. Figure 3 shows a graphic example of this 
difference in sampling distribution between UCB/LP and qUCB, 
and a time series showing batch picks and surrogate model after 
each iteration is shown in Figure S4 in the ESI†.

Results and discussion on Hartmann function without noise

The inverted Hartmann test function has its true maximum at 
Xmax = [0.2017, 0.1500, 0.4769, 0.2753, 0.3117, 0.6573] with a 
maximum objective value ymax = f(Xmax) = 3.3224. Its domain is 
the hypercube [0, 1]6, with side length L = 1, and its range is [0, 
3.3224], giving peak-to-peak amplitude ∆y = 3.3224. A 
maximum projection surface plot of the Hartmann function is 
shown in Fig. S1(b) in the ESI†. Hartmann is complicated by the 
existence of a secondary maximum at X2 = [0.4047, 0.8824, 
0.8461, 0.5740, 0.1390, 0.0385] whose objective value y2 = f(X2) 
= 3.2032 is nearly degenerate with ymax; the distance X2 – Xmax 
= 1.10. Consequently, maximization searches can easily 
converge onto the “false maximum” X2 rather than Xmax.

Figure 4 summarizes the learning progression on Hartmann 
for UCB/LP compared to qUCB and qlogEI. The use of TuRBO 
was unnecessary because qlogEI works for Hartmann. Each plot 
shows the results of all batch Bayesian optimization runs 
starting from the common set of 99 initial data sets in the 
Hartmann domain. The meaning of all terms and symbols is the 
same as for Fig. 2. The left column plots Figs. 4(a)-(c) show µ(X*) 

Fig. 3.  Distribution of all sampled points picked by (a) UCB/LP and (b) qUCB in the x1, x2 plane, where the input vector X = (x1, x2, x3, x4, 
x5, x6). The underlying z-axis contour plot shows the shape of the final surrogate model µ(X) for the initial data set that achieves the 50th 
percentile outcome (red curves in Fig. 1) by projecting the maximum value of µ(X) evaluated at each x1, x2. coordinate. The blue “” 
indicates the ground truth maximum (GT Max) of the Ackley function. Input points belonging to the initial sampling (initial LHS) are shown 
as blue circles. Batch Bayesian optimization points (bBO points) picked by the batch acquisition functions are shown as reddish circles, 
with light red/pink indicating points picked in early iterations and darker red circles indicating points picked in later iterations.
______________________________________________________________________________________________________________
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at each iteration relative to ymax = 3.3224, which is indicated by 
the yellow dashed line. Figs. 4(d)-(f) show the Euclidean 
distance magnitude between X* and Xmax at each iteration. One 
obvious feature of Figs. 4(d)-(f) is that X results for all three 
acquisition functions bifurcate, converging upon two different 
best X points. This is a consequence of the existence of a second 
maximum with a nearly degenerate objective value in 
Hartmann. Some initial conditions lead to convergence onto X2. 
This result is not as obvious in Figs. 4(a)-(c) because y2 is only 
0.12 less than ymax. Because of the false maximum nature of the 
Hartmann landscape, an additional batch acquisition function 
performance metric is the percentage of the 99 initial 

conditions that converge onto X2 instead of Xmax in Figs. 4(d)-(f), 
with a smaller percentage being better, shown in the rightmost 
column of Table 2.

Figure 4 shows that all three batch acquisition functions 
converge to a final value of µ(X*) near ymax and a final X* near 
either Xmax or X2 within ~20 iterations. Visually, qUCB appears 
to converge the fastest, in < 10 iterations for most initial 
conditions. After ~15 iterations both UCB/LP and qUCB become 
insensitive to initial conditions, except for the bifurcation. 
qlogEI appears to converge more slowly and clearly has a larger 
performance spread depending on initial conditions compared 
to UCB/LP and qUCB.

