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Optimization of Robotic Liquid Handling as a Capaci-
tated Vehicle Routing Problem†

Guangqi Wu,a,b,‡ ¶ Runzhong Wang,a,b‡ and Connor. W. Coley a,b∗

We present an optimization strategy to reduce the execution time of liquid handling operations
in the context of an automated chemical laboratory. By formulating the task as a capacitated
vehicle routing problem (CVRP), we leverage heuristic solvers traditionally used in logistics and
transportation planning to optimize task execution times. As exemplified using an 8-channel pipette
with individually controllable tips, our approach demonstrates robust optimization performance across
different labware formats (e.g., well-plates, vial holders), achieving up to a 37% reduction in execution
time for randomly generated tasks compared to the baseline sorting method. We further apply the
method to a real-world high-throughput materials discovery campaign and observe that 3 minutes of
optimization time led to a reduction of 61 minutes in execution time compared to the best-performing
sorting-based strategy. Our results highlight the potential for substantial improvements in throughput
and efficiency in automated laboratories without any hardware modifications. This optimization
strategy offers a practical and scalable solution to accelerate combinatorial experimentation in areas
such as drug combination screening, reaction condition optimization, materials development, and
formulation engineering.

Liquid handling systems play a central role in modern lab
automation by relieving researchers from repetitive and time-
intensive tasks and improving the reproducibility of the results.
With the integration of computational methods for experimental
design, automated platforms have shown extraordinary promise
in scientific discovery, particularly in areas of life science, chem-
istry, materials, and drug discovery1–9. While advances in al-
gorithms continue to improve our sampling from the design
space10–12, our ability to translate these designs into actionable
experiments remains constrained by practical considerations of
execution time. The ability to efficiently access larger design
spaces within a limited time frame is crucial for accelerated dis-
covery.

Combinatorial screening has seen renewed attention within the
realms of drug and materials discovery, with applications span-
ning drug combinations, polymers, formulations, and battery ma-
terials13–19. In these workflows, liquid handling plays a critical
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¶ Current address: Department of Chemistry, University of Oxford, 12 Mansfield
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role in transferring material from stock solutions to each (combi-
natorial) mixture to be evaluated. With a sufficiently fast down-
stream assay (e.g., an optical measurement, direct injection mass
spectrometry), the most time-consuming step in a combinatorial
screen is liquid handling. As the number of potential components
increases (both in terms of the number of distinct stock solutions
and the number of distinct components that might be included
in each mixture), execution bottlenecks become more severe. In
our own experience, combinatorial liquid handling involving ap-
proximately 350 transfers from one 96-well plate to another on
a Tecan Evo 200 liquid handler requires upwards of an hour to
execute.

Optimizing (reducing) execution time would lead to substan-
tial improvements in throughput and efficiency. Among the vari-
ous liquid handling platform, the 8-channel pipette stands out as
one of the most widely used configurations. Of the available 8-
channel pipette configurations, individually addressable pipettes
(where tips are aligned with the shorter edge of the well plate
and where each can move up and down (z-axis) independently)
offer superior flexibility, making them well-suited for combinato-
rial formulation screening. Such pipette can be found in Tecan,
Hamilton, Beckman, Revvity, and other liquid handling platforms.
Experimental protocols defining the precise sequence and order of
liquid transfer operations are typically defined by a user without
explicit optimization of execution time. Despite the ubiquity of
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Fig. 1 Problem description. (a) Schematic representation of a typical multi-channel pipetting task, showing how different compounds and volumes
are allocated from source wells to destination wells for downstream functional assays. (b) Commonly used labware formats, including 12-, 24-, 96-,
384-well plates. (c) Step-by-step illustration of the liquid handling process. The time required can vary significantly based on the liquid characteristics
and volumes.

liquid handling operations, to the best of our knowledge, no exist-
ing method in the literature offers an approach to systematically
optimizing execution time of the liquid handling tasks. And de-
spite its seeming simplicity, this combinatorial pipette scheduling
problem is non-trivial and offers substantial room for efficiency
gains.

