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Quantum error mitigation (QEM) strategies are essential for improving the precision and reliabil-
ity of quantum chemistry algorithms on noisy intermediate-scale quantum devices. Reference-state
error mitigation (REM) is a cost-effective chemistry-inspired QEM method that performs well for
weakly correlated problems. However, the effectiveness of REM is often limited when applied to
strongly correlated systems. Here, we introduce multireference-state error mitigation (MREM),
an extension of REM that systematically captures quantum hardware noise in strongly correlated
ground states by utilizing multireference states. A pivotal aspect of MREM is using Givens rota-
tions to efficiently construct quantum circuits to generate multireference states. To strike a balance
between circuit expressivity and noise sensitivity, we employ compact wavefunctions composed a few
dominant Slater determinants. These truncated multireference states, engineered to exhibit sub-
stantial overlap with the target ground state, can effectively enhance error mitigation in variational
quantum eigensolver experiments. We demonstrate the effectiveness of MREM through comprehen-
sive simulations of molecular systems HoO, N, and F5, underscoring its ability to realize significant
improvements in computational accuracy compared to the original REM method. MREM broadens
the scope of error mitigation to encompass a wider variety of molecular systems, including those

exhibiting pronounced electron correlation.

I. INTRODUCTION

Quantum computers hold considerable promise for
solving computationally infeasible problems for classical
computers [TH3]. They have the potential to speed up the
simulation of quantum systems and to offer exponential
memory storage capabilities [4H6]. Quantum chemistry,
in particular, is expected to gain potential long-term ben-
efits from advances in quantum computing [7HIT]. How-
ever, current noisy intermediate-scale quantum (NISQ)
devices [12] are susceptible to noise, which can result in
loss of coherence during computation, thus undermining
potential quantum advantages [I3 [14]. Even for NISQ
algorithms featuring shallow circuits, such as the varia-
tional quantum eigensolver (VQE) [I5, [16] or variational
quantum imaginary time evolution (VarQITE) [T7HI9],
errors inevitably accumulate during computation, lead-
ing to unreliable results. The current number and fidelity
of physical qubits do not meet the demands of fault-
tolerant quantum computing utilizing quantum error-
correcting codes [20H23]. Therefore, pursuing alternative
approaches to achieve meaningful results and accelerate
the practical application of NISQ devices is crucial.

Research in quantum error mitigation (QEM) shifts
the focus from hardware resources to sophisticated in-
formation processing techniques [24H43]. QEM typically
involves executing an ensemble of noisy circuits multi-
ple times or making moderate circuit modifications, fol-
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lowed by post-processing the noisy data to infer ideal
computational results. Numerous QEM methods have
been proposed to improve the quality of results calcu-
lated with NISQ hardware, including error extrapola-
tion [26] B5], probabilistic error cancellation [26] B6],
virtual distillation [30, B7], measurement error mitiga-
tion [32] B3], 4], symmetry constraints [29] [40], subspace
expansions [34], [39], learning-based methods [31], B8] [42]
13], and reference-state error mitigation (REM) [28]. The
cost of using a QEM strategy is paid in additional sam-
pling costs, which primarily determine the feasibility and
scalability of a QEM protocol. Many QEM methods in-
cur exponential sampling overhead as circuit depth and
qubit count increase.

Several universal frameworks have been proposed to
evaluate the minimum sampling requirements of gen-
eral QEM protocols, highlighting the inherent exponen-
tial challenges to QEM scalability [44H47]. These frame-
works provide task-agnostic guarantees, assuming no
prior knowledge about the problem structure. However,
in specific domains such as quantum chemistry, physi-
cally motivated assumptions — for example, the avail-
ability of a good trial wavefunction or an approximate
model of the target state — can often be leveraged to de-
sign more efficient QEM strategies, significantly reducing
the sampling cost in practice.

The REM method, described in detail in Sec. [[IB]
leverages chemical insight to provide a low-complexity
error mitigation approach, requiring at most one addi-
tional algorithm, e.g. VQE/VarQITE iteration [28] 48§].
The idea of REM is to mitigate the energy error of a
noisy target state measured on a quantum device by first
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quantifying the effect of noise on a close-lying reference
state. The reference state, often also set to be the initial
state of the calculation, is chosen to be (i) exactly solv-
able on a classical computer and (ii) practical to prepare
and measure on a quantum device. The cost of imple-
menting REM is solely attributed to the preparation of
the reference state on a quantum device and the deter-
mination of its exact/noiseless energy using a classical
computer. Provided that the reference state is also the
initial state, there is no need for additional measurements
of the reference state’s energy on a quantum device.

