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e learning of molecular energies
with hybrid quantum-neural wavefunction†

Weitang Li, *a Shi-Xin Zhang,b Zirui Sheng,a Cunxi Gong,a Jianpeng Chena

and Zhigang Shuai ac

Quantum computational chemistry holds great promise for simulating molecular systems more efficiently

than classical methods by leveraging quantumbits to representmolecular wavefunctions. However, current

implementations face significant limitations in accuracy due to hardware noise and algorithmic constraints.

To overcome these challenges, we introduce a hybrid framework that learns molecular wavefunction using

a combination of an efficient quantum circuit and a neural network. Numerical benchmarking onmolecular

systems shows that our hybrid quantum-neural wavefunction approach achieves near-chemical accuracy,

comparable to advanced quantum and classical techniques. Based on the isomerization reaction of

cyclobutadiene, a challenging multi-reference model, our approach is further validated on

a superconducting quantum computer with high accuracy and significant resilience to noise.
I Introduction

Quantum computers leverage quantum effects to store and
manipulate data, making them particularly suitable for the
simulation of microscopic quantum systems.1–3 The Variational
Quantum Eigensolver (VQE) algorithm is the most widely
adopted framework for quantum computational chemistry.4–9

The key component of the VQE algorithm is the parameterized
quantum circuit, which learns the quantum state of the system
under study variationally.10 The challenge of VQE lies in striking
a delicate balance between circuit depth and accuracy.11–14

While deeper circuits tend to improve accuracy, they also make
the algorithm more sensitive to noise and can suffer from
barren plateaus.15 In contrast, shallow circuits may not capture
the system's complexity adequately. Parallel to the evolution of
VQE, Neural Networks (NNs) have shown remarkable success in
representing quantum wavefunctions of chemical systems.16

Based on variational Monte Carlo, these NNs are trained to
minimize the energy expectation, similar to the VQE approach.
Efforts along this line include DeepWF,17 FermiNet,18 Pauli-
Net,19 QiankunNet,20 and so on.21–24 Thanks to the expressive
power of NNs, these methods demonstrate accuracy compa-
rable to Coupled Cluster with Single and Double excitations
(CCSD) but with signicantly lower computational scaling,
typically OðN4Þ.
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The success in these new wavefunction representations has
inspired the development of hybrid quantum-neural wave-
functions, where quantum circuits and neural networks are
jointly trained to represent the wavefunction of quantum
systems.25 In this hybrid approach, quantum circuits are
responsible for learning the quantum phase structure of the
target state, which is a difficult task for neural networks alone,26

and the neural network correctly describes the amplitude. The
combination of quantum computation and variational Monte
Carlo has also demonstrated considerable potential in simu-
lating quantum systems,27 and the inclusion of neural networks
signicantly enhances the expressiveness of trial wave func-
tions, thereby leading to more accurate and scalable simula-
tions. The intersection between quantum computing and
machine learning, known as quantum machine learning, is
developing at a rapid pace.28–31 Chemistry applications include
the construction of shallow depth ansatz, energy eigenstate
ltration, material phase prediction, neural network pertaining,
and so on.32–38

In this work, we propose a quantum machine learning
framework for efficient representation of molecular wave-
function and accurate computation of molecular energies. The
method employs the linear-depth paired Unitary Coupled-
Cluster (UCC) with double excitations (pUCCD) circuit to learn
molecular wavefunction in the seniority-zero subspace,39–43 and
a neural network to correctly account for the contributions from
unpaired congurations. We propose an efficient algorithm to
compute the expectations of physical observables for the hybrid
quantum-neural wavefunction, which avoids calculating the
overlap between the quantum circuit state and classical state, or
the costly process of quantum state tomography. This repre-
sents an enhancement of scalability over the previously
Digital Discovery
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proposed quantum-classical hybrid quantum Monte-Carlo
method.44 We name our method as pUNN, which stands for
paired unitary coupled-cluster with neural networks. pUNN
retains the low qubit count (N qubits) and shallow circuit depth
of pUCCD, while achieving accuracy comparable to the most
precise quantum and classical computational chemistry
methods, such as UCCSD (UCC with single and double excita-
tions) and CCSD(T) (CCSD with perturbative triple excitations).
We demonstrate the efficacy of pUNN through numerical
simulations of various diatomic and polyatomic molecular
systems, such as N2 and CH4. To test pUNN in a real quantum
computing scenario, we compute the reaction barrier for the
isomerization of cyclobutadiene on a programmable super-
conducting quantum computer. The results demonstrate that
the pUNN is highly accurate and noise resilient for a real
quantum computing task.
II Theory and methodology

In this section, we present our pUNN algorithm and focus on
our contribution. General backgrounds, such as the electronic
structure problem and the UCC types of ansatz for quantum
computational chemistry are briey overviewed in the Appendix
A. We start by employing the pUCCD ansatz to represent
molecular wavefunction, which is encoded in the parameterized
quantum circuit Ûð q!Þ. In the computational basis, the pUCCD
circuit state can be expressed as

jji ¼
X
k

akjki; (1)

where jki represents the occupation of a pair of electrons in the
original N-qubit Hilbert space. For ground state problems, the
coefficients ak can be assumed to be real numbers. To correctly
describe the congurations outside of the seniority-zero
subspace, we add N ancilla qubits to the circuit and expand
the Hilbert space from N qubits to 2N qubits. In the expanded
2N-qubit space, the equivalent state is

jFi ¼
X
k

akjki5jki; (2)

with the two jki terms now representing the occupation of the
alpha and beta spin sectors, respectively. We note that these N
ancilla qubits can be treated classically, which will be explained
later.

In the context of quantum circuits, the expanded state jFi is
constructed from jji using the ancilla qubits and an entangle-
ment circuit Ê:

jFi = Ê(jji 5 j0i). (3)

The entanglement circuit Ê creates the necessary correlations
between the original qubits and the ancilla qubits. Ê can be
decomposed into N parallel CNOT gates:

Ê ¼
YN
i

CNOTi;iþN ; (4)
Digital Discovery
where each CNOT gate entangles the i-th original qubit with the
corresponding i-th ancilla qubit.