Herein, we propose an optimization strategy to systematically
reduce the execution time of liquid handling tasks on 8-channel
systems with individually controllable tips. Our key contributions
include: (1) defining a function that serves as a robust proxy
for the execution time, and (2) formulating the scheduling chal-
lenge as a Capacitated Vehicle Routing Problem (CVRP), which
enables the use of heuristic solvers traditionally applied in logis-
tics and transportation planning. This approach significantly im-
proved the efficiency of task planning and execution, resulting in
a up to 37% performance improvement compared to the baseline
sorting method. The results underscore the substantial potential
for optimizing the operation of existing liquid handling platforms
without changing the hardware configuration, paving the way for
more efficient high-throughput experimentation and better uti-
lization of the growing repertoire of autonomous laboratories.

Methods

Problem description.

The combinatorial liquid handling task involves transferring vary-
ing volumes of multiple compounds from a set of sources to des-
ignated destinations, following a predefined experimental design
(Figure 1a). We focus on executing these tasks using liquid han-
dling system with 8 individually controllable channels, a widely
adopted configuration in laboratory automation. Standard Soci-
ety for Biomolecular Screening (SBS)-format well plates, includ-
ing 12-well, 24-well, 96-well, and 384-well plates, are commonly

used for storing source compounds and receiving reagents (Fig-
ure 1b). These formats differ in layout and spacing, requiring
different pipetting strategy. For instance, a 96-well plate allows
all eight pipette tips to simultaneously access a single column,
whereas a 12-well plate accommodates only three tips per column
due to its 3 (rows) ×4 (columns) layout. While a 384-well plate
supports eight tips per column, the narrower spacing restricts tip
placement to every other well to avoid physical collisions. These
geometric constraints must be considered during pipette schedul-
ing to ensure accuracy, efficiency, and compatibility with the se-
lected labware format.

The liquid handling operation consists of a sequence of cycles
(Figure 1c). Each cycle includes (1) lowering the tip into the liq-
uid (t1), (2) aspirating or dispensing (t2), (3) raising the tip (t3),
and (4) moving the arm to the next location (t4) (supplemental
video 1). Here, aspirating refers to drawing liquid up into the
pipette tip, while dispensing refers to releasing liquid from the
tip into the destination well. Given n (n ≤ 8) available tips, the
mainstream liquid handling platforms typically perform the liquid
transfer based on a work list consisting of (source, destination,
volume) entries, executing them in n-by-n batches (Figure 2a),
followed by washing (for fixed tips) or tip replacement (for dis-
posable tips) after completion of the dispensing operation. While
multiple aspirations or multiple dispenses with the same tip could
further improve liquid handling efficiency, such operations must
be implemented on a case-by-case basis due to the risk of cross-
contamination. However, in practice, this approach carries a risk
of cross-contamination, as dispensing often involves touching the
liquid surface in the destination wells. For example, if dispensing
from above the liquid level, viscous or high surface tension liq-
uids can remain suspended at the tip of the pipette and fail to be
delivered into the well. For this reason, we did not consider these

2 | 1–9Journal Name, [year], [vol.],

Page 2 of 10Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 8
/5

/2
02

5 
12

:2
1:

12
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5DD00233H

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00233h


Assigned tipVolume (μL)#Destination #SourceOrder

Tip 110.0111

Tip 213.5712

……………
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……………
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Empirical method: 
Sorting-based method

This work: CVRP solver

Combinatorial taska

#Source

#Destination
1    2    3    4    5    6    7    8    9   10  11  12

1    2    3    4    5    6    7    8    9   10  11  12

Time: 6 × (t1 + … + t4)

b

c

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Cycle 1: Aspiration

1 2 3 4 5 6 7 8

Cycle 1: Dispensing

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Cycle 2: Aspiration

#Tip 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Cycle 2: Dispensing

Cycle 1: Aspiration Cycle 1: Dispensing Cycle 2: Aspiration

1 2 3 4 5 6 7 8
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Cycle 2: Dispensing
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1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Time: 7 × (t1 + … + t4)

Time: 5 × (t1 + … + t4)
Time: 6 × (t1 + … + t4)

Time: 3 × (t1 + … + t4)

Time: 4 × (t1 + … + t4) Time: 4 × (t1 + … + t4)

Time: 7 × (t1 + … + t4)

Total execution time: 24 × (t1 + … + t4)

Total execution time: 18 × (t1 + … + t4)

Liquid transfer
Aspirate from well #2 (B2)
Dispense to well #9 (C3)

#Source

#Destination
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4
5
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6 times less tip lowering and lifting compared with the unoptimized sequence. 