The first work on REM demonstrated the use of a
single-reference Hartree-Fock (HF) state to achieve sig-
nificant error mitigation gains [28]. The HF state, de-
scribed as an “uncorrelated” single determinant, can be
easily prepared on a quantum computer using only Pauli-
X gates. The circuits for HF state preparation maintain
a constant complexity and are Clifford circuits, which
can be efficiently simulated classically, as stated by the
Gottesman-Knill theorem [49]. The HF state serves as
the starting point for many wavefunction theories and
ensures sufficient overlap with the target ground state in
most molecules [15], [16 50]. The effectiveness of using
an HF reference for REM has subsequently been repeat-
edly demonstrated, e.g., in Refs. [28[48] 51]. In contrast,
random references generated from Clifford groups are al-
most guaranteed to be ineffective. The REM method
combined with single-reference states such as HF nearly
establishes a lower bound on QEM costs for quantum
chemistry applications, as it incurs only the classical com-
putational cost of a trivial state.

Although REM has proven effective in weakly corre-
lated systems, its utility is more limited in the presence
of strong electron correlation, such as in bond-stretching
regions [28]. This limitation arises because REM assumes
that the chosen reference state — typically a single Slater
determinant (e.g., Hartree-Fock) — is a reasonable ap-
proximation of the target ground state. However, in sys-
tems with strong correlation, the exact wavefunction of-
ten takes the form of a multireference (MR) state, i.e., a
linear combination of multiple Slater determinants (SDs)
with similar weights. In such cases, a single determinant
no longer provides sufficient overlap with the true ground
state, and using it as a reference leads to inaccurate er-
ror mitigation. Consequently, REM becomes unreliable
for these problems, motivating the need for an extended
framework that incorporates multiconfigurational states
with better overlap to the correlated target wavefunction.

In this work, we address this limitation by introducing
multireference-state error mitigation (MREM), an exten-
sion of REM that systematically incorporates MR states
into the error mitigation protocol. MREM uses approx-
imate MR wavefunctions generated by inexpensive con-
ventional methods and prepares them on quantum hard-
ware using physically motivated, symmetry-preserving
quantum circuits. In particular, we employ Givens ro-
tations to construct multireference states with controlled
expressivity and efficient hardware implementation.

View Article Online
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While Givens rotations are central to our implementa-
tion, several other techniques exist for MR state prepara-
tion. These include low-depth adaptive ansétze [52, 53],
adiabatic state preparation [54] [55], non-orthogonal sub-
space methods [56H58], matrix product state prepara-
tion [59H62] and direct compilation techniques for arbi-
trary quantum states [63, [64]. While each method offers
its own advantages — in particular, compact circuits or
systematic entanglement control — they frequently sac-
rifice exact symmetry preservation, entail intricate gate
layouts, or demand significant ancillary resources. In
contrast, Givens rotations offer a structured and phys-
ically interpretable approach to building linear combina-
tions of SDs from a single reference configuration. They
preserve key symmetries such as particle number and
spin projection, and are known to be universal for quan-
tum chemistry state preparation tasks [65]. These fea-
tures, along with widespread prior use in constructing
symmetry-adapted ansétze [65H69], make Givens-based
circuits a compelling and efficient choice for implement-
ing MREM (see Sec. [[ID).

To avoid confusion, we want to note that the
“multireference”-states used in MREM are not neces-
sarily obtained through conventional quantum chemistry
multireference methods. Rather, they refer to truncated
multi-determinant wavefunctions,i.e., a linear combina-
tion of SDs, derived from various classical methods in-
cluding both single- and multireference approaches, as
detailed below.

The rest of this paper is organized as follows. In Sec.
[T} we provide the basic concepts of VQE, an overview of
the original REM, the basics of Givens rotations, and the
methodology for realizing MREM using Givens rotations.
Sec. [[II] outlines computational details. In Sec. [[V] we
demonstrate the performance improvements of MREM
compared to single-reference REM for the molecular sys-
tems HyO, Ny, and Fy. Finally, Sec. [V] offers our con-
clusions and perspectives on the future directions of the
MREM method.

II. THEORY
A. The variational quantum eigensolver

While REM and our extension MREM do not rely
on any specific variational algorithm, we have chosen to
demonstrate the approach in the framework of VQE —
perhaps the most well-known variational quantum algo-
rithm — for familiarity. The electronic Hamiltonian H
of a molecular system can be expressed in second quan-
tization as

N . 1 N
H= Z hga;gaq + 3 Z g;;a;agasar, (1)
Pq

pqrs

where hi and g,; represent the one- and two-electron

A (1)

integrals, and a,'"’ represent the fermionic annihilation
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(creation) operators in spin-orbital p. In quantum com-
puting, a fermion-to-qubit mapping such as the Jordan-
Wigner (JW) [70] or Bravyi-Kitaev [71] transformation
is required to convert the fermionic Hamiltonian, Eq. ,
into a qubit Hamiltonian, expressed as a sum of N-qubit
Pauli operators P,:

f{ - Zhapom (2)

with coefficients hy. The VQE algorithm aims to find
E(0), an approximation to the ground state energy E
dependent on circuit parameters @ such that

Ey < B(6) = min(1(6)|H|1/(9)). (3)

We employ an ansatz, a parameterized quantum cir-
cuit U(0) to prepare a trial quantum state [1(0)) =
U(8) [4), and calculate the energy expectation value
from many measurements. The number of measurements
(shots) for energy estimation using the molecular Hamil-
tonian scales as O (N 4/ 62), where € is the desired preci-
sion and N is the number of qubits. The ansatz struc-
ture enables a quantum computer to explore a wide range
of quantum states within a constrained expressible sub-
space, with optimization of its parameters guiding the
search within this space. The state |1)g) = Uiyt |0) is an
initial state that, optimally, has a large overlap with the
ground state.

