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perty extrapolation for
compositionally complex solid solutions
based on word embeddings†

Lei Zhang, *a Lars Banko,b Wolfgang Schuhmann, c Alfred Ludwig b

and Markus Stricker a

Mastering the challenge of predicting properties of unknown materials with multiple principal elements

(high entropy alloys/compositionally complex solid solutions) is crucial for the speedup in materials

discovery. We show and discuss three models, using experimentally measured electrocatalytic

performance data from two ternary systems (Ag–Pd–Ru; Ag–Pd–Pt), to predict electrocatalytic

performance in the shared quaternary system (Ag–Pd–Pt–Ru). As a starting point, we apply Gaussian

Process Regression (GPR) based on composition as the feature, which includes both Ag and Pd,

achieving an initial correlation coefficient for the prediction (r) of 0.63 and a determination coefficient

(r2) of 0.08. Second, we present a version of the GPR model using word embedding-derived materials

vectors as features. Using materials-specific embedding vectors significantly improves the predictions,

evident from an improved r2 of 0.65. The third model is based on a ‘standard vector method’ which

synthesizes weighted vector representations of material properties as features, then creating a reference

vector that results in a very good correlation with the quaternary system's material performance

(resulting r of 0.94). Our approach demonstrates that existing experimental data combined with the

latent knowledge of word embedding-derived representations of materials can be used effectively for

materials discovery where data is typically scarce.
1 Introduction

Materials science is a driver of technological progress by
development of innovative materials that enable advancements
across industries from electronics to aerospace.1,2 Novel mate-
rials are the driver because of new properties or property
combinations or by replacing existing critical or expensive
materials with less critical ones while at the same time not
sacricing performance. Discovering new materials (fast)
requires accurate prediction of material properties, particularly
in compositionally complex materials with four or more
primary elements. Such systems show promise as Discovery
Platforms, e.g. for electrocatalysis.3 However, they pose signi-
cant challenges for discovery since the possible combinations of
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elements and their compositional ratios render brute-force
screening approaches practically impossible. Additionally, pre-
dicting their properties is difficult due to their complex
compositional interactions and the intricate ways in which
these interactions affect material behavior.4 As such, the accel-
eration of the discovery process for new materials necessitates
the development of new methods to navigate complex compo-
sition-structure–property relationships of promising material
systems.

The integration of computational power and data analysis is
necessary in overcoming the challenges presented by these
material systems.5 Machine learning has emerged as a useful
tool, providing a path for materials scientists to predict and
understand the properties of materials systems.6,7 This transi-
tion from traditional, heuristic approaches to data-driven,
computational strategies signies a transformation of the
eld,8,9 aligning with the complexity of the possible materials of
interest.

Among data-centered approaches, Gaussian Process
Regression (GPR) has demonstrated exceptional versatility and
efficacy across multiple domains, illustrating its capacity to
model complex relationships.10 The adaptability of GPR stems
from its non-parametric approach which allows to adjust its
complexity based on the dataset, a feature that sets it apart from
models like neural networks.11 This exibility renders it
© 2025 The Author(s). Published by the Royal Society of Chemistry
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particularly valuable in applications for complex non-linear
relationships in high-dimensional data spaces.

However, the usefulness, i.e. the predictive power, hinges on
available data and meaningful representations of materials.
Oen, sophisticated adjustments to such models are necessary
to effectively capture complex correlations.12 Possible modi-
cations include appropriate accounting for noise in data and
customization of kernel functions.

A critical part of any data-based approach is the
representation13–15 of the input. In particular, the challenge of
how to represent a material. A simple approach is to just use the
composition.16 This is oen sufficient for interpolation.
However, if the goals is to predict into unknown spaces, any
existing knowledge about a material or similar materials and
their properties is desirable.

In this, the vast expanse of scientic literature represents
a rich, yet not fully exploited, resource.17 Through literature
mining18,19 and vector analysis,20 we can convert the latent
knowledge contained in scientic texts into formats amenable
to machine learning in form of representations.21 The integra-
tion of word embedding-based vector analysis, derived from
literature mining, with machine learning models like GPs,
represents a new path for improving predictive capabilities in
for materials discovery, particularly for complex systems such as
ternary and quaternary materials.