C
ycle 1

C
ycle 2

A

B

C
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A

B

C

1 2 3 4

P.

P. P.

P.

P.

P.
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P.

P.

P. P.

P.

P.

P.

Inefficient liquid handling

Efficient liquid handling

1
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3
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5
6
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Tips

Fig. 2 Problem formulation. (a) The workflow from the defined combinatorial task between two 12-well plates to executable work list. In this work, the
position is numbered follow column-major indexing. For example, A1 is well 1, B1 is well 2 etc. The tips are aligned with the columns (the short axis)
of the well plate and their spacing could be adjusted according to the geometry of the well plate. After specifying the labwares and the arrangement of
the reagents and experiments, the task is represented as a task matrix, non-zero entries denote individual liquid transfer—each defined by (position on
source plate, position on destination plate, volume). Different scheduling methods can be used to generate the work list in different orders. The task
is executed in groups of eight transfers (aspiration and dispensing) per cycle, with pipette tips assigned in ascending order, from Tip 1 to Tip 8. We
apply a CVRP-based solver to derive a work list that minimizes the number of tip lowering and raising movements, thereby reducing overall execution
time. (b-c) Demonstration of the influence of the work list order on the total execution time of the same task involving 16 liquid transfers with (b) a
less efficient and (c) a more efficient execution sequence. The task requires 2 cycles of aspiration-dispensing with 8-channel pipette. The numbers in
cycle are the numbers of assigned tips for the tasks in the indicated cycle. Each cube represents a pipette tip, labeled 1–8. Blue indicates a tip filled
with liquid, while gray indicates an empty tip. t1 to t4 represents the time required for tip lowering, aspirating/dispensing, withdrawing, and moving to
the next location. ‘P.’ denotes that the task is executed in parallel. The time for aspiration and dispensing are taken to be equal in this illustration.
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scenarios in the present study. Each step incurs a time cost, which
can vary significantly based on the layout of the bench, volume,
liquid viscosity and required accuracy. The arm movement time
(t4) is typically relatively smaller compared to others; tip lower-
ing (t1) and raising (t3) times are usually similar to each other in
duration; and aspiration or dispensing times (t2) depend on the
transfer volume in addition to material properties. For instance,
viscous liquids typically demand slow aspiration, dispensing, and
withdraw time to maintain volume precision20. Depending on
the order of the work list, the same liquid handling task could
have significantly different execution time (Figure 2b,c). Maxi-
mizing tip lowering and raising parallelization reduces the num-
ber of lower–aspirate/dispense–withdraw–move cycles required,
thereby enabling a more efficient liquid transfer process (Fig-
ure 2c). One effective strategy is to maximize the number of
next-tip tasks which use adjacent tips for aspiration or dispens-
ing, through optimizing the order of the work list. In this way, we
can minimize tip lowering and raising while filling or emptying
all available channels.

This scheduling challenge bears a strong resemblance to the
Capacitated Vehicle Routing Problem (CVRP), a classical combi-
natorial optimization problem in operations research (Figure 3a).
In CVRP, a fleet of vehicles need to determine the most efficient
routes to deliver goods to a set of locations, starting and ending
at a central depot, while minimizing total travel cost and satisfy-
ing constraints such as vehicle capacity. Drawing an analogy to
pipette scheduling, each (source, destination) pair can be viewed
as a location to be visited (Figure 3b), and the 8-channel pipette
functions as a vehicle with a capacity of 8 deliveries per cycle.
The “distance” between locations is defined by their relative po-
sitions on both the source and destination plates, as determined
by the physical geometry of the well plate. Wells aligned in the
same column and adjacent rows are considered closer and more
efficient to access within a single operation. Importantly, this spa-
tial relationship is directional. For example, within a column of a
96-well plate, row 3 is close to row 4 but not to row 2. This avoids
misaligned assignments, such as tip 3 aspirating from row 2 and
tip 2 from row 3, which would otherwise lead to unnecessary tip
lowering and raising movements. By framing the problem in this
way, we can apply CVRP solvers to minimize the total computed
(estimated) execution time.