B. Reference-state error mitigation

Noise in the quantum system disrupts state prepa-
ration and measurements in quantum algorithms, like
the VQE, limiting the ansatz’s accessible space. Con-
sequently, the energy estimate from the noisy VQE will
be significantly higher than the true ground state energy.
REM can effectively mitigate VQE energy errors by cap-
turing the energy error caused by noise in a well-chosen
reference state.

The procedure of REM, as applied to VQE, proceeds
as follows: First, a reference state |iyef) is selected, and
its exact or noiseless energy Feoxact(Brer) is determined
using a classical computer. Next, this reference state is
prepared on a quantum computer, and the corresponding
noisy energy Evqg(Orer) is measured. The effect of noise
on the reference state is then quantified by the difference
A-EREM = EVQE(Bref) — Eexact (Bref)' SUbsequentIYv the
VQE algorithm is executed using the same circuit struc-
ture as used for preparing the reference state, yielding a
noisy energy estimate EvqQg(@min,vqr) corresponding to
the optimized parameters. Finally, the REM correction
is applied to obtain an error-mitigated energy:

EreM (Omin,vae) = EvQe(Omin,voe) — AEreMm.  (4)
A good first choice of |1)yef) is the single-reference HF
state:

Vur) = &4}, -4},

|0)®2™ = |0--.01---11), (5)
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where n. denotes the number of electrons, and 2m
is the total number of spin-orbitals. In this work,
we chose an interleaved spin ordering of electrons for
a Slater determinant. For instance, a generic singlet
(S, = 0) HF state is represented as |[0---01---11), i.e.,

g ang, nn¢), where the rightmost qubit refers

to the first qubit, and nf"ﬁ € {0,1} represent the oc-
cupation number of spin-orbitals with electron spins «
or 3. Here, n, = ng = n./2 indicate the number of
each spin for the S, = 0 state. In the JW mapping,
each qubit corresponds to a spin-orbital of the molecular
system, where the |0) and |1) states locally encode the
occupation of each spin-orbital.

C. Multireference-state error mitigation

As outlined previously, the REM framework is general
and can accommodate any reference state that is both
practical to prepare on a quantum device and exactly
solvable on a classical computer. The multireference-
state error mitigation (MREM) strategy presented here
constitutes a specific instantiation of REM, in which
the reference state is a multiconfigurational wavefunc-
tion. The primary distinction between MREM and ear-
lier single-reference REM implementations lies in Steps 1
and 2 of the general procedure (see Sec. . These steps
involve the selection and preparation of a multireference
(MR) state — a superposition of multiple Slater determi-
nants — to better approximate the correlated electronic
structure of the system:

[PMR) = Z cjlnn - mana). (6)

As illustrated in Fig. the steps of MREM are:

1. Select a suitable (possibly truncated) MR state
guided by conventional quantum chemistry theo-
ries and determine its exact/noiseless energy with
affordable cost on a classical computer.

2. Prepare the MR state on quantum hardware (here
using Givens rotations, see Sec. and measure
its noisy energy Evqr(Orer) for the complete circuit
(see Fig.|L(c)). The noise-induced deviation of the
MR state is quantified as

A-EMREM = EVQE(ercf) - Ecxact(ercf)'

3. Run the VQE optimization with the identical cir-
cuit used in the previous step to extract the noisy
ground-state energy Evqg(Omin,vQE)-

4. Subtract the previously determined energy offset
AFENReM to yield the error-mitigated result:

ErreM (Onin vae) = EvQe(Omin, voe) — AEMREM-
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FIG. 1. Givens-based MREM method description. (a) The workflow begins with conventional quantum chemistry methods (e.g.,
CISD, CCSD, DMRG) evaluating MR states, which are subsequently prepared on quantum hardware through Givens rotations.
This MREM approach provides enhanced error mitigation capabilities compared to the single-reference REM methods, as
illustrated in the energy landscape diagram where the MREM solutions (orange solid line) better approximate the exact
solution (blue line) compared to the single-reference approaches (orange dashed line). (b) A MR state preparation circuit:
parameterized Givens rotations generate excited configurations from an HF state. (c¢) Schematic of the complete quantum
circuit used in this work. A hardware-efficient ansatz, comprising Ry single-qubit rotations and a linearly entangling layer of
CNOT gates, is placed before the state preparation circuit. By placing the ansatz in front and initializing all parameters to zero,
the HEA acts as the identity on an initial |0)®™ state in the noiseless case. However, under noisy execution, it introduces gate
noise, thereby ensuring that both the reference and VQE-optimized energy measurements are affected by identical circuit-level

noise, enabling consistent error mitigation.