In our example, we present the problem of predicting the
performance of a quaternary materials system for electro-
chemical applications, specically the oxygen reduction reac-
tion (ORR). Here, “performance” is dened as the current
density of electrocatalysis of the ORR at an overpotential of
850 mV. We use existing measurements of ternary systems in
conjunction with representations of materials and properties
based on word embeddings. We examine three distinct
approaches: standard GP modeling based on composition, GP
augmented with material vectors based on word embeddings,
and our ‘standard vector method’.

Our approach improves the prediction capabilities for
compositionally more complex materials by combining
measured data from compositionally less complex materials,
combined with advanced representations of materials through
word embeddings. We illustrate its predictive power and
compare it with the reference approach that solely relies on
materials representations based on composition.

2 Methods
2.1 Dataset description

For our demonstration we use two datasets from two different
overlapping ternary systems (Ag–Pd–Ru and Ag–Pd–Pt) to train
models for property prediction of a shared quaternary system
(Ag–Pd–Pt–Ru). The basic idea is to use compositionally less
complex systems (ternary materials systems) to predict the
behavior of more complex ones (quaternary) in the context of
electrocatalysis, specically the ORR.22–24

Two ternary datasets are used to t models that capture their
correlation with electrocatalytic properties, specically
a current at a xed applied overpotential. These models are then
© 2025 The Author(s). Published by the Royal Society of Chemistry
used to predict the electrocatalytic properties of the shared
quaternary system, which includes all the elements present in
the ternary systems.

The experimental data is sourced from composition-spread
materials libraries (CSML) and described in detail elsewhere.25

Nevertheless, we provide a brief description here for
completeness. The materials libraries were fabricated by co-
sputtering thin lms on 100 mm diameter sapphire wafers (c-
plane) from 4 elemental targets. The targets were confocally
aligned to a 100 mm substrate (target–substrate distance
approx. 12 cm). Target materials had a purity of 99.99,%. Ar
(99.9999%) was used as a sputter gas. The deposition pressure
was 0.667 Pa. The lm thickness was 100–150 nm. The chemical
composition of the materials libraries was measured by energy
dispersive X-ray spectroscopy (EDX) with an acceleration voltage
of 20 kV. 81 measurements were done on a regular grid of 9 × 9
(8.5 mm spacing) on each library. Linear regression was used to
interpolate the composition over the 342 measurement areas of
a 4.5 mm grid that were electrochemically characterized using
scanning droplet cell (SDC) experiments.

Electrochemical measurements were conducted with the use
of a high-throughput SDC. The SDC head incorporates counter
(Pt wire) and reference (Agj AgClj 3 M KCl) electrodes and
a Teon tip with 1 mm diameter. The materials library is con-
nected as working electrode, e.g. the surface of the investigated
sample in every spot where the tip touches the sample. The
electrolyte was replaced for every measurement area. Linear
sweep voltammograms were measured in 0.05 M KOH, pH 12.5,
with a scan rate of 10 mV s−1. All potentials are reported versus
the RHE according to the following equation: URHE (V) = U(Agj
AgClj 3 M KCl) + 0.210 + (0.059 pH), where U(Agj AgClj 3 M KCl)
is the potential measured versus Agj AgClj 3 M KCl reference
electrode, 0.210 V is the standard potential of the Agj AgClj 3 M
KCl reference electrode at 25 °C. Note that 0.059 is the result of
(RT) × (nF)−1, where R is the gas constant, T is the temperature
(298 K), F is the Faraday constant, and n is the number of
electrons transferred during the reaction.
2.2 Modeling approaches

2.2.1 Method 1: Gaussian Process (GP) model with
elemental composition. A Gaussian Process (GP) model based
of elemental composition derived from the ternary datasets is t
to predict the electrochemical current at a potential of 850 mV
for the quaternary system. This sort-of traditional approach
provides a reference for predictions about electrocatalytic
performance. In materials science, GP models have been
effectively applied to predict various properties, including
thermal conductivity26 and electronic structure.27 This model
serves as our baseline, allowing us to evaluate the models with
more nuanced representations against a reference standard.