Although jFi has 2N qubits while jji has N qubits, from
a quantum chemistry perspective, they represent the same state
in the seniority-zero space and therefore have the same energy.
We then apply the neural network, acting as an quantum
operator N̂, on the quantum state. N̂ is a non-unitary post-
processing operator25 dened in the expanded Hilbert space.
Aer applying N̂, the overall state becomes N̂Ê(jji 5 j0i). The
method is inspired by variational quantum-neural hybrid
eigensolver (VQNHE) and it provides exponential acceleration
for nonunitary postprocessing in VQE than naive transformed
Hamiltonian approach.45–47 The neural network operator N̂
modulates the state jFi as follows:

N̂ ¼
X
kj

bkj jkijjihjjhkj; (5)

where bkj is a real tensor represented by a continuous neural
network Bðk; jÞ, such that bkj ¼ Bðk; jÞ. To drive N̂Ê(jji 5 j0i)
out of the seniority-zero subspace, we apply a perturbation
circuit P̂ to the ancilla qubits at the beginning, diverting the
state of the ancilla qubits jfi = P̂j0i from j0i

jfi ¼ P̂j0i ¼
j0i þ P

js0

3j jji

1þ P
js0

3j2
(6)

where ˛j are small coefficients satisfying
P
js0

3j
2 � 1. As a result,

our algorithm is expected to be resilient to noise,48 making it
well-suited for implementation on real quantum devices. The
conservation of the particle number is enforced by the neural
network introduced in the following. The values of ˛j and the
exact form of P̂ are exible. The only key requirement for P̂ is
that it should have a low circuit depth, which allows efficient
simulation of P̂j0i on classical computers. To this end, we adopt
a perturbation circuit with single qubit rotation gates Ry for
each qubit and the rotation angle is set to 0.2. P̂ produces real
coefficients, a desired property for the ground state of the
molecular Hamiltonian.

Aer describing the quantum circuit part, we turn to the
neural network structure used for Bðk; jÞ. Bðk; jÞ accepts the
two bitstring k and j as input and outputs the coefficients bkj.
The rst component of the neural network is embedding the
bitstring jki 5 jji into a vector. We employ a binary represen-
tation, where jki 5 jji is converted to a vector of size 2N, with
each element being either −1 or 1. The vector x0(k, j) is then
passed through a neural network consisting of L dense layers
and ReLU activation functions

xi+1(k,j) = ReLU[Wixi(k,j) + ci]. (7)

In the hidden layers, the number of neurons is set to 2KN
where K is a tunable integer that controls the size of the neural
network. In this work we set K = 2 unless otherwise specied.
The number of layers L is set to N− 3, proportional to the size of
the molecule. The number of parameters in the neural network
scales as K2N3 considering both the width and depth of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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neural network. The computational complexity is also OðK2N3Þ
for each input bitstring.

The nal dense layer outputs the desired coefficient bkj,
before multiplying with the particle number conservation mask
m(k,j)

bkj = m(k,j)[WLxL(k,j) + cL]. (8)

The mask m(k,j) is dened as

mðk; jÞ ¼
8<
:

1 if
X
i

ki ¼ Na and
X
i

ji ¼ Nb;

0 otherwise;
(9)

where Na/b is the number of spin up/down electrons. The mask
eliminates congurations jki 5 jji that do not conserve the
number of spin up and down electrons.

To summarize, the overall wavefunction is given by

jJi ¼ N̂Ê
�
Û
�
q
!�

j0i5P̂j0i
�
; (10)

which consists of four components: the pUCCD circuit Ûð q!Þ,
the perturbation circuit P̂, the entanglement circuit Ê and the
neural network N̂. The next challenge is to measure the expec-
tation value of the physical observables such as the energy
based on eqn (10), which is highly nontrivial without resorting
to quantum tomography or incurring exponential measurement
overhead. Without an efficient measurement protocol, the
pUNN approach could be rendered impractical. Besides, in
quantum computational chemistry, the number of measure-
ments required to estimate expectation values is a key indicator
of efficiency for variational algorithms like pUNN. In fact, the
ansatz represented by eqn (10) is carefully designed in such
a way that an efficient algorithm for computing expectation
values is possible.

Since jJi is not normalized, the energy expectation is

hEi ¼ hJjĤjJi
hJjJi : (11)

Here we outline the key points of the measurement protocol
that enables the computation of both hJjĤjJi and hJjJi using
the measurement outcome of the quantum circuit Ûð q!Þj0i and
the output from the neural network. The full measurement
protocol is provided in the Appendix B. For brevity, we assume
there is only a single Pauli string in Ĥ, and the summation over
many Pauli strings can be handled straightforwardly. We also
note that the estimation of the norm hJjJi can be considered
as a special case when Ĥ = Î.

To perform the measurement, we transform the Hamilto-
nian Ĥ and the neural network N̂ with Ê

hJjĤjJi = hj 5 fj(Ê†N̂†Ê)(Ê†ĤÊ)(Ê†N̂Ê)jj 5 fi. (12)

Since Ê is a Clifford circuit, Ĥ 0 = Ê†ĤÊ is also a Pauli string.
Additionally, since Ê is composed of CNOT gates, it reversibly
maps one bitstring to another, rather than a linear combination
of bitstrings. Specically,

Ê(jki 5 jji) = jki 5 jk 4 ji. (13)
© 2025 The Author(s). Published by the Royal Society of Chemistry
The transformed neural network N̂ 0 = Ê†N̂Ê is

N̂
0
¼

X
kj

bkj jkijk4jihk4jjhkj ¼
X
kj

bk;k4j jkijjihjjhkj: (14)

N̂ 0 is thus formally the same as N̂ but with a permuted index for
the coefficient b.