Mathematical formulation of the scheduling challenge.

We denote the action of aspirating from well a and dispensing to
well b as a single job of the scheduling task. Jobs are encoded
as non-zero entries in the task matrix (Figure 2a) T ∈ Rnsrc×ndst

,
where ta,b denotes the volume, nsrc is the number of wells in the
source plate, and ndst is the number of wells in the destination
plate. Solving the scheduling task is equivalent to finding the
optimal sequence of executing all jobs that minimizes the total
time cost required to finish a liquid handling task.

We first define the pairwise distance of aspirating or dispens-
ing two wells consecutively. We define a unit action as mov-
ing tip, aspirating/dispensing, moving tip again, and moving arm
(t1 + t2 + t3 + t4, Figure 1c). The total number of arm movements
between the source and destination plate is determined by the

total number of tasks divided by 8 and is therefore not subject
to optimization through reordering. While it is technically pos-
sible to incorporate a arm-movement distance term within the
source and destination plate into the cost function, within a sin-
gle labware, arm movement distances are relatively short. Given
standard arm speeds on most liquid handlers, this translates to
less than 0.5 second per move, which is negligible compared to
the time required for aspiration, dispensing, and tip lowering and
raising. Thus we ignore the impact of different distances when
moving arms.

For a plate with n wells (e.g., n = 96), we define the following
pairwise distance matrix D ∈ {0,1}n×n:

da,b =

{
0 if a < b and a,b are adjacent wells in the same row;
1 otherwise.

(1)
Wells next to each other can be aspirated or dispensed at the same
time, meaning that when these two jobs are ranked consecutively
in the work list, there is no extra cost for the liquid handler as they
will in practice be executed simultaneously. Due to differences in
well spacing, adjacency is defined differently for higher-density
plates: for a 384-well plate, adjacent wells correspond to every
other well in the row; for a 1536-well plate, adjacency occurs
every four wells. If not, another unit operation is needed to finish
these two jobs. We compute Dsrc and Ddst for the source plate and
the destination plate, respectively.

Recall that dispensing well a in the source plate to well b in the
destination plate is defined as a job. Our next step is to construct
a job-level distance matrix. Assuming we have m jobs, we define
S ∈ {0,1}m×nsrc

and E ∈ {0,1}m×ndst
as the incidence matrices of

T, where si,a = 1,ei,b = 1 if task i is to aspirate from well a in the
source and dispense to well b in the destination. With S and E,
we are able to transform the pairwise distances for each well to
the following job-level distance matrices,

D̄src′ = SDsrcS⊤, D̄dst ′ = EDdstE⊤. (2)

D̄src′ ∈ Rm×m denotes the pair-wise distance between jobs on the
source plate, and D̄tgt ′ ∈ Rm×m is the same for the target plate.

We define a new matrix D′ ∈ R(m+1)×(m+1), where index 0 cor-
responds to a dummy job, as D′ = Dsrc′ +Ddst ′ , with

dsrc′
i, j =

{
tsrc
1,3,4 +

v j
qsrc if d̄src′

i, j = 1 and i ≥ 0, j ≥ 1,

max
(

0, v j−vi
qsrc

)
otherwise,

(3)

ddst ′
i, j =

 tdst
1,3,4 +

v j

qdst if d̄dst ′
i, j = 1 and i ≥ 0, j ≥ 1,

max
(

0, v j−vi

qdst

)
otherwise,

(4)

where tsrc
1,3,4 (s) is the sum of t1, t3, t4 for aspirating at the source

plate, which is (approximately) viewed as a constant. v j (µL) is
the volume for job j, and qsrc (µL/s) is the speed of aspiration,
therefore v j

qsrc is the aspiration time (t2) for job j. The same defi-
nitions are applied to dispensing operations. The dummy job has
v0 = 0. We denote X as the aspirating and dispensing plan, where
xi, j,k = 1 means job i is followed by job j at cycle k. The pipette
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#Source

1
8

2 4

7

3
4

6
8

1

8
5

7

6

5

7

2

4
2

6

3

1
5

3

0

#Destination
1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9
10

11
12

a b Depot

Classical CVRP works on the geometrical space.
This work formulates the liquid handling 

scheduling as a CVRP on the space defined 
by the geometry of the well plate.