2.2.2 Method 2: enhanced GP model with material vectors.
The second model is different to the standard GP model by
employing ‘material vectors’ instead of the elemental compo-
sition as a representation for materials. Material vectors are
obtained from a Word2Vec model based on a comprehensive
literature review.28 We retrieve a 200-dimensional vector
Digital Discovery, 2025, 4, 1578–1590 | 1579
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representation of each pure element. Within this 200-dimen-
sional space, we create representations for materials by
a weighted linear combination of the elemental representa-
tions, in line with vector operations in word embedding space.29

By employing material vectors, we use the latent knowledge
from scientic literature and transform it into an explicit,
quantitative form, to improve our model's predictive power.
Like our baseline GP model, we predict each material's elec-
trocatalytic performance, enabling a direct comparison between
these two approaches.

2.2.3 Method 3: standard vector method. The third method
is different from the GP-based models in two aspects. For one,
we introduce a novel approach based on the concept of a ‘stan-
dard vector’. Fig. 1 shows the process how we construct this
‘standard vector’. The idea is to substitute representations of
compositions based on word embeddings of elements and their
linear combinations with a similarity vector obtained by
comparison with known terms related to electrocatalysis,
thereby encoding explicit domain knowledge in the represen-
tation of a material. The similarity of each word embedding
Fig. 1 Illustration plot of standard vector method.

Fig. 2 Dimensionality reduced (t-SNE) map of vector representations fo

1580 | Digital Discovery, 2025, 4, 1578–1590
representation of the composition with the term constitute one
dimension of the standard vector. The process begins with the
assembly of a list of material properties relevant to electro-
catalysis, from which vector representations are generated. Our
property list include “electrocatalyst”, “overpotential”, “Tafel
slope”, “exchange current density”, “stability”, “durability”,
“surface area”, “active site”, “turnover frequency”, “electro-
catalytic activity”, “faradaic efficiency”, “charge transfer”,
“adsorption energy”, “electronic structure”, “electronegativity”,
“crystal structure”, and “surface morphology” – a 17-dimen-
sional space. Fig. 2 shows a dimensionality-reduced map of the
vector representations of the listed terms using t-SNE.30

Each property in the list is chosen based on its known rela-
tionship to electrocatalytic performance and its role in deter-
mining the efficiency of the ORR. For instance, properties such
as overpotential, Tafel slope, and exchange current density are
critical for assessing the electrocatalytic performance of mate-
rials. Stability, durability, and surface area affect the longevity
and effectiveness of catalysts in practical applications. Other
properties like adsorption energy, electronic structure, and
r the chosen electrocatalytic properties and materials.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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crystal structure offer deeper insights into the interaction
mechanisms at the molecular level which might inuence
catalytic behavior and performance. The relative distance of
word embeddings of materials to these properties capture the
co-occurrence, and therefore proximity in embedding space.
Our hypothesis is that proximity of properties and materials
representations in embedding space captures correlations and
thereby provides an improved representation of materials, not
based on their composition, but based on their latent properties
and their relationships.

However, the novelty of our approach is in how these prop-
erty vectors are combined. Instead of simply merging the indi-
vidual 17 similarity values, we calculate a ‘standard vector’ that
represents an ideal electrocatalyst by weighting each property
vector based on the experimental data for the two ternary
systems to reect its importance w.r.t. known catalytic activity
in this material system.

In essence, we create a reference vector based on measured
data which represents optimal characteristics for ORR perfor-
mance for the given materials system. The weighting step,
a tting procedure, is a minimization with constraints. The
weights are adjusted to minimize the squared difference
between ‘experimental indicators’ (current at potential) and
similarity dimensions. In our case, we use measured activity as
experimental indicator, but any reliable known data for mate-
rials correlating with the predicted property could be used in
general.

We then assume that materials which are ‘closer’ in vector
space to this standard vector – measured by similarity metrics
such as cosine similarity – are more likely to exhibit good
electrocatalytic performance. By evaluating materials based on
their proximity to this ‘ideal’ vector, we predict and identify
promising electrocatalysts without relying solely on composi-
tional or structural data features.

Once dened, the standard vector based on the two ternary
systems is a benchmark representation for evaluating materials
in the shared quaternary system. Rather than predicting
performance by predicting the (measured) current directly, we
apply similarity measures to pinpoint materials that align
closely with the ideal standard vector, thereby identifying
candidates with potentially high electrocatalytic performance.