Importantly, in Steps 2 and 3, we maintain consistency
of circuit structure by employing the identical full cir-
cuit — comprising both state preparation and ansatz —
across all noisy measurements, whether of the reference
state or of the VQE-optimized ground state. This en-
sures that any observed discrepancies in measurement
outcomes stem solely from differences in the states them-
selves, rather than from variations in the noise character-
istics of different circuit implementations.

Our Givens-based MREM implementation is designed
to flexibly incorporate MR states derived from a range
of conventional quantum chemistry methods that cap-
ture electron correlation. In this work, we demon-
strate this flexibility using MR states obtained from post-
Hartree—Fock single-reference methods such as configura-
tion interaction with singles and doubles (CISD) [72] and
coupled cluster with singles and doubles (CCSD) [73], as
well as multireference methods like the density matrix
renormalization group (DMRG) [74].

While this versatility is a strength of the approach, it
also introduces practical challenges in implementation.
A key concern is the efficient preparation of the chosen
MR states on quantum hardware without incurring ex-
cessive circuit complexity. If state preparation becomes

too costly in terms of gate depth or non-Clifford re-
sources, the additional noise can negate the benefits of
improved expressivity. To address this trade-off, we em-
ploy truncated wavefunctions that retain only a small
number of significant configurations — 2-3 SDs in this
work — aligning closely with the principles of selected
configuration interaction [75] [76] or full configuration in-
teraction quantum Monte Carlo [T7H80]. This simplifica-
tion strikes a practical balance between error mitigation
performance and the cost of additional circuit depth and
noise.

D. Givens rotations

Givens rotations provide a computationally efficient
framework for implementing the transformations re-
quired in the preparation of MR states within quantum
circuits. In our approach, MR states are constructed
by applying a sequence of Givens rotations to a single-
reference determinant, systematically introducing elec-
tronic excitations to generate coherent superpositions of
multiple Slater determinants.

Mathematically, a Givens rotation operates through a
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unitary transformation matrix that acts on two selected
elements while leaving others unchanged. The fundamen-
tal block matrix takes the form

_ ( cos(6/2) —sin(6/2)
U(®) = (sm(e/z) cos(6/2) ) "

These rotations serve as fundamental operators that en-
able precise control over configuration state mixing. Im-

J
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portantly, they can preserve critical physical symme-
tries, notably the particle number conservation and the
z-projection of the system’s total spin, ms. The parti-
cle number conservation is manifested through the com-
mutation relation [G, N] = 0, where N is the particle-
number operator. Conservation of mg is achieved by re-
stricting rotations to operations between same-spin or-
bitals.

In the context of quantum circuit implementation, con-
sider the extension of Eq. to a d = 2 Hilbert subspace:

oo 3y i) e
0 0 0 1 —{#] Ry (6/2) L=

The rotation G(#) can mix the |01) and |10) basis states
while leaving the |00) and |11) states unchanged. Under
the JW mapping, this operation corresponds to a single-
electron excitation among spin-orbitals (without consid-
ering its parity).

Beyond single excitations, the Givens framework can
be extended to describe higher-order excitations. In par-
ticular, the four-qubit “double-excitation” Givens rota-
tion G(?)(0), which rotates the [0011) and |1100) states
as follows:

G (6)[0011) = cos(8/2)|0011) + sin(6/2)[1100),
G®(6)[1100) = cos(6/2)|1100) — sin(6/2)|0011).

The decomposition of G(?)(#) into one- and two-qubit
gates is shown in the ESI [81].

In addition, controlled Givens rotations are introduced
to guarantee universality in our circuit design. Formally,
a controlled single-excitation rotation, CG(6), acts on a
three-qubit subspace by applying a Givens rotation to
two target qubits conditioned on the control qubit being
in the |1) state:

CG(0)|1ab) = |1) ® G(6) |ab) ,
CG(6)|0ab) = |0) @ |ab)

where |ab) denotes the state of the two target qubits.
Controlled Givens rotations enable the selective excita-
tion of a specific configuration within a superposition. As
a result, individual components of a multireference state
can be independently addressed and coherently manipu-
lated.

(10)

E. Givens-based multireference state preparation

In the JW mapping, we consider the state |0011) =
e—o— as a single-reference state with two electrons and

(

four spin-orbitals. Here, @ and o represent the a and
[ electron spins, respectively. This state can, for exam-
ple, represent the HF state of the Hy molecule near the
equilibrium bond length using a minimal basis set.