Aer the transformation, the entanglement circuit Ê is
removed from eqn (12)

hJjĤjJi = hJ 5 fjN̂ 0†Ĥ 0N̂ 0jJ 5 fi. (15)

eqn (15) corresponds to the measurement of N̂ 0†Ĥ 0N̂ 0 on two
unentangled circuits jji and jfi. If N̂ 0 is absent or if N̂ 0 = Î, the
measurement of Ĥ can be performed efficiently by measuring
the two separate circuits jji and jfi. In Appendix B, we show
that, by carefully designing the measurement circuit, N̂ 0Ĥ 0N̂ 0

can also be measured by separate measurement of jji and jfi,
with a constant overhead. Therefore, the evaluation of hJjĤjJi
is cast into the separate measurement of jji and jfi. Since jfi is
designed to be a shallow circuit that can be efficiently simulated
classically, the only circuit that needs to be executed on real
quantum devices is the pUCCD circuit jji. Nonetheless, the
number of terms to measure in the Hamiltonian increases from
N2 in the pUCCD circuit to N4 for more general electronic
structure problems. Thus, in terms of measurement shots, the
pUNN method is as efficient as other quantum computational
methods such as UCCSD, but with signicantly reduced circuit
depth and higher accuracy. Compared with entanglement
forging,49 which utilizes classical sampling to recover the
entanglement between two sub-systems, our method encodes
the entanglement between two sub-systems into Ĥ and N̂ and
avoids excessive sampling.

A schematic diagram of the pUNN framework is depicted in
Fig. 1. In the whole algorithm, only the pUCCD circuit within
the grey box in dashed lines is executed on quantum computers,
which allows pUNN tomaintain the N-qubit requirement for the
computation instead of 2N. The perturbation circuit and
entanglement circuit can be efficiently processed on classical
computers. The measured bitstring of the composite circuit is
fed into the neural network for Bðk; jÞ, which is then used to
adjust the measurement outcome. The entire ansatz is then set
up in a VQE workow, where both the parameters in the
quantum circuit and the neural network are trained to mini-
mize the molecular energy. This process ultimately yields the
ground state through the variational principle.

In the noiseless simulation described in Sec. III A, we use the
L-BFGS-B algorithm to optimize the parameters in the quantum
circuit. For circuit optimization on real quantum hardware, we
employ the SOAP method.50 For both the noiseless simulations
and the experiments on quantum computers, the neural
network is trained using the AdaMax optimizer,51 a variant of
the widely adopted Adam optimizer. The optimizer begins with
a learning rate schedule of a = 0.01, b1 = 0.8 and b2 = 0.99. The
learning rate decays linearly to a = 0.001 between the 8000th
and 32000th steps. This learning rate schedule helps ensure
stable convergence by gradually decreasing the learning rate as
the training progresses. For noiseless simulation, themaximum
Digital Discovery
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Fig. 1 A schematic diagram for the pUNN framework. The (a) pUCCD circuit in the grey box is the only component executed on a real quantum
computer. “GS” denotes Givens–Swap gate. Meanwhile, the (b) perturbation circuit and the (c) entanglement circuit are processed classically.
Together, the quantum circuit and the (d) neural network serves as an ansatz and are trained jointly to represent the molecular wavefunction.
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View Article Online
number of steps is set to 64 000. A summary table for the hyper-
parameters can be found in the ESI.† For the noiseless simu-
lation, we initialize the neural network with ve different
random seeds, and the lowest energy found across these seeds
is reported. For quantum circuit manipulation, including both
noiseless and noisy emulation as well as interfacing with real
quantum hardware, we use the TensorCircuit framework.52

General quantum computational chemistry tasks, including
Hamiltonian construction, reference value calculation, and
parameter optimization are handled by TenCirChem,53

a specialized package built on top of TensorCircuit designed for
quantum computational chemistry. TenCirChem also relies on
PySCF for evaluating the integrals and performing calculations
based on classical computational chemistry.54

III Results
A Accuracy and scalability

We rst compare the accuracy of pUNN with other quantum
computational methods in Fig. 2. For this comparison, we
Fig. 2 Compare the accuracy of pUNN with other quantum computati
energy is FCI. The shaded area indicates the chemical accuracy.

Digital Discovery
perform noiseless numerical calculations on molecular systems
corresponding to 8 spatial orbitals and 16 qubits. The basis set
employed is STO-3G and the 1s orbitals are frozen. The exact
geometries of the molecules are reported in the ESI.† The full
conguration interaction (FCI) energy for these molecules is
computed as the reference energy. As shown in Fig. 2, the
standard pUCCD approach improves over the HF method but
consistently shows the highest error across all molecules. The
results indicate that the neglect of congurations outside of the
seniority-zero subspace limits the accuracy. The orbital opti-
mization pUCCD (oo-pUCCD) method42,55,56 reduces the error to
a modest extent for most molecules, except for N2 and CO,
where the errors of pUCCD and oo-pUCCD are comparable. This
demonstrates the limitation of oo-pUCCD, as it still assumes
electron paring. The UCCSD method, known for its high accu-
racy, performs well across the board. However, UCCSD requires
2N qubits for N molecular orbitals and has a very deep circuit,
which is computationally expensive. The typical circuit depth of
UCCSD for these molecules is approximately 1000. Our
onal chemistry methods. The 1s orbitals are frozen and the reference

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00222b


Fig. 3 Compare the accuracy of pUNN with other classical computational chemistry methods. The 1s orbitals are frozen and the reference
energy is FCI. The shaded area indicates the chemical accuracy.
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proposed pUNN method stands out as the most accurate
approach for the majority of the molecules studied. In the
meantime, pUNN uses only N qubits for N molecular orbitals,
and its circuit depth is the same as the circuit depth of pUCCD.
In contrast to UCCSD, the circuit depth of pUNN is approxi-
mately 20. pUNN frequently achieves or approaches the chem-
ical accuracy threshold of 1.6 m hartree, as indicated by the
shaded area on the graph. By comparing pUNN and pUCCD, we
nd that, the mean absolute error (MAE) decreases from 51.9 m
hartree for pUCCD to 0.6 m hartree for pUNN. This corresponds
to a reduction in error by two orders of magnitude. The MAE
of pUNN is comparable to the MAE of UCCSD, which is
1.9 m hartree.