2.2.4 Mathematical details of the standard vector method.
To further clarify the Standard Vector Method, we formulated
the process as follows.

2.2.4.1 Representation of compositions via word embeddings.
Let vi be the word embedding representation of element i, and
let a material composition M consisting of elements {E1, E2, .,
En} be represented as a linear combination:

vM ¼
Xn
i¼1

civi; (1)

where ci represents the fractional contribution of element i in
the material.

2.2.4.2 Property-based similarity encoding. A set of domain-
specic properties {P1, P2, ., Pd} with corresponding embed-
ding representations pj (where j = 1, ., d) forms a basis for
© 2025 The Author(s). Published by the Royal Society of Chemistry
similarity comparisons. The similarity score between a material
M and a property Pj is computed using cosine similarity:

S
�
M;Pj

� ¼ vM � pj

kvMkkpjk
: (2)

The vector sM containing these similarity values forms
a standard vector representation:

sM = [S(M,P1), S(M,P2), ., S(M,Pd)] ˛ ℝd. (3)

2.2.4.3 Construction of the standard vector. Instead of treat-
ing the similarity values independently, we dene an optimal
standard vector s*, which represents an ideal electrocatalyst.
This vector is obtained through a weighted tting procedure
using experimental data. Given a set of materials {M1, M2, .,
Mk} with experimentally measured catalytic activities yi, the
weight optimization problem is formulated as:

min
w

Xk
i¼1

 
yi �

Xd
j¼1

wjS
�
Mi;Pj

�!2

; subject to
Xd
j¼1

wj ¼ 1: (4)

Solving this constrained optimization problem provides an
optimal weight vector w* ¼ ½w*

1;w
*
2;.;w*

d�, which denes the
standard vector:

s* ¼
Xd
j¼1

w*
j pj: (5)

2.2.4.4 Evaluation of new materials. For a new material M0,
its proximity to the standard vector s* is evaluated using cosine
similarity:

Similarity
�
M

0
; s*
�
¼ sM 0 $s*

ksM 0 kks*k : (6)

Materials closer to s* are predicted to exhibit superior elec-
trocatalytic performance.

2.3 Model evaluation

The performance of the rst and second GP model is quanti-
tatively assessed using the Pearson's correlation coefficient (r)
between the actual and predicted current densities, alongside
the coefficient of determination (r2), to gauge the models' ability
to capture variance in the actual measurements.

The third model, employing the standard vector method, is
assessed differently. Given the different nature of its output, we
adapt our evaluation strategy using the correlation coefficient
between the actual current densities and our predictions, the
similarity scores. This metric reects the model's performance
in identifying materials with high electrocatalytic performance
based on their conceptual proximity to the ‘ideal’ electrocatalyst
as dened by the standard vector.

To further underscore the models' applicability to high-
performance electrocatalysts, we introduce a ltering
Digital Discovery, 2025, 4, 1578–1590 | 1581
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Table 1 Comparative elemental composition across systems

System Element
Minimum
content (%)

Maximum
content (%)

Ag–Pd–Ru Ag 10 40
Pd 23 87
Ru 0 45

Ag–Pd–Pt Ag 1 70
Pd 0 47
Pt 17 69

Ag–Pd–Pt–Ru Ag 3 39
Pd 0 28
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criterion, focusing on data points where the current at 850 mV
(current_at_850 mV) is below−0.2 mA cm−2. This is designed to
improve themodels' ability to identify materials with signicant
electrocatalytic activity. By focusing on data points where the
current at 850 mV indicates notable activity, we tailor our
analysis to emphasize materials that, based on our dataset,
stand out for their electrocatalytic performance. This method
allows us to direct our model's focus and analytical efforts
towards those candidates most likely to impact future electro-
catalysts. In other words, for materials displaying low activity,
we are not interested in ‘how low’.
Pt 0 56
Ru 7 67

Table 2 Comparative metrics of current at 850 mV across systems
and their correlations with elements