Fig. 3 The analogy between capacitated vehicle routing problem (CVRP)
and the scheduling challenge of liquid handling. (a) Classical CVRP is a
variant of the vehicle routing problem in a geometric space. Each vehicle
has a limited carrying capacity. The objective is to determine the most
cost-efficient set of routes that service all locations without exceeding
the capacity constraints of any vehicle. (b) This work formulates the
liquid handling scheduling as a CVRP in the space defined by the ge-
ometry of the well plate. An 8-channel pipette (analogous to a vehicle
with 8-unit capacity) must perform multiple source-to-destination liq-
uid transfers (analogous to locations). Each aspiration-dispensing cycle
corresponds to a delivery route, and the goal is to minimize the total
execution time. This analogy enables the use of CVRP solvers to glob-
ally optimize pipette scheduling and reduce execution time. Wells with
numbers in the same color belong to the same column on the source or
destination plate.

scheduling problem can then be formulated as,

min
X

m

∑
i=0

m

∑
j=0

K

∑
k=1

d′
i, j · xi, j,k (5a)

s.t.
m

∑
i=0

xi, j,k =
m

∑
i=0

x j,i,k, (5b)

K

∑
k=1

m

∑
i=0

xi, j,k = 1 ∀ j{1...m}, (5c)

m

∑
j=1

x0, j,k = 1 ∀k ∈ {1...K}, (5d)

m

∑
i=0

m

∑
j=1

xi, j,k ≤ 8 ∀k ∈ {1...K}, (5e)

X ∈ {0,1}(m+1)×(m+1)×K , (5f)

xi,i,k = 0 ∀i ∈ {0...m},k ∈ {1...K}. (5g)

K = ⌈m
8 ⌉ denotes the number of cycles needed to dispense all

jobs, because the liquid handler can aspirate or dispense at most
8 wells at the same time; one could easily generalize to non-
conventional liquid handlers by changing this number. Equa-
tion (5a) is the computed execution time of the pipette task. Con-
straint (5b) means the number of times leaving a job should be
the same as the number of times entering a job, and constraint
(5c) ensures each job is completed exactly once. Constraint (5d)
means that each cycle should leave the dummy job, which helps
enforce constraint (5e) that the capacity of each cycle is 8 jobs.

Solver implementation.

The formulation in Equation (5) is exactly the same as CVRP,
where the dummy job (i = 0, j = 0) is treated as the shared ve-
hicle depot, K cycles are equivalent to K vehicles, each vehicle
has a capacity of 8, and the distance matrix D′ is interpreted as
the pairwise routing distance. To this end, we can tackle pipette
scheduling with off-the-shelf CVRP solvers.

The pipette scheduler is developed with the CVRP solver im-
plemented in Google OR-Tools21. All the computation in this
work was performed on a laptop (MacBook Pro with M3 Pro,
18GB RAM). We compute D′ from the plate layout and liquid
handling parameters (tsrc

1,3,4, qsrc, tdst
1,3,4, and qdst) and job based

on Equation (2), and pass D′ to the CVRP solver as the distance
matrix. Each job is viewed as a location to visit in CVRP, and
the dummy node with all-zero distances to all other locations
is defined as the depot (i.e., starting location) in CVRP. We im-
plemented the solver using the PATH_CHEAPEST_ARC strategy
as the first solution heuristic. This strategy builds an initial so-
lution by starting from the start node of a route and iteratively
connecting it to the next node that produces the cheapest addi-
tional route segment. To further improve the solution, we applied
GUIDED_LOCAL_SEARCH as the local search metaheuristic. Af-
ter getting the routing result from the solver, we translate it into
the corresponding pipette work list under a format that the liquid
handler control software can parse (Figure 2a). Unless otherwise
specified, the tsrc

1,3,4 and tdst
1,3,4 were set to 1, and qsrc and qdst were

set to 100 in the subsequent results.

Baseline methods.