In Fig. 3 we compare the error of pUNN with several classical
computational methods. The doubly occupied conguration
interaction (DOCI) method is the classical counterpart of the
pUCCDmethod since it also assumes electron pairing. Based on
the results in Fig. 2 we can expect DOCI will perform poorly,
which is conrmed by the data in Fig. 3. The second order
Møller–Plesset perturbation theory (MP2) improves over DOCI,
particularly for diatomic molecules. This suggests that
including the congurations with singly occupied orbitals is
crucial for accurately describing the molecular wavefunction.
The coupled-cluster methods, CCSD and its perturbative
extension CCSD(T), are considered some of the most accurate
techniques in quantum chemistry. Both CCSD and CCSD(T)
Fig. 4 Factors for the accuracy of the pUNNmethod. (a) The error of pU
versus the size of the neural network K. The number of hidden neurons in
The shaded area indicates the chemical accuracy.

© 2025 The Author(s). Published by the Royal Society of Chemistry
demonstrate high accuracy, with CCSD(T) achieving chemical
accuracy for most of the molecules studied. When comparing
pUNN to these classical methods, we nd that pUNN achieves
accuracy comparable to that of CCSD(T), indicating that pUNN
is a high-accuracy method for quantum chemistry calculations.

We next investigate the factors that determine the accuracy
of the pUNNmethod. Fig. 4(a) compares the accuracy of pUCCD
and pUNN methods against the size of hydrogen chain mole-
cules (H5

+, H6, H7
+, and H8) for two different bond lengths (d =

1.0 Å and d = 2.5 Å). The results clearly demonstrate that pUNN
consistently outperforms standard pUCCD, achieving lower
error across all molecule sizes and bond lengths. Notably,
pUNN maintains high accuracy even as the molecule size
increases especially for the longer bond length of 2.5 Å. When
d= 1.0 Å, the errors of pUNN seem to uctuate when the system
size varies. However, the magnitude of the uctuation, in the
order of 10−4 hartree, is well below the chemical accuracy
threshold and thus insignicant. Fig. 4(b) showcases the impact
of neural network size on the error of pUNN for various mole-
cules. The x-axis represents the neural network size K, and the
number of hidden neurons is 2KN where N is the number of
molecular orbitals. The atomic distance in H8 is d= 1.0 Å. As the
network size increases from 2 to 8, there's a clear trend of
a logarithmic decreasing error for all molecules. Most mole-
cules achieve chemical accuracy (indicated by the shaded area)
with larger neural networks, with NH3 and BH3 showing
NN versus the size of the molecule under study. (b) The error of pUNN
the neural network is 2KNwhereN is the number of molecular orbitals.

Digital Discovery
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Fig. 5 Benchmarking pUNN based on the potential energy profile of cubic H8. (a) The potential energy profile of cubic H8 by different
computational methods. (b) The error compared with the exact solution versus the H–H distance in the H8 cube.
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particularly signicant improvements in accuracy as the
network size grows. Although molecules studied here are still
much smaller than those encountered in practical chemistry
problems, the promising scaling shown in Fig. 4(a) suggests
that pUNN has the potential to accurately learn the wave-
function of complex chemical systems.

We nally test the accuracy of pUNN based on cubic H8

molecule at different H–H distance d. The system is particularly
challenging due to the strong correlation as d increases. In
Fig. 5(a) we show the potential energy prole computed by both
pUNN. As expected, pUNN shows much higher accuracy than
other methods. From d = 0.5 Å to 2.5 Å pUNN coincides well
with the FCI solution. For reference, we also include the CCSD
method, which shows high accuracy at intermediate d.
However, due to its single-reference and non-variational nature,
the error of CCSD quickly increases as d becomes larger than 1.5
Å and it fails to reach convergence for larger d. CCSD(T) is not
expected to improve CCSD when it fails because CCSD(T) relies
on good CCSD wavefunction to account for perturbative triple
excitation. Thus, although the 16 qubit system represents
a relatively small variational space compared to challenging
strongly correlated systems,57,58 it is sufficient to reveal the
limitations of methods like CCSD, which fail in strongly corre-
lated regimes, while pUNN maintains relatively high accuracy.
In Fig. 5(b) we depicted the error of the methods in logarithmic
scale. All methods except pUNN show an increase in error as
d increases. The maximum error for pUNN appears at d = 1.7 Å
and the magnitude of the error is 10−2 hartree. The relatively
large error highlights the complexity of the cubic H8 molecule.
We anticipate that integrating alternative quantum circuits into
our pUNN framework, such as those based on valence bond
Table 1 Parameter counts for pUNN and FCI for hydrogen systems

System FCI determinants

H5
+ 100

H6 400
H7

+ 1225
H8 4900
H2n [(2n)!/(n!)2]2

Digital Discovery
theory,59 could enhance accuracy in strong correlation. The
UCCSD method is also included in Fig. 5(b). While UCCSD
shows high accuracy at smaller d, it suffers from signicant
error at the large d limit, similar to CCSD. We perform addi-
tional benchmarks for strongly correlated systems based on the
potential energy prole of N2 and CH4 and the trend is similar
to Fig. 5(b). The results are included in the ESI.†

In Table 1, we present a breakdown of parameters for
hydrogen systems studied in Fig. 4 and 5, comparing
pUNN with FCI. For pUNN, the pUCCD circuit has OðN2Þ
parameters, while the NN hasOðK2N2LÞ parameters, with K = 2
and L = N − 3. From Table 1, pUNN's total parameters grow
polynomially with N, while FCI's determinant space grows
exponentially. For H8, pUNN uses fewer parameters than FCI,
and achieves high accuracy across both weak and strong
correlation, as shown in Fig. 4(a) and 5. As our main contribu-
tion is the novel and unique quantum-neural hybrid frame-
work, our choice of a dense MLP for the neural network is
a proof-of-concept. More efficient architectures, such as
restricted Boltzmannmachines or graph neural networks, could
further optimize pUNN,60,61.