Our approach prepares the multireference state by gen-
erating excited configurations from the single-reference
state. This is achieved by rotating the diagonal-pair two-
qubit |01) and |10) subspaces in the Fock space using
Givens rotations. As shown in Fig. [1|(b), the first Givens
rotation G(61) and the second Givens rotation G(62) ro-
tate the subspaces of qubits 1 and 3, and qubits 2 and 4,
respectively. These rotations are applied to spin-orbitals
with the same spin, thereby preserving m; of the molecu-
lar system. The four SDs shown in Fig. [I| (b) account for
all possible spin-conserving configurations in our case:

0_q o +0b +c +d (11)

where a, b, ¢, d are the coefficients of the respective SD.

Considering a more complicated example, the ground
state of stretched HyO (4e,40) (with four active elec-
trons and orbitals), when truncated to the leading three
configurations, is typically represented as a |[00001111) +
b|00110011) + ¢]11001100) (assuming HF molecular or-
bitals) in the JW mapping. This state can be prepared
through the sequential application of generalized Givens

rotations: CGY 741 (02) Gia45(61)]00001111). Here,
the first subscript in the CG(?) gate indicates the con-
trol qubit, while subsequent subscripts denote the target
qubits. Both G and CG® gates exclusively excite the
HF determinant |00001111).

To reduce computational complexity, we adopt the
qubit tapering approach that exploits inherent Hamil-
tonian symmetries, specifically Zy Pauli symmetries [82].
This technique maps qubit operators into the optimal
symmetry eigensectors, effectively eliminating redundant
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degrees of freedom and reducing the total qubit count re-
quired for the quantum simulation. For our HyO (4e, 40)
example, qubit tapering reduces the reference state to
a more compact form: a]00001) + b|00110) + ¢|11001).
This tapered form is derived by examining the qubits re-
moved by tapering and mapping the corresponding con-
figurations from the full Hilbert space onto the reduced
subspace.

However, in doing so, the transformation disrupts the
direct correspondence between spin-orbital occupations
and qubits, which means Givens rotations alone are no
longer sufficient to construct general MR states. To ad-
dress this, we introduce controlled-X gates, which en-
ables the preparation of specific configurations in the re-
duced qubit space by conditionally modifying bitstring
patterns. This provides a mechanism for realizing SDs
that cannot be directly generated through Givens rota-
tions alone due to the altered qubit mapping.

For our HoO (4e,40) example, the final gate sequence
implementing the tapered MR state employs a subset of
the general gate set {CG,G,CX}, and consists of the
following operations:

CX471 CX475 G4,1(92) CX273 G271(91) |00001>7 (12)

where the subscripts in C'X; ; denote that 4 is the control
qubit and j is the target qubit. This circuit is manually
constructed to reproduce the tapered MR state, with C X
gates ensuring correct excitation structure in the reduced
qubit space.

The rotation parameters #; and 0, are determined
through the solution of the following system of equations:

a = cos (01/2) cos (62/2) ,
b=sin(0,/2), (13)
¢ =cos (61/2)sin (02/2),

where a, b, and ¢ again directly correspond to the coeffi-
cients of the the target MR states.

IIT. COMPUTATIONAL DETAILS
A. Benchmark systems and reference states

We evaluate the performance improvement of MREM
over single-reference REM in treating electron correlation
by conducting noisy VQE simulations on three represen-
tative small molecular systems: HoO, No, and Fy. While
the ground states of Ny, H,O and Fs are reasonably well-
described by single-reference methods at equilibrium ge-
ometry, bond dissociation processes demand methods ca-
pable of capturing strong correlation effects. These sys-
tems form a small, targeted subset for probing strong cor-
relation in small molecules, particularly in bond-breaking
regimes, thereby serving as useful test cases for evaluat-
ing quantum error mitigation strategies.

Second-quantized Hamiltonians with restricted HF or-
bitals were computed using PySCF [83], with correlation-
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consistent basis sets: cc-pVDZ for HoO and Fs, and cc-
pVTZ for Ny. Active space electronic Hamiltonians were
extracted via ActiveSpaceTransformer in Qiskit [84],
with active spaces of HoO (4e,40), Ny (6e,60), and
Fs (10e,60). All fermionic Hamiltonians were mapped
to qubits using the JW mapping. Qubit tapering re-
duced the number of qubits as follows: H,O (8 — 5),
Ng (12 — 8), and F2 (12 — 8). Exact diagonalization of
the resulting qubit Hamiltonians was conducted using the
NumPyMinimumEigensolver algorithm.

The target MR states were obtained through con-
ventional quantum chemistry methods including CISD,
CCSD (using PySCF), and DMRG (using block2 [85]).
The resulting wavefunctions were converted into
state vectors using the import_state function in
PennyLane [86], from which the relevant Slater determi-
nants and their coefficients were extracted [87].