Table 2 summarizes the learning performance metrics on 
Hartmann: normalized IR(y), CR(y), IR(X), and CR(X), averaged 
over all runs from the 99 LHS initial conditions, and the 
percentage of the LHS initial conditions that converge onto the 
false maximum. IR(y) and CR(y) are normalized to the Hartmann 
range amplitude, ∆y = 3.3224. IR(X) and CR(X) do not technically 
need to be normalized because the domain hypercube side L = 
1, but are listed as normalized to L for consistency with Table 1. 
In all columns, smaller numerical values indicate better final 
accuracy, convergence rate, and convergence onto the true 
maximum of the batch Bayesian optimization process.

The IR(y)/∆y and CR(y)/∆y values in Table 2 are generally 
smaller compared to the same metrics for Ackley (see Table 1), 

Table 2.   Summary of normalized instantaneous regret (IR) and 
normalized cumulative regret (CR) in y and in X on Hartmann for 
each batch acquisition function, averaged over the results of all 99 
campaigns starting with different initial data sets. Box and violin 
plots visualizing the IR and CR distributions for the 99 campaigns 
in each case are given in the ESI† (Figure S3b).

Acq. 
Fn.

IR(y)/∆y CR(y)/∆y IR(X)/L CR(X)/L % False 
Max

UCB/LP 0.0081 3.3 0.24 19 30
qUCB 0.012 2.1 0.36 20 32
qlogEI 0.015 3.1 0.37 20 34

_____________________________________________________

Fig. 4.   Learning progression data on the noiseless Hartmann test function comparing UCB/LP against qUCB and qlogEI. All variable labels 
and symbols have the same meanings as in Fig. 2. 
_________________________________________________________________________________________________________________
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but IR(X)/L and CR(X)/L are significantly larger for all 
acquisition functions relative to Ackley. This again reflects the 
false maximum nature of Hartmann. For each acquisition 
function, roughly one-third of the initial conditions produce 
Bayesian optimization campaigns that converge onto the false 
maximum. Each of these runs contributes a regret of X2 – Xmax 
= 1.10 towards the IR(X)/L and CR(X)/L averages but contributes 
a regret of only 0.036 towards the IR(y)/∆y and CR(y)/∆y 
averages.

The metrics in Table 2 show that UCB/LP and qUCB perform 
very similarly on Hartmann without noise, with UCB/LP doing 
slightly better in IR(y)/∆y, IR(X)/L, and CR(X)/L while qUCB 
shows somewhat better CR(y)/∆y. Although qlogEI shows 
reasonable learning behavior unlike for Ackley, both UCB/LP 

and qUCB outperform qlogEI on noiseless Hartmann in all 
metrics.

Results and discussion on Hartmann function with noise

Learning progression plots on Hartmann with noisy functional 
evaluations are shown in Figure 5 for 5% noise amplitude and 
Figure 6 for 20% noise amplitude. In addition to the three batch 
acquisition functions investigated for the noiseless Hartmann 
study in Fig. 4, included here is qlogNEI, which is qlogEI 
integrated over a normally distributed noise probability, which 
is designed to deal specifically with noise.26 Visually comparing 
the plots in Fig. 5, at a moderate 5% noise, all acquisition 
functions still model a final value of µ(X*) close to ymax and 
converge close to Xmax or X2 for most initial conditions, although 

Fig. 5. Learning progression data on Hartmann with noisy functional evaluations at 5% noise amplitude. All variable labels and symbols have 
the same meaning as in Fig. 2. 
________________________________________________________________________________________________________________
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there is degradation in learning performance compared to the 
noiseless case (Fig. 4). From Fig. 6, at very high 20% noise, all 
Monte Carlo acquisition functions clearly outperform UCB/LP. A 
far higher number of initial conditions converge to something 
reasonably close to true maximal values in both y and X for the 
three Monte Carlo acquisition functions compared to UCB/LP.

Figure 7 summarizes the dependence of these learning 
results on noise amplitude for UCB/LP, qUCB, qlogEI, and 
qlogNEI for noisy Hartmann. Figs. 7(a),(b) plot regrets in y and 
Figs. 7(c),(d) plot regrets in X, all vs. noise amplitude. These 
measure degradation in how well ymax and best Xmax are 
modeled and in convergence onto the optimal values as noise 
increases.