3.2 Experiments on a superconducting quantum computer

To evaluate the performance of pUNN in a real quantum
computing scenario, we conduct experiments on a super-
conducting quantum computer. We choose the isomerization
reaction of cyclobutadiene as our model system, as shown in
Fig. 6(a). The transition state of this system is particularly
challenging due to strong correlations arising from degen-
eracy.19,62 In this reaction, the reactant and product are identical
molecules, with a 90-degree rotation between them. The
NN parameters pUCCD parameters

661 6
1537 9
2885 12
4801 16
128n3− 208n2− 16n + 1 n2

© 2025 The Author(s). Published by the Royal Society of Chemistry
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electronic structures of the reactant and the product are
considerably simpler than that of the transition state. There-
fore, in the following analysis, we focus on the transition state,
and calculate the reaction barrier by subtracting the exact
energy of the reactant and product from the energy of the
transition state.

We employ the cc-pVDZ basis set63 for HF calculation and
select the four frontier orbitals as the active space. Using the
paired ansatz, the active space is represented by a 4-qubit
quantum circuit, with four parameters corresponding to four
double excitations. The superconducting quantum chip used in
this work consists of 13 qubits. Since the Givens–Swap gate is
not a native gate on this chip, we carefully select 4 qubits from
the 13-qubit system, which follows a ring topology, as shown in
Fig. 6(d). This selection allows us to implement all four excita-
tion operators using only Givens rotation gates, eliminating the
need for the more expensive swap gates, which would otherwise
require 3 CNOT gates. The Givens rotation gates should be
further compiled into 4 native CNOT gates, along with several
single-qubit gates. To reduce circuit depth, we introduce an
approximation that breaks the symmetry and removes the
control qubit of the controlled Ry gate.64 The resulting circuit
does not conserve the total particle number anymore but the
overall error could be smaller than the gate error by 8 additional
CNOT gates, especially when some of the rotation gates have
small rotation angles. Each Givens rotation gate is thus
compiled into 2 CNOT gates, resulting in a total of 8 CNOT gates
in the circuit. Standard readout error mitigation based on
Fig. 6 Experiments on a superconducting quantum computer. (a) The iso
calculated using pUNN on a superconducting quantum computer. (b) T
independent random initializations of the neural network are shown. (c) T
several other computational methods. “Experiment”means the reaction b
The 13-qubit superconducting quantum chip and the quantum circuit u

© 2025 The Author(s). Published by the Royal Society of Chemistry
a direct product calibration matrix is applied to enhance the
precision.

We obtain the circuit parameters by optimizing the pUCCD
Hamiltonian on this chip using the SOAP optimizer,50 which is
an efficient optimizer tailored for parameter optimization on
quantum circuits. Next, we train a neural network based on the
sampling output from the optimized quantum circuit. In
Fig. 6(b), we report the energy estimates during the optimiza-
tion process. Sampling from the quantum circuit occurs every
30 steps, with the macro iteration performed 15 times, for
a total of 450 iterations. The number of iterations is determined
by trial classical simulation, which ensures convergence. For
each quantum circuit, we perform 1024 shots of measurement
for each Pauli string. The optimization is repeated with three
different neural network initializations and the lowest energy is
employed for reaction barrier calculation.

As shown in Fig. 6(c), the reaction barrier predicted by pUNN
on the quantum circuit is approximately 16 kcal mol−1. While
this value is still higher than the experimentally reported range
of 2∼ 10 kcal mol−1,65 it represents a notable improvement over
the HF and MP2 energies, and is comparable to the noiseless
UCCSD prediction. When using a noiseless pUNN model, ob-
tained via a statevector simulator, the predicted reaction barrier
is around 9 kcal mol−1, which aligns well with the FCI results
and experimental observations. This highlights the importance
of addressing errors introduced by quantum circuit gates and
measurement uncertainties. In particular, the neural network
parameters with quantum computers are different from the
neural network parameters with noiseless simulation. We
merization reaction of cyclobutadiene, with the transition state energy
he estimated energy during the optimization process. Results by three
he computed reaction barrier from pUNN, compared with results from
arrier calculated by experimentally observed chemical reaction rate. (d)
sed for the calculation.
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Fig. 7 Energy estimates during neural network training with different
quantum circuits. This figure illustrates the effect of quantum circuits
on energy estimation within the pUNN framework: (1) the pUCCD
circuit, which is the circuit used throughout this paper, and (2) the
Hadamard superposition circuit, where Hadamard gates are applied to
all qubits, creating a superposition of all possible states. The standard
deviation across five different neural network initializations is shown as
the shaded area.
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conjecture that pUNN(quantum) predicts a higher energy
because the neural network parameters are stuck in a local
minimum. To improve the performance of pUNN in the pres-
ence of these errors, advanced optimizers, such as KFAC,18,66

could be considered. Yet adaption of the KFAC optimizer will
likely be necessary due to the unique algorithmic structure of
pUNN.

Next, we investigate the advantage of incorporating quantum
computing into the pUNN framework. Since neural networks are
widely known for their effectiveness across a variety of tasks
including representing molecular wavefunction, it is important to
assess whether a quantum circuit is truly necessary for this
framework. To explore this, we replace the pUCCD circuit in
pUNN with a Hadamard superposition circuit, where Hadamard
gates are applied to all qubits. The Hadamard superposition
circuit can be easily emulated on classical computers and can be
considered as a “dummy” sample generator when used to
compute the energy with the neural network. To isolate the
impact of quantum gate noise, we perform the comparison using
a shot-based classical emulator which is free of gate noise. We use
the transition state of the cyclobutadiene isomerization reaction
as our model system. As shown in Fig. 7, replacing the pUCCD
circuit with a Hadamard superposition leads to a noticeable
decrease in accuracy, along with a signicant increase in energy
variance. In fact, for large molecules, a Hadamard superposition
circuit greatly reduces the probability of sampling the dominant
conguration, making it less effective for energy estimation. In
contrast, the pUCCD circuit provides a suitable starting point for
further renement through neural network training, demon-
strating the advantage of quantum computing in this context.