Approximate MR states were constructed by selecting
2-3 dominant Slater determinants based on their weight
in the full wavefunction. For H,O, we used CCSD with a
6-31G basis set; for Fy, CISD with STO-6G; and for Ny,
DMRG with cc-pVTZ. We note that the basis set used to
generate the MR state does not need to match that of the
target Hamiltonian; smaller basis sets can still provide
sufficiently accurate coefficients for the limited number
of retained determinants, significantly reducing classical
computational cost.

For the wavefunction ansatz, we employed a hardware-
efficient ansatz (HEA), specifically the Ry-linear ansatz
URY (0), with 5 layers for HyO, Fa, and 20 layers for
N, [50]. This ansatz is well suited to near-term quantum
hardware due to its shallow depth, compatibility with
native gate sets, and adaptability to device-specific con-
nectivity constraints. However, it is known to suffer from
trainability and optimization challenges [88], particularly
in systems involving more than 20 qubits.

In the context of MREM, the interplay between the
ansatz and state preparation circuits also requires care-
ful consideration, especially regarding their ordering and
initialization behavior on quantum hardware. Concern-
ing the initial state preparation, it is important to point
out that Ug, only acts trivially as the identity on the all-
0 state, Ug, (0)]0) = |0) for @ = 0. Finding parameters
for which Ug, (0) acts as the identity on a general initial
state is not trivial. Thus, we place the Ry-linear ansatze
before the state preparation circuit, i.e., UinitUg, |0) in-
stead of URY Usnit |0}, as shown in Fig. c).

Table [] summarizes key variables for each system,
including the number of qubits after tapering, ansatz
depth, reference wavefunction source, and the number
of Slater determinants used.

B. Quantum circuit implementation and noise
modeling

Quantum circuits and the VQE algorithm were im-
plemented using the Estimator module of Qiskit Aer
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# gbs L MR source # SDs
5 CCSD/6-31G 3
5 CISD/STO-6G 2
20 DMRG/cc-pVTZ 3

System
H20 (4e, 40; cc-pVDZ) 5
F2 (10e, 60; cc-pVDZ) 8
N2 (6e, 60; cc-pVTZ) 8

TABLE 1. The number of qubits (# gbs), the number of re-
peated layers, L, in the Ry-linear ansitze, the theoretical
sources for MR states, and the number of prepared SDs for
each simulated system.

0.13.1. For all Estimator simulations, each energy eval-
uation was estimated using 1 x 107 sampling shots. To
accelerate simulations, we enabled the approximation
option of the Estimator, which approximates the sam-
pling distribution of measurement outcomes as a nor-
mal distribution. This approximation method signifi-
cantly improves efficiency by avoiding explicit sampling,
while still incorporating statistical noise. However, this
method does not model readout errors, and therefore our
results primarily reflect the effects of gate noise.

Noise simulations were performed wusing the
FakeSydneyV2 backend noise model, which incor-
porates depolarization and thermal relaxation errors on
all single- and two-qubit gates. Device-specific noise
parameters, including gate errors, durations, readout
errors, and decoherence times, were derived from real
IBM device calibration data [89].

For variational optimization, we used a gradient-free
classical optimizer based on the implicit filtering (ImFil)
algorithm, as implemented in the scikit-quant pack-
age [90]. This optimizer is well suited for noisy, high-
dimensional landscapes with many local minima.

C. Enforcing Spin Symmetry

HEA, while favored for their low circuit depth and
hardware compatibility, do not inherently preserve phys-
ical symmetries. This lack of symmetry adaptation can
result in qualitatively incorrect variational states, man-
ifesting as nondifferentiable cusps in potential energy
surfaces (PES) and significant spin contamination [91].
Such issues are particularly pronounced in systems like
H50 and Ny, where an accurate description of the singlet
ground state is essential. Quantum noise further exacer-
bates symmetry breaking, as gate errors and decoherence
can push the variational state out of the desired symme-
try sector.

To address these symmetry-breaking effects, we intro-
duce a spin penalty term into the qubit Hamiltonian:
H' = H + )\-S?, where S? is the total spin angular
momentum operator and A > 0 is a tunable penalty co-
efficient. Since our goal is to recover the singlet ground
state (S = 0), this penalty lowers the energy of spin-
pure singlet states relative to spin-contaminated alter-
natives. Importantly, this linear penalty form exploits
the fact that the eigenvalues of S? are non-negative and
minimized for singlets. Unlike the standard squared de-
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viation formulation, - (82 — (S +1))2 [16], this linear
variant avoids introducing a large number of additional
Pauli terms, thereby reducing measurement overhead in
noisy simulations.

In our simulations, we set A = 0.1 for H,O and A = 0.5
for N5, based on empirical tuning. These values were suf-
ficient to suppress spin contamination and stabilize VQE
convergence without significantly distorting the underly-
ing energy landscape. For Fy, where the HEA did not
lead to appreciable symmetry breaking, no penalty term
was applied.