Metric Ag–Pd–Ru Ag–Pd–Pt Ag–Pd–Pt–Ru

Mean current (mA) −0.278 −0.342 −0.159
Standard deviation (mA) 0.114 0.098 0.074
Minimum current (mA) −0.673 −0.583 −0.366
25% Quantile (mA) −0.348 −0.423 −0.195
Median (mA) −0.248 −0.372 −0.131
75% Quantile (mA) −0.189 −0.271 −0.110
Maximum current (mA) −0.065 −0.063 −0.060
Correlation with Ag +0.766 +0.587 +0.440
Correlation with Pd −0.905 −0.771 −0.502
Correlation with Pt N/A −0.017 −0.771
Correlation with Ru +0.719 N/A +0.719
2.4 Model reproducibility

MatNexus28 underpins our data processing, analysis, and visu-
alization workows. MatNexus supports the standardized
handling of materials science data, ensuring the reproducibility
of our ndings through a workow. We use it for all parts of the
analysis: from initial data preprocessing to feature extraction,
structuring for word embedding model training, and the visu-
alization of datasets and analysis results.

We also use it to create a word embedding model to generate
material vectors, which are then used in conjunction with the
GP model as well as in the standard vector method for predic-
tive analysis.

MatNexus is used to conduct targeted literature queries,
focusing on articles indexed in Scopus with keywords ‘electro-
catalyst’ and ‘high entropy alloy’ published before the year 2024.
We restrict our search to Open Access (OA) articles. This
approach not only aligns with our commitment to open science
but also ensures compliance with copyright laws. Furthermore,
in building our word embedding model, we limit our analysis to
the abstracts of these papers, not the full texts, balancing depth
of analysis with the accessibility of data (See the ESI† Bibliog-
raphy document).

For details of the implementation of MatNexus and its
functionality, refer to our MatNexus repository on PyPI (https://
www.pypi.org/project/matnexus/).28

All relevant codes, experimental datasets, and model
predictions are publicly accessible via GitHub (https://
www.github.com/lab-mids/ccss_word_embedding_prediction),
ensuring that our research can be validated, replicated, or
expanded upon by others.
3 Results
3.1 Dataset overview

This section provides an overview of the datasets used for model
training and prediction (Tables 1, 2), (Fig. 3, 4 and 5). The
training datasets comprise two ternary systems (Ag–Pd–Ru; Ag–
Pd–Pt), the prediction target data set is their shared quaternary
system (Ag–Pd–Pt–Ru).

3.1.1 Ag–Pd–Ru system. The Ag–Pd–Ru system contains
a range of element composition, with Pd showing the highest
compositional range from 23% to 87%, followed by Ru ranging
from 0% to 45% and Ag from 10% to 40%. In terms of elec-
trochemical performance, this system shows a mean current in
1582 | Digital Discovery, 2025, 4, 1578–1590
ORR of −0.278 mA at 850 mV. A correlation analysis reveals
a signicant negative correlation of Pd with electrochemical
performance (−0.905), suggesting that higher contents of Pd
lead to improved performance (lower current indicated better
performance). Conversely, Ru and Ag show positive correla-
tions, +0.719 and +0.766 respectively, indicating that increases
in their contents may not favor performance. This suggests that
optimizing Pd content while minimizing Ru and Ag could
enhance the system's efficiency (Fig. 6 and 7(a)), in line with
chemical intuition.31

3.1.2 Ag–Pd–Pt system. The Ag–Pd–Pt system exhibits
a compositional range with Pd between 0% and 47%, Ag
between 1% and 70%, and Pt between 17% and 69%.

The mean current at 850 mV for the Ag–Pd–Pt system is
−0.342 mA, displaying a slightly better performance compared
to the Ag–Pd–Ru system. The correlation analysis shows
a strong negative correlation with Pd (−0.771) and a very weak
negative correlation with Pt (−0.017), suggesting that Pt's
inuence on performance is minimal. Ag's positive correlation
(+0.587) further implies that, similar to the Ag–Pd–Ru system,
increasing Ag content does not benet the system's perfor-
mance (Fig. 8 and 7(b)).

3.1.3 Ag–Pd–Pt–Ru system. The quaternary system displays
a spread of elemental composition with Ru vary from 7% to
67%, Pd from 0% to 28%, Ag from 3% to 39%, and Pt from 0%
to 56% (Table 1). The performancemetrics show amean current
of −0.159 mA at 850 mV, which is less negative than the other
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Compositional ranges of synthesised materials.