IV Conclusion and outlook

The pUNN framework combines an efficient quantum circuit
with the expressive power of a neural network to accurately and
robustly compute molecular energies. Through a carefully
designed algorithmic structure—including the pUCCD circuit,
entanglement circuit, perturbation circuit, and neural network
augmentation—the method achieves high accuracy with low
Digital Discovery
quantum resource requirements, utilizing only N qubits instead
of the 2N qubits typically required by comparable methods. The
incorporation of a neural network allows the framework to
mitigate errors effectively, making it robust to gate noise and
capable of delivering consistent accuracy on noisy quantum
hardware. The design also ensures manageable measurement
overhead for the interaction between the quantum circuit and
the neural network.

Extensive numerical benchmarks demonstrate that pUNN
achieves accuracy comparable to advanced methods like
UCCSD, while being more resource-efficient and scalable to
larger molecular systems. Experimental validation on a super-
conducting quantum computer demonstrates the practicality of
this approach. With a 4-qubit quantum circuit, pUNN success-
fully computes the transition state energy of cyclobutadiene
isomerization, yielding energy estimates with accuracy compa-
rable to noiseless UCCSD. Based on this model reaction, we also
demonstrate that the quantum circuit plays an indispensable
role in the hybrid framework, as replacing it with a neural
network alone leads to a higher error and, crucially, a signi-
cantly larger variance in energy estimation. This observation
serves as an evidence for the advantage of this hybrid design
than pure classical neural networks, where the quantum circuit
reduces the representational burden on the neural network.
Thus, we expect that pUNN is able to demonstrate quantum
advantage as we tackle larger systems where classical simula-
tion of the pUCCD circuit becomes intractable.

While this work focuses on closed–shell systems, the pUNN
framework can be directly extended to open-shell systems by
modifying the particle number conservation mask in the neural
network. However, since the pUCCD quantum circuit may not
accurately approximate open-shell wavefunctions, further
adaptations will likely be necessary to maintain accuracy for
open–shell systems. Future work could enhance the neural
network architecture by incorporating more sophisticated
neural layers with physical insights. Additionally, pretraining
the neural network on a diverse set of molecules offers
a possible avenue for creating a generalizable model that can be
ne-tuned for specic systems.

Code availability

The code for this study is available from the TenCirChem-NG
package hosted on GitHub https://github.com/tensorcircuit/
TenCirChem-NG and from Zenodo.67

Data availability

The source data for the gures in this study is available from
Zenodo.68 DOI: https://www.doi.org/10.5281/zenodo.15859709.
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Appendices
A. The electronic structure problem and the pUCCD ansatz

In this work, we are interested in the second-quantized ab initio
electronic structure Hamiltonian

Ĥ ¼
X
pq

hpqâ
†
pâq þ

1

2

X
pqrs

hpqrsâ
†
pâ

†
qârâs þ Enuc; (16)

where hpq and hpqrs = [psjqr] are one-electron and two-electron
integrals, and â†p,âp are fermionic creation and annihilation
operators, respectively, acting on the p-th spin-orbital.

In order to compute the expectation of eqn (16) on
a programmable quantum computer, the symmetry of the
creation and annihilation operators has to be taken care of.
Creation and annihilation operators for fermions obey the
anticommutation relationsn

âi; â
†
j

o
¼ dijn

â†i ; â
†
j

o
¼ �

âi; âj
� ¼ 0 (17)

On the other hand, the qubit creation operator

ĉ† ¼ 1
2
ðX � iYÞ and annihilation operator ĉ ¼ 1

2
ðX þ iYÞ obey

the commutation relations

{ĉi,ĉ
†
j } = dij, [ĉ

†
i ,ĉ

†
j ] = [ĉi,ĉj] = 0. (18)

In this work, when necessary, we employ the Jordan-Wigner
transformation to map fermionic ladder operators into qubit
operators.

In general, UCC types of ansatz can be written as

jj(q)i = PeqkĜkjfi. (19)

Here, jfi is the Hartree–Fock state. For the UCCSD method, Ĝk

has the form

Ĝk ¼
(
â†pâq � h:c:;

â†pâ
†
qârâs � h:c: (20)

pUCCD is an efficient ansatz requiring only OðNÞ circuit
depth and half as many qubits as other UCC ansatze.39,40 pUCCD
allows only paired double excitations, which enables one qubit
to represent one spatial orbital instead of one spin orbital, and
© 2025 The Author(s). Published by the Royal Society of Chemistry
removes the need to perform the fermion–qubit mapping. The
subspace in which all states have paired conguration is called
the seniority-zero subspace. In this subspace, there are OðN2Þ
double excitations, which can be executed on a quantum
computer efficiently using a compact circuit. The circuit is
composed of a linear depth of Givens–Swap gates, assuming
linear qubit connectivity.40 In the seniority-zero subspace, the
Hamiltonian also takes a simpler form, with only N2 terms:

Ĥ ¼
X
p

hpĉ
†
pĉp þ

X
pq

vpqĉ
†
pĉq þ

X
psq

wpqĉ
†
pĉpĉ

†
qĉq þ Enuc; (21)

where hp = 2hpp, vpq = (pqjpq) and upq = 2(ppjqq)− (pqjpq). Here
p and q are indices for spatial orbitals. If we use

n̂p ¼ ĉ†pĉp ¼ 1� Z
2

to denote occupation number operator, eqn

(21) can be converted to a sum of Pauli string where the
maximum length of Pauli string is 2. Meanwhile, the rst and
the third term in eqn (21) have only Z terms and the second
term will contribute to XX and YY terms. Thus, the expectation
of eqn (21) can be measured in 3 different bases, regardless the
number of qubit involved.
B. The measurement protocol for pUNN

To begin with, we describe the measurement protocol when
a single quantum circuit is integrated with a neural network,
following the ref. 25. Then, we move on to our measurement
method that enables efficient measurement of two separate
circuits in the pUNN algorithm, dened in eqn (15). In the
following, for clarity, we omit the prime symbol for both Ĥ 0 and
N̂ 0, since Ĥ 0 is Pauli string similar to Ĥ, and N̂ 0 follows the
denition of N̂ in eqn (5).