IV. RESULTS AND DISCUSSION

In this section, we evaluate the performance of MREM
by computing potential energy surfaces for our collection
of molecules: HyO, Ny, and Fo. Fig. [2] shows compar-
isons between MREM and single-reference REM. In this
figure, VQE results using an HF initial state is labeled
as “VQE-HF”, while the corresponding REM-corrected
curve is denoted by “REM-HF”. Similarly, the VQE data
calculated using a linear combination of n SDs (Table [I)
as initial state (and reference) is labeled “VQE-nSDs”,
while its corresponding MREM-correction is denoted by
“MREM-nSDs”.

Note also that in these tests, we compare to a computa-
tional accuracy. The latter threshold is defined as an er-
ror of 1.6 x 1073 Hartree (1 kcal/mol) with respect to the
exact result obtained in the complete absence of noise, us-
ing the same level of theory. We make this point because
a given level of theory need not be exact with respect to
reality. In other words, a calculation with computational
accuracy need not have the chemical accuracy needed
for realistic chemical predictions, a distinction suggested
in [28].

For HyO the MR state is constructed using three dom-
inant Slater determinants via two-qubit Givens rotations
(Eq. )7 enabling efficient generation of single excita-
tions. Due to the additional circuit complexity, the VQE-
3SDs results exhibit higher energy compared to VQE-HF,
as depicted in Fig. However, after applying the
REM correction, MREM-3SDs yields a substantial re-
duction in error and recovers a more accurate potential
energy surface. This highlights the importance of com-
bining MR states with error mitigation: although MR
states alone may not improve noisy VQE outcomes, they
serve as a more expressive and physically grounded ref-
erence for the mitigation step. The gate-efficient MR
construction thus enables MREM to extract meaningful
physical information in noisy conditions, while keeping
circuit overhead moderate.

The Ny molecule (Fig. presents a greater chal-
lenge due to its strong multireference character. Cap-
turing the relevant correlation requires MR states with
double excitations, implemented using four-qubit Givens
rotations (G(?)). However, the decomposition of G(?)
is not gate-efficient (see the ESI [81]), resulting in sub-
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FIG. 2. Comparisons of MREM and single-reference REM for PESs. PESs (top) and absolute errors (bottom) are computed for
(a) H2O (4e, 40; cc-pVDZ) symmetric stretching, (b) N2 (6e, 60; cc-pVTZ), and (c) F2 (10e, 60; cc-pVDZ) bond dissociation.
The cyan-shaded areas represent the computational accuracy below 1.6 x 10~% Hartree (1 kcal/mol).

stantial circuit depth and elevated noise. Consequently,
the unmitigated VQE-3SDs performs worse than VQE-
HF in both energy accuracy and the overall PES pro-
file. Nonetheless, the error-mitigated MREM-3SDs re-
covers much of the expected physical behavior in the
bond-stretching region. The improved PES shape and
consistently reduced errors demonstrate that when fac-
ing a balance between expressivity and circuit complex-
ity, using MR states can provide clear advantages when
combined with error mitigation.

The F2 molecule (Fig. is a prototypical example
where a compact MR state with two selected SDs suffices
to capture the essential near-degeneracy between bond-
ing ¢ and antibonding ¢* orbitals during bond-stretching
region. This leads to near-computational accuracy in
MREM-2SDs, with errors reduced by approximately two
orders of magnitude compared to the noisy VQE results
and by one order of magnitude compared to the REM-HF
results. Despite the additional noise in MREM-2SDs cir-
cuits, the MR state provides a better initialization that
improves convergence during VQE optimization, particu-
larly in regions where R < 1.5 A, where noisy VQE often
fails due to local minima.

We additionally include the initial energies of both the
exact and noisy MR states in the ESI [§]]. Due to hard-
ware noise, noisy VQE only provides lower energies than
the noisy MR initial states in the HoO bond-stretching
region. In all other cases noisy MR provides lower en-
ergies. Importantly however, our MREM-corrected VQE
results consistently surpass the exact MR initial energies.

V. CONCLUSION AND OUTLOOK

In this work, we have developed a multireference er-
ror mitigation (MREM) framework for improving quan-
tum simulations of strongly correlated molecular sys-
tems. Central to this approach is the preparation of mul-
tireference (MR) states that exhibit substantial overlap
with the target ground state, constructed from conven-
tional quantum chemistry methods such as configuration
interaction, coupled cluster, or the density matrix renor-
malization group. We introduce an efficient and physi-
cally motivated scheme to prepare these states on quan-
tum hardware using Givens rotations, and validate the
resulting Givens-based MREM framework through noisy
digital quantum simulations of HoO, N5, and Fy. Our
results demonstrate two key advantages: (i) MR refer-
ences enhance REM performance over single-determinant
schemes, providing physically motivated energy error
mitigation at low cost, and (ii) Givens-encoded MR states
serve as robust initializations for VQE, reducing the risk
of becoming trapped in local minima and accelerating
convergence (see the ESI [81]). While increasing the
number of reference states can introduce additional cir-
cuit noise, our results suggest that the improved mitiga-
tion performance outweighs this cost — particularly in
shallow circuit regimes relevant to near-term hardware.