We evaluate the performance of our CVRP-based scheduling ap-
proach by comparing it with heuristic baseline methods. The
first method, named long-axis prioritized (LAP) method, is a
parallelization-driven strategy that attempts to maximize the
number of simultaneous transfers on the plate (source or desti-
nation plate) with more number of wells by iteratively sampling
the jobs on the axis that belongs to the larger plate until all of
the jobs are sampled. This method could guarantee partial paral-
lelization on at least one of the labware components. The second,
named greedy, is a greedy heuristic that randomly selects the clos-
est (source, destination) jobs on distance matrix (D′) to iteratively
pick the nearest unassigned pair. Additionally, we included a con-
trol method, named row-major sorting, where jobs are executed
in the order returned by np.argwhere(T), which corresponds to
row-major order—i.e., traversing the task matrix from top to bot-
tom and left to right. We do not include an exact solver as a
baseline because the number of liquid transfers is usually beyond
the trackable range for exact CVRP solvers (<100 jobs)22.

Random task generation.

To generate synthetic pipetting tasks for benchmarking, we imple-
mented a custom random sampling procedure. Given specified
source and destination plates, we initialized a two-dimensional
matrix of zeros with shape (nsrc, ndst), where n is the number
of wells of the labware. We randomly selected a defined num-
ber of unique positions in the matrix to assign non-zero values,
corresponding to the liquid transfers. The number of non-zero
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elements reflects the total number of transfers in the task. Each
selected position was assigned to a random volume sampled uni-
formly between 1 and 100 as a representation of the volume to
be transfered.

Simulation of the tasks.

Liquid handling task execution was simulated using EvoSim soft-
ware (version 2.8.0.0, Tecan) and the simulated execution time
was calculated by subtracting the start time from the end time of
each simulated run. The software accepts a .csv input file con-
taining a list of pipetting instructions, each defined by a (source
position, destination position, volume) triplet. These instructions
are executed on a virtual worktable in simulation mode with 3D
rendering (Figure S1).

Simulations were performed in normal speed mode, which
could reflect the real-world execution time. After each aspira-
tion–dispensing cycle, an additional washing step was included.
The detailed configuration of the worktable layout is shown in
Figure S1, and all operational parameters used in the simulations
are provided in Table S1.

Results and Discussion

The computed execution time is a robust proxy of the execu-
tion time.

a b

c d

Fig. 4 The correlation between the computed execution time and the
simulated execution time of liquid handling tasks between (a) a 12-well
plate and a 12-well plate with 25, 50 and 100 transfers, (b) a 24-well
plate and a 24-well plate with 50, 100, 200 and 400 transfers, (c) a 96-
well plate and a 96-well plate with 100, 200, 400, 800 and 1600 transfers,
and (d) a 384-well plate and a 384-well plate with 200, 400, 800, 1600
and 2400 transfers. For each labware and number of transfers, 3 random
task matrices were generated and evaluated. Correlation coefficients and
R2 are shown for each.

To assess whether the computed execution time could serve as
a reliable proxy for actual execution time, we performed a se-
ries of simulations of randomly generated tasks (see Methods)
with a specified number of liquid transfers between same type
of labware in Figure 1b. For each task, the work list was con-

structed by randomly ordering the transfer operations. This setup
provides an unbiased framework for systematic evaluation across
a broad range of task arrangement, ordering, and labware for-
mats. Importantly, this approach ensures that performance com-
parisons are not influenced by the structure or assumptions of
any specific experimental protocol, thereby enabling generaliz-
able insights into algorithmic effectiveness. As shown in Figure 4,
a strong correlation was observed between the computed execu-
tion time and the simulated execution time. The results confirmed
that our definition of the computed execution time can be used
as a proxy for estimating execution time during pipette schedul-
ing; minimization of the former should lead to minimization of
the latter.

The CVRP-based method consistently outperforms other
methods in terms of execution time of the proposed pipetting
strategy.