At 5% noise amplitude, Figs. 5 and 7 show that after 50 
iterations, all acquisition functions converge reasonably close to 

ymax, with UCB/LP and qUCB slightly outperforming both qlogEI 
and qlogNEI in IR(y)/∆y and CR(y)/∆y. Also, all acquisition 
functions converge on Xmax or X2, with UCB/LP giving lower 
IR(X)/L and  CR(X)/L than the Monte Carlo acquisition 
functions. However, looking at the X learning plots Figs. 5(e)-
(h), UCB/LP shows greater sensitivity to initial conditions than 
the Monte Carlo acquisition functions. UCB/LP’s lower IR(X)/L 
and CR(X)/L values at 5% noise mostly stem from the fact that, 
for those runs converging onto X2, UCB/LP converges to an X2 
– Xmax value < the true 1.10 on average, while the Monte Carlo 
functions converge to an X2 – Xmax > 1.10 on average. This is 
evident from the values of the upper (X2) branch in Fig. 5(e)-(h). 
For those runs converging onto Xmax, by the 50th iteration the 
performance of all acquisition functions are nearly equal.

Fig. 6. Learning progression data on Hartmann with noisy functional evaluations at 20% noise amplitude. All variable labels and symbols 
have the same meaning as in Fig. 2.
________________________________________________________________________________________________________________
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At high noise amplitude of 20%, Figs. 6 and 7 show that all 
Monte Carlo acquisition functions perform better than UCB/LP, 
although with clearly degraded accuracy. The three Monte 
Carlo acquisition functions do a reasonable job of modeling the 
value of ymax and finding Xmax or X2 for the large majority of 
initial conditions. By contrast, Fig. 6(a) shows that at 20% noise 
level, UCB/LP nearly fails to model ymax, and Fig. 6(e) shows that 
UCB/LP is much more sensitive to initial conditions in modeling 
Xmax compared to the Monte Carlo functions. Figs. 7(a) and (b) 
reflect the fact that at higher noise levels UCB/LP is significantly 
worse at modeling ymax accurately and in convergence onto an 
optimal objective. At high noise, qUCB shows the best 
performance overall in the y-regret metrics. Figs. 7(c) and (d) 
show the UCB/LP appears to have slightly better X regret 
metrics even up to 20% noise, but again this is mostly a result 
of UCB/LP systematically underestimating X2 – Xmax while the 
Monte Carlo functions tend to overestimate X2 – Xmax.

From Fig. 7, all Monte Carlo acquisition functions behave 
similarly with regard to noise level on Hartmann, with qUCB 
showing a slight advantage. Perhaps the stochastic nature of 
the Monte Carlo computations partially compensates for the 
randomness of noisy functional evaluations. It should be noted 
that qlogNEI was developed specifically for noisy batch Bayesian 
optimization problems to increase surrogate model accuracy 
and decrease model sensitivity to noise, but in these tests, 
qlogNEI showed no significant advantage over qUCB.

Results on empirical perovskite PCE model

To evaluate how these batch acquisition functions would 
perform on a real experimental optimization problem as 

opposed to analytic mathematical functions, we used a fully 
trained non-parametric regression model built from 
experimental data on maximizing power conversion efficiency 
(PCE) of flexible perovskite solar cells as the ground truth 
function. Details of the experiment and construction of this 
“PCE model” are given in Ref. 21 and Note 1 in the ESI†. The PCE 
model is 4-dimensional with true ymax = 11.2 at Xmax = [0.40, 
0.60, 0.40, 0.21] in the normalized domain hypercube of [0, 1]4, 
so the domain length L = 1. Its y range is [0.5, 11.2], giving peak-
to-peak amplitude ∆y = 10.7. Truth function values from the PCE 
model were evaluated on a gridded domain with grid spacing in 
each dimension of X determined by the experimental step size 
used for each input predictor.  Truth function values are stored 
as a look-up table, available on-line (see Data availability 
statement). In the batch Bayesian optimization process, 
functional evaluations for each batch of recommended next X 
values were drawn from this look-up table.