Fig. 4 Current density ranges of synthesised materials.
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two systems, suggesting a comparative decrease in performance
(Table 2).

The correlation coefficients present a complex picture. Pd's
negative correlation (−0.502) is less pronounced than in the
other systems, indicating its diminished inuence in the pres-
ence of Pt, which shows a strong negative correlation (−0.771)
with the current. This suggests that in this system, Pt plays
a more critical role in enhancing performance than Pd. Ru and
Ag show positive correlations, similar to the Ag–Pd–Ru system,
suggesting their less favorable impact on performance (Fig. 9).
3.2 Results of method 1: GP model with elemental
composition

Table 3 and Fig. 10(a and b) present the results of the applica-
tion of Gaussian Process (GP) based solely on elemental
© 2025 The Author(s). Published by the Royal Society of Chemistry
compositions. This approach demonstrates a baseline predic-
tive capability with an overall correlation coefficient (r) of 0.85
and a coefficient of determination (R2) of 0.08. The mean elec-
trochemical current was measured at −0.16 mA cm−2 with
a standard deviation of 0.07 mA cm−2. The model's predictions
deviate slightly, with a mean predicted current of −0.22 mA
cm−2 and a comparable standard deviation of 0.07 mA cm−2.
This method demonstrates a Mean Absolute Error (MAE) of 0.06
mA cm−2 and a Root Mean Square Error (RMSE) of 0.07 mA
cm−2, indicating amoderate level of accuracy in the predictions.
3.3 Results of method 2: enhanced GP model with material
vectors

The GP model's performance signicantly improved using
a word embedding-derived representation of materials as input
Digital Discovery, 2025, 4, 1578–1590 | 1583
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Fig. 5 Stacked step histogram of current density across the samples.

Fig. 6 Color-coded plot of compositional gradients in Ag–Pd–Ru system.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/1
4/

20
25

 4
:5

7:
15

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
(Table 3 and Fig. 10(a and c)). Most notably, the overall R2

increases to 0.65, indicating that themodel accounts for a much
larger proportion of the variance in the data. This suggests
a signicantly stronger relationship between the predictions
and actual measurements when using material vectors. While
the correlation coefficient (r) slightly decreases to 0.83, the
1584 | Digital Discovery, 2025, 4, 1578–1590
model's ability to capture the general trend of the dataset is
markedly improved. This is evidenced by the mean predicted
current of −0.15 mA cm−2, which closely matches the actual
mean current. Additionally, with a standard deviation of
0.05mA cm−2, the predictions are more precise compared to the
composition-based representation. Finally, the MAE and RMSE
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Color-coded plot of current density gradients in: (a) Ag–Pd–Ru system and (b) Ag–Pd–Pt system.

Fig. 8 Color-coded plot of compositional gradients in Ag–Pd–Pt dataset.
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values decreased to 0.03 mA cm−2 and 0.04 mA cm−2, respec-
tively, further conrming the improved accuracy of the model
using material vectors.
3.4 Results of method 3: standard vector method

The standard vector approach which uses weighted vector
representations of material properties results in very promising
improvements of the prediction (Table 3 and Fig. 10(a, d), S1
and S2†). Specic statistical metrics are not provided for this
model such as R2, MAE, or RMSE because the mode does not
predict the current directly but a similarity measure which
strongly correlates with the currents at 0.94. This value proves
a signicant correlation with the quaternary system's material
performance, particularly in predicting lower electrochemical
currents, that is predicting compositions with higher ele-
trocatalytic performance, which are promising candidates for
experimental assessment.

Fig. 11 shows all model predictions in comparison to the
experimental data discarding outliers above a threshold of
−0.075 mA cm−2 along a line across the CSML from the
minimum to the maximum of the activity. The location of the
measured data points are shown as gray background markers,
the color-coded line represents the continuous interpolation of
© 2025 The Author(s). Published by the Royal Society of Chemistry
current values across this direction. Fig. 11(b) shows the
predictions from the three models along the interpolated
measured data. It is notable that the GP model captures the
non-linear behavior of the data more effectively while the
standard vector method exhibits noticeable deviations w.r.t. the
trend across the CSML.
4 Discussion
4.1 Interpretation of results

The outcomes of our study demonstrate that the choice of
representation in computational models is critical for predic-
tion performance. Model 1, GP based on elemental composition
provides a reference prediction. However, its comparatively
lower predictive accuracy (R2 of 0.08) suggest complex
(nonlinear) interplay of composition and catalytic performance
in the quaternary system, where interactions between elements
may not be fully captured using only a compositional
representation.