We observed that the CVRP-based scheduling method consistently
outperforms baseline methods in minimizing execution time for
randomly generated tasks (Figure 5 and Figure S2). The perfor-
mance is robust across various labware formats and remains effec-
tive for tasks involving up to approximately 4,000 liquid transfers.
On average, the CVRP-based method achieved a 37% reduction
in execution time compared to the row-major sorting method.
While the LAP method exhibited near-optimal performance in cer-
tain labware combinations (Figure 5c–e), its overall performance
was inconsistent. For instance, in lower-density formats such as
12- and 24-well plates, the improvement over row-major sorting
methods was less pronounced compared to higher-density for-
mats like 96- and 384-well plates. In contrast, the CVRP-based
approach consistently delivered performance gains across all for-
mats, reducing execution time by an average of 15% relative to
the LAP method. These findings underscore the robustness and
generalizability of the CVRP formulation, particularly in scenarios
where baseline heuristics may fail to provide consistent improve-
ments.

We next investigated how the solution time allocated to the
solver affects optimization performance. CVRP is an NP-hard
problem for which it is impractical to find the optimal solution
in polynomial time; hence, we resort to the approximate solver in
OR-Tools. The solver requires a minimum amount of time to pro-
duce a feasible solution; if insufficient time is allocated, the pro-
gram may fail to return a result. To further explore the relation-
ship between the solution time and optimization effect, we evalu-
ated solver performance on tasks involving 2,000 liquid transfers
from a 96-well plate to another 96-well plate. As shown in Fig-
ure 6, increasing the allotted solution time consistently improved
performance until a plateau was reached starting at around 40
CPU seconds.

The proposed method can be readily generalized to high-
density labware such as 1536-well plates. With a solution time
of 120 CPU seconds, e successfully optimized pipetting tasks in-
volving up to approximately 14,000 liquid transfers (Figure S3).
For the most complex task evaluated, the method reduced the
computed execution time to 25565 compared to the 29042 of
the LAP method, corresponding to an execution time reduction
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a b c

d e f

Fig. 5 Comparison of the performance of different scheduling methods on randomly generated tasks (a) from 12-well plate to 12-well plate, (b) from
24-well plate to 24-well plate, (c) from 24-well plate to 96-well plate, (d) from 96-well plate to 96-well plate, (e) from 96-well plate to 384-well plate
and (f) from 96-well plate to 96-well plate. For a given number of liquid transfers and labware types, 3 random tasks were generated and scheduled
using different methods. The solving time for CVRP is 20 seconds. For each labware combination, we evaluated 10 different task sizes, with the
number of liquid transfers set to multiples (from 1× to 10×) of the number of wells in the destination plate. Results are shown as mean ± standard
deviation. The results of the remaining combinations are provided in Figure S2.

Fig. 6 Relationship between solver performance and solution time budget.
6 random tasks, each with 2000 liquid transfers, were generated and
solved with different solution time budget from 2 to 70 seconds, in 2-
second increments. Results are presented as mean ± standard deviation.

of 158 minutes relative to the LAP scheduling strategy. These re-
sults demonstrate the scalability of the approach and its potential
to deliver substantial time savings in large-scale, high-throughput
liquid handling operations.

Optimizing the schedule of real-world tasks leads to tangible
improvements in efficiency and throughput.

We then demonstrated the performance of our method on a
real-world task derived from a previously developed automated
experimental platform for the discovery of random heteropoly-
mer blends for enzyme stabilization23. This workflow (Fig-
ure 7a) involves high-dimensional combinatorial liquid transfer
operations to blend polymer stock solutions from one 96-well
plate to another. Through this self-driving platform, we success-
fully identified polymer blends that outperformed their individ-
ual constituents and can stabilize the glucose oxidase under 70°C
for 30 minutes. However, the exploration capacity of the au-
tonomous platform is constrained by the time required to exe-
cute the blending process. As the number of components in each
blend increases, the associated liquid handling time grows signif-
icantly—often exceeding the practical limits imposed by the shelf
life of sensitive reagents such as enzymes. This limitation was a
key factor in our decision to restrict the number of blend com-
ponents to 4. Improving scheduling efficiency could enable more
experiments within the same time frame or allow exploration of
a larger design space without compromising reagent stability.