Figure 8 summarizes learning results on the PCE model for 
UCB/LP, qUCB and qlogNEI, which was used because the PCE 
model was built using data with real noise and it is of interest to 
see whether qlogNEI offers any advantages in a real-world noise 
scenario. Learning progression data for µ(X*) and X* – Xmax for 
each batch acquisition function under test are shown in Figs. 
8(a)-(f). Each of these plots shows the results of all batch 
Bayesian optimization runs starting from the common set of 99 
initial data sets in the PCE model domain. The meaning of all 
terms and symbols is the same as for Fig. 2. The left column 
plots Figs. 8(a)-(c) show µ(X*) for each acquisition function at 
each iteration relative to ymax = 11.2, which is indicated by the 
yellow dashed line. The middle column plots Figs. 8(d)-(f) show 
the Euclidean distance magnitude between X* and Xmax for each 

Fig. 7.  Performance of batch acquisition function (UCB/LP, qUCB, qlogEI, and qlogNEI) against noise magnitude in batch evaluations of 
Hartmann. Left column: Optimality and convergence in modeled best objective value y as measured by (a) instantaneous regret and (b) 
cumulative regret. Right column: Optimality and convergence in modeled best predictor value X as measured by (c) instantaneous regret 
and (d) cumulative regret. All regrets are averaged and normalized as described in the text. 
_________________________________________________________________________________________________________________
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batch acquisition function at each iteration. Most notably, the 
convergence of X* to Xmax for all three acquisition functions is 
non-zero and strongly dependent on initial conditions, similar 
to the synthetic functions with noise (Fig. 5 and 6).

The reason for this apparent poor learning performance in 
X* – Xmax is shown in Figs. 8(g)-(i). These are heat map plots 
of the ground truth landscape made by projecting the maximum 
value of the ground truth function at each X = (x1, x2, x3, x4) onto 
the x1, x2 plane. Surface plots of this landscape are shown in the 
ESI† (Fig. S1(c)). This landscape has a broad, nearly flat plateau 
near the maximum PCE in the x1, x2 plane. Consequently, the 
batch Bayesian optimization process can stop at many different 
X* inputs that give µ(X*) values very close to ymax. Comparing 
Figs. 8(g)-(i) shows that the X* from the model (color circles) are 
closest to Xmax with qUCB as the batch acquisition function. 
Additionally, real-world experimental results inherently contain 
non-Gaussian and unknown systematic errors and 
uncertainties.

In this experiment, getting a PCE value close to ymax (i.e., 
within experimental uncertainty or reproducibility) regardless 
of X is more important than finding Xmax. For this reason, the 
µ(X*) learning plots should outweigh the X* – Xmax learning 

plots. From Figs. 8(a)-(c), qUCB shows the best overall 
performance, finding PCE values within ~10% of ymax in ~30 
iterations and within ~2% of ymax in ~40 iterations for all 99 LHS 
initial conditions. UCB/LP and qlogNEI also find PCE values 
within ~2% of ymax in ~50 iterations but converge more slowly 
and do significantly worse on a significant fraction of the 99 
initial conditions compared to qUCB. 

These observations are quantified by the IR and CR metrics 
shown in Table 3. All metrics are normalized and averaged over 
the 99 runs for each batch acquisition function tested. As 

Table 3.   Summary of normalized instantaneous regret (IR) and 
normalized cumulative regret (CR) in y and in X on the empirical 
PCE model for each acquisition function, averaged over the 
results of all 99 campaigns starting with different initial data sets. 
Box and violin plots visualizing the IR and CR distributions for the 
99 campaigns in each case are given in the ESI† (Figure S3c).