Model 2, the GP model based on word-embedding based
representations of materials, shows a signicant improvement
in predictive accuracy (R2 of 0.65). We attribute this improve-
ment to the latent knowledge captured through word
Digital Discovery, 2025, 4, 1578–1590 | 1585
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Fig. 9 Color-coded plot of compositional gradients in Ag–Pd–Pt–Ru system.

Table 3 Consolidated statistical analysis of actual vs. predicted electrochemical currents across different models

Metric Gaussian process (GP) GP with embeddings Standard vector method

Mean (actual) (mA cm−2) −0.16 −0.16 −0.16
Mean (predicted) (mA cm−2) −0.22 −0.15 —
Standard deviation (actual) (mA cm−2) 0.07 0.07 0.07
Standard deviation (predicted) (mA cm−2) 0.07 0.05 —
Minimum (actual) (mA cm−2) −0.37 −0.37 −0.37
Minimum (predicted) (mA cm−2) −0.35 −0.07 —
Mean absolute error (MAE) 0.06 0.03 —
Root mean square error (RMSE) 0.07 0.04 —
Overall coefficient of determination (r2) 0.08 0.65 —
Overall correlation (r) 0.85 0.83 0.80
Correlation (r) for current < −0.2 mA cm−2 0.63 0.60 0.94
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embedding representations of the compositions. It demon-
strates that the complex interactions between materials beyond
elemental composition can be captured in representations and
effectively used for prediction.
1586 | Digital Discovery, 2025, 4, 1578–1590
Model 3, the standard vector approach, further exploits rela-
tionships of word embeddings by not directly predicting perfor-
mance but instead focusing on the optimization of a similarity
measure between materials vector representation and a standard
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Experimental results of Ag–Pd–Pt–Ru system (a) and prediction results using GPmodel (b), enhanced GPmodel withmaterial vectors (c)
and standard vector method (d).

Fig. 11 Interpolation results across the whole dataset: (a) illustration of used line from the maximum and minimum current values with inter-
polated results, (b) experimental data and predictions from all models along the direction indicated in (a).

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 1578–1590 | 1587
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vector based on known correlations of certain terms with elec-
trocatalytic performance and experimental data from the two
ternary systems. The high correlation (r) of 0.94 for specic
conditions indicates a success, emphasizing the method's capa-
bility to identify potential high-performing materials within
a dened extrapolation space. Our approach highlights the
potential of using latent knowledge from scientic literature
about materials and their relationships and represents a new
approach for the representation of materials in combination with
experimentally measured data. Nevertheless, the word
embedding-based material representation and the standard
vectormethod offer greater exibility. Unlike the GPmodel, which
is xed to the specic dataset, in particular its elements, the other
approaches are applicable to other material compositions. Future
work will explore non-linear combinations which likely improve
the accuracy of the proposed standard vector approach.

4.2 Comparison with existing literature

Our ndings resonate with and extend existing research in
materials science, particularly the use of machine learning and
vector-based representations for materials prediction.32,33

Several studies have demonstrated the potential of machine
learning models, especially those incorporating innovative data
representations, to outperform traditional computational
methods.34 Our work aligns with these ndings, showcasing the
effectiveness of material vectors for capturing complex inter-
actions. However, we introduce a unique focus on similarity
measures combined with word embedding-derived representa-
tions of materials, a less explored approach within materials
property predictions.

4.3 Advantages of the proposed methods

Word embedding-based representations are directly combined
with experimental data to predict unknown, more complex
composition-property spaces. By using latent knowledge enco-
ded in word embeddings we counterbalance data scarcity typi-
cally prevalent in experimental discovery campaigns, thereby
accelerating the discovery process.