1. A single quantum circuit. For a single circuit

jji ¼ P
k
akjki, where jki is the computational basis, N̂ is written as

N̂ ¼
X
k

bkjkihkj: (22)

We then focus on deriving an appropriate form of N̂ĤN̂. We
assume that both jji and N̂ are real-valued. We rst derive the
measurement protocol for the norm of jJi = N̂jji, given by

hJjJi = hjjN̂†N̂jji, (23)

where

N̂
†
N̂ ¼

X
k

bk
2jkihkj: (24)

Clearly, the eigenvectors of N̂†N̂ are jki and their eigenvalues are
bk

2. To compute the norm, we sample bitstrings from jji and
multiply the probability of k by bk

2. For efficient sampling, bk
should not be too large or small. In other words, akmust provide
a good rst-order approximation to the ground state. The same
is also true for our measurement protocol for 2 circuits and it
highlights the role of the quantum computer in this framework.

Next, we consider the measurement of a Pauli string Ĥ. The
main focus is to derive N̂†ĤN̂. In general, a Pauli string Ĥ can be
written as
Digital Discovery
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Ĥ ¼
X
k

S ~k

�� ~kEhkj; (25)

where the summation is over k rather than k and ~k. In other
words, applying the Pauli string Ĥ on jki will produce only one
bitstring j~ki up to a phase S~k

Ĥjki = S~kj ~ki. (26)

Since Ĥ2 = I, we also have Ĥj~ki = Skjki and S~kSk = 1.
Let's rst consider the case where Ĥ has only Z operators, i.e.

jki = j~ki. In this case, the term to measure is

N̂
†
ĤN̂ ¼

X
k

bk
2Skjkihkj: (27)

eqn (27) is similar to the expression for N̂†N̂ in eqn (24). As
a result, the measurement protocol when Ĥ only involves Z
operators is very similar to the procedure for measuring the
norm of the state.

Now, consider the general case where Ĥ includes at least one
X or Y operator, where it is ensured that jki s j~ki. In this case,
we can rewrite Ĥ as

Ĥ ¼
X
k˛U

�
Skjki

D
~k
��þ S ~k

�� ~kEhkj�; (28)

where U = {kjbin(k) < bin(~k)} and bin(k) refers to the corres-
bonding binary integer of k.

The Hamiltonian transformed by N̂ is given by

N̂
†
ĤN̂ ¼

X
k˛U

bkb ~kĤk; (29)

where

Ĥk = Skjkih ~kj + S~kj ~kihkj. (30)

To measure N̂†ĤN̂, we need to derive the eigenvectors of Ĥk. Ĥk

is dened by two basis jki and j~ki and therefore Ĥk has two
eigenvectors with eigenvalues +1 and −1. Denote the two
eigenvectors as jk+i and jk−i, we can then write Ĥk as

Ĥk = jk+ihk+j − jk−ihk−j. (31)

In the computational basis, jk+i and jk−i are written asffiffiffi
2

p ��kþ� ¼ S ~k

�� ~kEþ jki ¼
�
Ĥk þ 1

�
jki;ffiffiffi

2
p

jk�i ¼ S ~k

�� ~kE� jki ¼
�
Ĥk � 1

�
jki: (32)

These eigenvectors have eigenvalues +1 and −1, respectively.
The neural network transformed Hamiltonian is then

N̂
†
ĤN̂ ¼

X
k˛U

bkb ~k

	��kþ�
kþ��� jk�ihk�j�: (33)

To perform the measurement in the jk+i and jk−i bases, we
append a unitary measurement circuit V to the original
quantum circuit jji. V satises
Digital Discovery
V †jki ¼ ��kþ�;
V †

�� ~kE ¼ jk i; (34)

for any k˛U. The unitary property can be proven by considering
hk0jVV†jki or by noting that V is a permutation between two sets
of orthonormal basis states. The construction of the trans-
formation circuit V̂ is a standard procedure in quantum
computation, because V̂ is a circuit that diagonalizes the Pauli
string Ĥ. If the number of X and Y operators in Ĥ is m, then the
number of two-qubit gates in V̂ is m − 1.

To summarize, the quantum circuit used for the measure-
ment is V̂ jji, and the term to measure is

V̂N̂
†
ĤN̂V̂

† ¼
X
k˛U

bkb ~k

�
jkihkj � �� ~kED ~k

���: (35)

The expectation value of this term is readily accessible from
the quantum circuit V̂ jji by performing a projection measure-
ment in the computational basis.

2. Two separate quantum circuits. If we take the two
separate quantum circuit jj 5 fi as a whole, the measurement
protocol developed in Appendix B 1 can be applied to measure
the expectation when a neural network is integrated with
jj 5 fi. However, in this case, the unitary transformation for
measurement V will generally entangle the two originally
unentangled quantum circuits. This results in a quantum
circuit of 2N qubits. If we wish to avoid this entanglement and
measure the expectation using two separate quantum circuits,
a special measurement procedure is needed. This procedure
will be described in the following.

The total wavefunction is expressed as:

jJi = N̂jj 5 fi. (36)

In the pUNN framework, jji is the pUCCD quantum circuit, and
jfi is the perturbation circuit to be simulated classically.
However, the procedure outlined below is general and can be
readily applied to other cases involving uncorrelated circuits.