Acq. Fn. IR(y)/∆y CR(y)/∆y IR(X)/L CR(X)/L
UCB/LP 0.038 4.2 0.26 17
qUCB 0.026 2.7 0.18 13

qlogNEI 0.030 2.8 0.21 14
___________________________________________________

Fig. 8. Summary of learning results on the PCE model comparing UCB/LP (top row) against qUCB (middle row) and qlogNEI (bottom row). 
For learning progression plots (a)-(f), all variable labels and symbols have the same meaning as in Fig. 2. Plots (g), (h), and (i) are heat map 
plots of the ground truth function made by projecting the maximum value the ground truth function at each X = (x1, x2, x3, x4) onto the x1, 
x2 plane. The true maximum is marked by an “×”. The x1, x2 coordinates of the final X* points found by each batch acquisition function are 
indicated by green (25th percentile run), red (50th percentile run), and blue (75th percentile run) dots. A surface contour plot of the PCE 
model landscape is shown in Fig. S1(c) in the ESI†.
______________________________________________________________________________________________________________
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expected, all IR(X)/L and CR(X)/L values are large due to the 
broad flat near-maximum plateau of the landscape. Consistent 
with the above discussion, qUCB shows better performance in 
finding near-optimum objective values as measured by 
IR(y)/∆y and converges onto a near-optimum objective value 
somewhat faster than qlogNEI and significantly faster than 
UCB/LP as measured by CR(y)/∆y values.

Conclusions
Batch Bayesian optimization is a useful machine learning tool to 
guide real-world scientific and engineering experiments 
towards cost-effectively searching input parameter space X to 
find the optimal objective value for an unknown black-box 
functional relationship y = f(X). The goal of a batch Bayesian 
optimization campaign is to produce a data-based regression 
model that can model yopt and Xopt with high confidence while 
using the minimum number of expensive evaluations of f(X) 
possible. 

Critical to achieving this goal is choosing a batch acquisition 
function. Unfortunately, literature provides little advice on 
what the “best” choice might be at the start of a Bayesian 
optimization campaign when little or nothing is known about 
the black box function being optimized. To provide some 
empirical guidance, this paper presents results of a direct 
comparison between a widely used and effective serial batch 
acquisition function, UCB/LP, computed by standard 
deterministic numerical methods, against a set of Monte Carlo 
based parallel acquisition functions, qUCB, qlogEI, and qlogNEI 
(for test cases with noise).

The test problems used, Ackley, Hartmann, and the PCE 
Model, are proxies for real materials synthesis and optimization 
experiments in terms of the number of input dimensions, 
functional landscapes, and noise levels. UCB/LP and qUCB do 
very well on Ackley, with UCB/LP overall performing slightly 
better than qUCB. qlogEI, on the other hand, struggles to 
correctly model Ackley even with assistance by an adaptive 
domain-narrowing algorithm. On noiseless Hartmann, all 
acquisition functions perform adequately. UCB/LP and qUCB 
perform similarly to each other while both outperform qlogEI. 
On Hartmann with noise, all Monte Carlo acquisition functions 
outperform UCB/LP, particularly at very high noise levels where 
qUCB shows better ability to accurately model the objective 
maximum. Although qlogNEI was developed specifically to 
handle noisy functional evaluations, it shows no clear 
performance advantage over qUCB. On the PCE model, qUCB 
finds input conditions giving near-optimum PCE values in fewer 
iterations and is less sensitive to initial conditions compared to 
UCB/LP and qlogNEI.

In the real-world materials optimization experiments this 
work is meant to emulate, usually nothing is known a priori 
about the general landscape of the functional relationship f(X) 
being tested, and empirical evaluations of f(X) always include 
noise, though the noise level and its probability distribution may 
not be known. Our results suggest that for batch Bayesian 
optimization, qUCB overall outperforms its Monte Carlo cousins 
qlogEI and qlogNEI as well as its serial version UCB/LP on 

needle-in-haystack, false optima, and a real experimental 
functional landscape, and against moderate to high levels of 
normally distributed noise and unquantified real-world noise. 
We note that Ref. 24 settled on qUCB as the batch acquisition 
function best suited to Bayesian optimization applied to 
computational fluid dynamics problems, although they did not 
try UCB/LP, considered only relatively small Gaussian noise 
amplitudes, and did not test on models built from real data. In 
our work, qUCB is recommended as the default choice of batch 
acquisition function when applying Bayesian optimization to 
materials synthesis experiments, at least up to 6 input 
dimensions, when minimizing the number of expensive 
iterations and maximizing confidence in the correctness of the 
result are important.
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