Our standard vector approach introduces a novel approach
by focusing on ‘similarity’ rather than direct prediction. Our
method's success in identifying high-performing materials
based on their similarity to an optimized standard vector
highlights based on experimental data is a tool for material
selection and discovery, especially in systems where direct
performance data may is scarce or hard to predict because of
yet-unknown correlations. In our approach, we combine reli-
able but expensive-to-obtain experimental data with the fuzzy
but cheap-to-obtain correlations in word embeddings. Our
‘standard vector’ can be viewed as a electrocatalysis-specic
sequence of materials features35 for specic materials systems
and is particularly useful in scenarios where data is scarce.

4.4 Limitations and challenges

While our methods demonstrate signicant advancements,
they are not without limitations. For one, the word embeddings
depend on the corpus from which they are built. We have
1588 | Digital Discovery, 2025, 4, 1578–1590
restricted ourselves to literature with open access licenses. More
text data, e.g. from copyright-protected material, could in
principle improve word embeddings. The past and current
publishing routes, however, restrict usage of the knowledge in
literature without special agreements with publishers. Second,
we rely on comprehensive and accurately labeled (ideally
experimental) datasets for training the models and nding the
‘standard vector’. This, in general poses a challenge, particu-
larly in material science, where experimental data can be scarce,
incomplete, or inconsistent. Additionally, the complexity of the
models, especially the standard vector approach, may introduce
difficulties in interpretation and implementation, potentially
limiting their accessibility for broader application.

Future research will focus on addressing these limitations,
possibly through the development of more robust models that
can handle even more sparse or noisy data, and the exploration
of methods to simplify model interpretations without sacri-
cing prediction accuracy.
4.5 Implications for future research

Our study highlights the usefulness of material vectors based on
word embeddings and similarity measures for predicting
material performance, paving the way for advancements in
materials prediction for under-explored compositional spaces
where partial high-quality data already exists. Here are specic
directions for future research:

4.5.1 Integration with experimental approaches.
Combining these computational methods with targeted exper-
imental validation can lead to iteratively more rened models
and accelerated materials discovery. Experiments can verify
predictions, identify regions where models need improvement,
and provide new data to further enhance predictive power to
include elements for predictions of different properties.

4.5.2 Hybrid models. Combining our methods with other
predictive techniques like ab initio simulations or machine
learning algorithms36 could create more robust hybrid, multi-
modal models. These models could leverage the strengths of
different approaches, potentially addressing shortcomings and
enhancing predictive accuracy across varied,multimodal datasets.

4.5.3 Complex material systems. The success shown in this
study encourages applying these methods to other properties of
complex material systems. These could include structural,
energy storage, magnetic properties, etc., i.e. any system where
properties are mainly a function of composition and not of
microstructure. In contrast to composition-based models as
presented here, the word embedding-derived representations
allow arbitrary choices of elemental combinations. We expect
that the near future will allow to use more experimental data for
renement of ‘standard vectors’. Providedmore reliable data for
specic composition-property relationships is be available,
‘standard vectors’ for specic use cases could be dened as
references against which new compositions could be assessed.
New compositions could then be judged w.r.t. (theoretical)
suitability be useful for a specic use case. If several such
standard vectors can be dened, new compositions could be
assessed for their suitability for multi-functional purposes.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00169b


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/1
4/

20
25

 4
:5

7:
15

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
5 Conclusions

Our study has successfully demonstrated the potential of
machine learning and vector analysis techniques in predicting
materials performance in ternary and quaternary composi-
tionally complex solid solutions based on parameter-free
Gaussian Process (GP) and literature-derived materials repre-
sentations. The use of a GP model with elemental composition
established a baseline for predictive accuracy, achieving a coef-
cient of determination value (r2) of 0.08. An improved version
of the GP model based on material vectors as representations
for the composition derived from literature mining marks
a signicant improvement, with an improved r2 value of 0.65.
However, the most notable advancement was achieved with our
proposed similarity vector approach. This method, which relies
on the construction and optimization of property vectors,
demonstrates a remarkable correlation with experimental
outcomes, evidenced by a correlation value of 0.94. The superior
performance underscores the potential of word embedding-
based methods to leverage knowledge and material correla-
tions from existing literature.
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