MREM is an error mitigation framework that can be
integrated with a broad class of variational quantum al-
gorithms beyond VQE, offering flexibility for near-term
quantum chemistry applications. Within this framework,
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the primary scalability challenge arises from the circuit
complexity required for MR state preparation, which rep-
resents the most essential and resource-intensive sub-
routine. To address this resource bottleneck, future
work will focus on developing more compact circuit
constructions that preserve essential physical symme-
tries while reducing gate overhead. Promising directions
include combining MREM with spin-conserving meth-
ods [66, 80, [92HI03], explicitly correlated methods [I04-
108], especially the transcorrelated approach [19} 48], T09}-
116], tiled unitary product states [68], [I17] as well as the
separable-pair approximation [T18], [T19].

Another promising avenue for enhancing MREM lies
in exploring the expressivity differences between Clif-
ford and near-Clifford ansatz states. For instance, an
open question is whether Clifford circuit initialization,
which restricts single-qubit rotation gates in the HEA to
discrete multiples of 7/2 [120], can enhance the perfor-
mance of our Givens-based MR circuit in approximating
the ground state.

We have also identified several broader opportuni-
ties for enhancing the MREM framework itself. Be-
cause MREM achieves noise reduction by exploiting the
inherent classical simulatability of select MR circuits,
one can imagine viewing such circuits as being classi-
cal post-processing operators, in accordance with the
Schrodinger-Heisenberg VQE paradigm [121]. Such an
approach could strategically offload circuit complexity to
classical devices, leading to shallower quantum circuits
that are more resilient to noise. We also plan to ex-
tend (M)REM to observables beyond the energy, such as
dipole moments, in future work. Finally, given MREM’s
fixed circuit structure designed to prevent noisy gate vari-
able effects, its integration with adaptive ansétze [52], [122]
using statistical tools merits investigation.

We want to underscore that MREM can be integrated
with other quantum error mitigation (QEM) techniques.
For instance, the original REM study demonstrated its
compatibility with measurement error mitigation [28].
Moreover, by applying controlled noise amplification to
both MR and VQE states and performing polynomial
or exponential extrapolation [26] [35], one can correct for
higher-order noise contributions that MREM alone does
not directly address, thereby enhancing overall error-
mitigation performance. In addition, MREM can be
extended to a data-driven framework. E.g., the idea
of using REM-derived training data has appeared in
Ref. [123], albeit without the chemical intuition that
MREM brings, and it echoes the spirit of Clifford data re-
gression [42]. By unifying the heterogeneous data sources
(such as noise extrapolated data and reference enhance-
ment data), one can promisingly harness the complemen-
tary strengths of diverse QEM techniques [43].

Our next step is to scale MREM to over 20 qubits
on a real quantum device, thereby providing a empiri-
cal assessment of its practicality for larger realistic sys-
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tems. A key practical consideration is the backend com-
pilation pipeline: the rotation unitaries treated here as
ideal, high-level primitives are not executed verbatim on
hardware but are decomposed into the native gate set of
each architecture. The resulting pattern of gate com-
mutation, gate cancellation or operation scheduling is
highly sensitive to the transpiler’s layout heuristics, op-
timization level and device topology [124] [125]. Conse-
quently, benchmarking MREM across platforms requires
either fixing the compilation workflow or reporting it in
full; otherwise, the post-transpilation noise profile may
obscure — or even exaggerate — the intrinsic advan-
tages conferred by the MR state. Furthermore, in cases
where the target MR state requires excitations spanning
multiple spin orbitals, the resulting long-range entangle-
ment demands can further exacerbate the connectivity
constraints of hardware with limited coupling maps.

DATA AVAILABILITY

The data and code for the study reported in
this article can be found on the Zenodo repository:
https://doi.org/10.5281 /zenodo.15827822. [126] The ver-
sion of the code and data employed for the analyses pre-
sented in this article is the archived release as of 7 July
2025.

In addition to the deposited repository, we provide ex-
tensive reference data—including computed values, tab-
ulated results, and benchmark comparisons—in the ESI
accompanying this paper.
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Data Availability Statement

The data and code for the study reported in this article can be found on the Zenodo
repository: https://doi.org/10.5281/zenodo.15827822. The version of the code and data
employed for the analyses presented in this article is the archived release as of 7 July
2025.

In addition to the deposited repository, we provide extensive reference data—including
computed values, tabulated results, and benchmark comparisons—in the ESI accompa-
nying this paper.
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