This real-world task is different from the randomly generated
tasks. The blending composition of the polymer stock solutions to
be added to the destination wells are proposed by an optimization
algorithm based on the outcomes of previous iterations. As the
experiment progresses, certain source wells become increasingly
favored or disfavored, resulting in a non-uniform distribution of

Journal Name, [year], [vol.],1–9 | 7
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b

d

x1% x3%x2%

x1% x3%x2%
(              |                |              )

a

Polymers
96-well plate

Polymer blends
96-well plate

Blending

(              |                |              )

Enzyme stability 
assay

Data-driven optimization

c

Fig. 7 Optimization of the execution time of a real-world task. (a)
Schematic demonstration of the an autonomous polymer blend optimiza-
tion campaign for enzyme stabilization. The polymer stock solutions were
stored in the source 96-well plate and were blended at the destination
96-well plate. The enzyme stabilization assay is then performed in the
destination well plate. The new experiment for the next round is pro-
posed by a genetic algorithm. (b) Total computed execution time and
(c) total simulated execution time of different methods. (d) Simulated
execution time of each iteration across campaign using different meth-
ods. Solving time for CVRP is 20 seconds.

liquid transfers on the task matrices. Additionally, the layout of
the destination well plate must conform to specific rules to ac-
commodate control experiments, further complicating scheduling
(Figure S4).

We optimized the polymer blending process of one real experi-
mental campaign from this work. In the original workflow, work
lists were generated using the row-major sorting method and ex-
ecuted on a Tecan Evo 200 liquid handling platform. The cam-
paign started from a control experiment whose task matrix is a
diagonal matrix with first 8 rows empty for the control experi-
ments (Figure S4), followed by a round of pure random explo-
ration. Subsequent experiments were generated adaptively by
a genetic algorithm based on prior results. For the CVRP-based
method, we allocated 20 seconds of solving time per iteration,
totaling approximately 3 minutes for the entire campaign. As
shown in Figure 7b, the CVRP-based approach significantly out-
performed all other methods in reducing total computed execu-
tion time. Notably, it achieved a 25% reduction compared to the
LAP method—substantially greater than the 15% reduction ob-
served in purely random tasks. Execution time simulations fur-
ther supported this finding (Figure 7c), the CVRP-based method
achieved a total simulated execution time of 246 minutes, com-

pared to 307 minutes with the LAP method and 321 minutes
with the row-major sorting method, representing time savings of
61 minutes and 75 minutes, respectively (throughput improve-
ments of 25% and 30%). This improvement is attributed to the
reduced effectiveness of the LAP method in handling non-random
task starting from the third iteration (Figure 7d). The results un-
derscore the robustness and effectiveness of the CVRP-based op-
timization, particularly in dynamic, data-driven workflows where
traditional heuristics fail to perform consistently.

To evaluate the generalizability of our strategy across differ-
ent liquid handling platforms, we tested the task of iteration 3
in Figure 7d—the iteration where we observe the proposals from
different scheduling methods to diverge greatly in simulated ex-
ecution time—on a JANUS G3 automated liquid handling work-
station (Revvit) with different aspiration and dispensing speeds.
The CVRP-based method outperformed all other methods in all
the speed combinations. At an aspiration speed of 100 µL/s and
dispensing speed of 25 µL/s, it achieved an execution time of
36 minutes compared to the LAP method’s 45 minutes (Figure
S5). This result further demonstrates the versatility and platform-
independence of our approach, underscoring its potential to im-
prove efficiency across a wide range of automated systems.

Conclusions

We have demonstrated how the execution time of 8-channel
liquid handling tasks can be effectively optimized as a Capaci-
tated Vehicle Routing Problem, or CVRP. We achieved substan-
tial reductions in execution time in both simulated and experi-
mental settings through a lightweight optimization step, which
enables gains in throughput. The current setup does not sup-
port 96-channel or acoustic liquid handlers, as their operational
mechanisms differ fundamentally from individually addressable
pipettes. For liquid handling protocols that require specific
reagent addition sequences or allow tip reuse, the task matrix can
be partitioned into smaller submatrices, each reflecting a compat-
ible set of constraints. These submatrices can then be optimized
independently and executed sequentially.

Further improvements might be realized by incorporating
layout-aware destination assignment strategies during experi-
mental design to further reduce execution overhead. As lab-
oratory automation continues to play a pivotal role in accel-
erating scientific discovery, our method provides a practical,
scalable, and generalizable solution for improving throughput
and efficiency without hardware modification. It can be read-
ily integrated into formulation optimization platforms and other
high-throughput experimental workflows involving combinatorial
screening of chemical or biological systems.
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