Consider Hamiltonian in the form:

Ĥ = Ĥj 5 Ĥf, (37)

where Ĥj and Ĥf are Pauli strings for the two separate circuits.
If either of Ĥj and Ĥf does not contain X or Y, themeasurement
procedure simplies to the standard approach described in
Appendix B 1. Therefore, we will focus on the general case where
both Ĥj and Ĥf contain X or Y. Similar to eqn (26), Ĥj and Ĥf

satisfy the following relations:

Ĥjjki ¼ S ~k

�� ~kE;
Ĥfjji ¼ S~j

��~j�: (38)

Here, Ĥj and Ĥf act independently on the circuit jji and jfi,
transforming the states jki and jji into j~ki and j~ji, with corre-
sponding signs S~k and S~j.

The eigenvectors of Ĥ are given by
© 2025 The Author(s). Published by the Royal Society of Chemistry
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2jk±ijj±i = (S~kj ~ki ± jki)(S~jj~ji ± jji), (39)

where we again require k ˛ Uj and j ˛ Uf to avoid double-
counting. In the following, we use k, j ˛ U as a short-hand
notation for the condition.

The Hamiltonian in the computational basis is

Ĥ ¼
X
k;j˛U

�
Skjki

D
~k
��þ S ~k

�� ~kEhkj�5	
Sj jji



~j
��þ S~j

��~j�hjj�

¼
X
k;j˛U

�
SkSj jk; ji

D
~k; ~j

��þ S ~kS~j

�� ~k; ~jEhk; jj�

þ
X
k;j˛U

�
SkS~j

��k; ~j�D ~k; j
��þ S ~kSj

�� ~k; jE
k; ~j���: (40)

Aer applying the transformation N̂, the transformed Hamil-
tonian becomes

^N
†
ĤN̂ ¼

X
k;j˛U

bkjb ~k~j

�
SkSj jk; ji

D
~k; ~j

��þ S ~kS~j

�� ~k; ~jEhk; jj�

þ
X
k;j˛U

bk~jb ~kj

�
SkS~j

��k; ~j�D ~k; j
��þ S ~kSj

�� ~k; jE
k; ~j���: (41)

The structure of N̂†ĤN̂ remains similar to Ĥ, but the terms are
now weighted by the neural network coefficients bkj. Eqn (41) is
more complex than eqn (29) since each term can not be readily
factored into the direct product of operators acting on the two
separate circuits. Consequently, nding a measurement circuit
that diagonalizes eqn (41) without introducing entanglement
between the two circuits is not straightforward.

To proceed, it is instructive to consider a 2-qubit system and
with the Hamiltonian Ĥ = XX as an example. In this case, we
can express the neural network transformed Hamiltonian as:

N̂
†
ĤN̂ ¼ b00b11ðj00ih11j þ j11ih00jÞ þ b01b10ðj01ih10j þ j10ih01jÞ

¼ 1

2
b00b11ðXX�YYÞ þ 1

2
b01b10ðXXþYYÞ

¼ 1

2
ðb00b11 þ b01b10ÞXXþ 1

2
ð �b00b11 þ b01b10ÞYY: (42)

Thus, to measure the expectation value of XX in the presence of
a NN, one needs to measure both XX and YY to avoid
measurement circuit that entangles the two separate circuits.

More generally, consider a Hamiltonian Ĵ = Ĵj5 Ĵf such that
(as in eqn (38))

Ĵjjki ¼ iS ~k

�� ~kE;
Ĵfjji ¼ iS~j

��~j�: (43)

Ĵ can be constructed by replacing an X operator with −Y or a Y
operator with X in Ĥj and Ĥf. The eigenvectors of Ĵ are

2jki±ijji±i = (iS~kj ~ki ± jki)(iS~jj~ji ± jji). (44)

We dene short-hand notation for the projectors

ĥk
± = jk±ihk±j (45)

which form the diagonal bases for Ĥ and Ĵ. The rst term of
N̂†ĤN̂ from eqn (41) is then transformed to:
© 2025 The Author(s). Published by the Royal Society of Chemistry
SkSj jk; ji
D
~k; ~j

��þ S ~kS~j

�� ~k; ~jEhk; jj ¼ 1

2

�
ĥk

þ � ĥk
��

5�
ĥj

þ � ĥj
��� 1

2

�
ĥk

iþ � ĥk
i��

5
�
ĥj

iþ � ĥj
i��

: (46)

Similarly, the second term becomes

SkS~j

��k; ~j�D ~k; j
��þ S ~kSj

�� ~k; jE
k; ~j�� ¼ 1

2

�
ĥk

þ � ĥk
��

5�
ĥj

þ � ĥj
��þ 1

2

�
ĥk

iþ � ĥk
i��

5
�
ĥj

iþ � ĥj
i��

: (47)

The overall expression for N̂†ĤN̂ is

N̂
†
ĤN̂ ¼

X
k;j˛U

1

2

�
bkjb ~k~j þ bk~jb ~kj

��
ĥk

þ � ĥk
��

5
�
ĥj

þ � ĥj
��

þ
X
k;j˛U

1

2

�
�bkjb ~k~j þ bk~jb ~kj

��
ĥk

iþ � ĥk
i��

5
�
ĥj

iþ � ĥj
i��

(48)

One may verify the equation by setting b = 1 and N̂ becomes
Î. In this case, the second term vanishes and the rst term
reduces to the original Hamiltonian Ĥ. In eqn (48), the opera-
tors are factored into the direct product of operators acting on
the two separate circuits. Consequently, they can be diagonal-
ized to the computational basis separately following the
approach discussed in Appendix B 1.

Thus, in order to measure the expectation in eqn (15), one
has to sample bitstrings from both Ĥ and Ĵ and calculate the
expectation following eqn (48) accordingly. In the framework of
pUNN, we rst sample bitstrings that correspond to ĥk

± and ĥk
i±

on quantum computers, and then sample bitstrings that
correspond to ĥj

± and ĥj
i± on classical simulators. Then we

query the neural network B for bk,j, and nally calculate the
expectation based on the sampling statistics and the output
from the neural network.
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