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Vitrimer is an emerging class of sustainable polymers with self-healing capabilities enabled by

DOI: 00.00 00/XXXXXXXXXX . . T . . . .
dynamic covalent adaptive networks. However, their limited molecular diversity constrains their
property space and potential applications. Recent development in machine learning (ML) tech-
niques accelerates polymer design by predicting properties and virtually screening candidates,
yet the scarcity of available experimental vitrimer data poses challenges in training ML models.
To address this, we leverage molecular dynamics (MD) data generated by our previous work
to train and benchmark seven ML models covering six feature representations for glass transi-
tion temperature (Ty) prediction. By averaging predicted Ty from different models, the model
ensemble approach outperforms individual models, allowing for accurate and efficient property
prediction on unlabeled datasets. Two novel vitrimers are identified and synthesized, exhibiting
experimentally validated higher 7, than existing bifunctional transesterification vitrimers, along
with demonstrated healability. This work explores the possibility of using MD data to train ML
models in the absence of sufficient experimental data, enabling the discovery of novel, synthe-
sizable polymer chemistries with a wide range of desirable properties. The integrated MD-ML
approach offers polymer chemists an efficient tool for accurate property prediction and designing
polymers tailored to diverse applications.

Introduction

Polymers play a crucial role in a wide array of industries, including coating, microelectronics, automobile, and aerospace. However,
their performance decays over time as molecular bonds break under conditions such as mechanical stress and temperature during
utilization. In traditional thermosets and thermoplastics polymers, this damage is irreversible since the rupture of covalent bonds
cannot be reversed. This leads to the formation of cracks and eventual material failurel. As a result, most end-of-life polymer products
end up as waste after failure, posing significant challenges to sustainability. The inability to repair degraded polymers leads to product
replacement and increases economic costs in plastics manufacturing. In addition, the lack of intrinsic ability to repair molecular damage
in polymers limits the recyclability of used thermoplastics and thermosets.

Since the introduction by Leibler et al.2"5 a type of healable polymers called vitrimers have gained significant attention as a potential
solution to the plastic pollution issue. Combining the reprocessability of thermoplastics and superior mechanical properties of ther-
mosets, vitrimers can potentially reduce plastic production and costs in polymer recycling. Vitrimers are featured by dynamic covalent
adaptive networks (CANs) which enable building blocks to attach to and detach from each other via bond exchange reactions, which
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brings healability and recyclability (Fig. [Th). Vitrimers can be classified based on the the types of bond exchange reactions includ-
ing transesterification, disulfide exchange, and imine exchange reactions”. However, the thermo-mechanical properties of currently
available vitrimers are constrained by the limited variety of commercially available molecular building blocks (i.e., monomers) used in
their synthesis. Therefore, to broaden the applications of vitrimers, it is essential to efficiently identify the available or synthesizable
monomers that constitute vitrimers with desirable properties.

Traditionally, novel polymer discovery has been accomplished in a trial-and-error fashion®. For a given set of polymers, chemists char-
acterize the properties of each one of them by experiments and selected those with desired properties. Since experimental synthesis
of novel polymer chemistries is costly, molecular dynamics (MD) simulations have been favored as an alternative method to charac-
terize polymers. MD is a simulation technique that bridges quantum mechanics and classical mechanics, and it has been extensively
utilized to accelerate the discovery processZ. MD simulations have provided valuable insights into how polymer molecular structures
influence mechanical properties®, glass transition temperature?, and self-healing performance'l?. Despite these advancements, large-
scale computational screening using MD or other simulation techniques remains computationally expensive even with the progress in
high-performance computing!. Consequently, the exploration of polymer design space is typically constrained and fails to cover the
vast design space of molecular compositions.

Recent developments in machine learning (ML) methods have opened a new path to accelerate polymer discovery by orders of mag-
nitude. ML models are trained using available data to predict polymer properties (labels) from molecular structures (features). The
trained models are employed to predict the properties of unlabeled polymers (whose properties are unknown) and the polymers with
promising predicted properties are selected for further validation. This process is also known as virtual screening, which has been
applied to design polymers with various properties including glass transition temperature (7,)12, thermal conductivity?, bandgap4,
and gas uptake properties'l®, Generally, there are three considerations when applying machine learning to polymer property prediction:

 Data: High-quality datasets are necessary for training accurate ML models. The largest polymer database Polylnfol® contains
~ 18,000 polymers with experimentally measured properties but lack sufficient data in specific properties. For example, there
are only 173 data points of thermal conductivity. As an experimental database, recently synthesized polymers are also absent
in PolyInfo. To address these challenges, high throughput MD simulations allow for creating a large and consistent dataset to
train ML models. Researchers have established and curated polymer datasets of various properties including glass transition
temperaturell?, free volumel®, thermal conductivity,l? and ionic conductivity!®. ML models have been trained using these
datasets for virtual screening of polymers and novel insights into structure-property relationships have been identified.

* Representations: Monomers or polymer repeating units consist of atoms and bonds, which, in the original form, are not in-
terpretable to ML models. To achieve accurate predictions, it is essential to select an appropriate way to convert molecular
structures into machine-readable numerical feature representations. Molecular descriptors, which are theoretically derived val-
ues incorporating physicochemical information of molecules, serve as a commonly used representation??2l, Another prevalent
representation is molecular fingerprints, which are vectors with substructure occurrences as entries“%. Molecular structures can
also be described using string notations such as simplified molecular-input line-entry system (SMILES)23. Graph-based represen-
tations have drawn increasing attention due to the inherent graph nature of molecules, where atoms or substructures serve as
nodes and bonds as edges. The selection of the best representation type is typically case-specific and requires empirical trials.

* ML models: The choice of ML models is partially dependent on the selected representation of polymers. For example, graph neural
networks (GNNs) are specialized for graphs while Transformers are more suitable for sequence-based input such as SMILES2423|
Molecular descriptors and fingerprints are more universal and accommodate both shallow and deep ML models such as linear
regression, random forest, and feed-forward neural networks. Similar to representations, the choice of best ML models is also
empirical.

Despite the growing applications of ML for polymers, efforts to design vitrimers using ML remain limited. Yan et al.2® employed a
variational autoencoder (VAE)-based virtual screening approach to identify vitrimers with desirable glass transition temperature (7y)
and recyclability. In their method, vitrimers were encoded as latent vectors using a pretrained VAE, while a feedforward neural network
(FFNN) predicted 7, from these latent vectors. However, although the VAE was pretrained on ~ 420,000 drug-like molecules, the
property predictor was trained on a small experimental dataset (389 data points for T,) manually curated from the literature, resulting
in limited predictive accuracy. In our previous workdZ, we addressed this limitation by conducting large-scale molecular dynamics (MD)
simulations to calculate the T, of 8,424 hypothetical vitrimers and calibrating calculated T, against available experimental data. This
dataset, along with an unlabeled set of ~ 1 million hypothetical vitrimers, was used to train a VAE for the inverse design of vitrimers
with targeted 7,. While the generative model successfully learned the distribution of valid vitrimers and generated novel chemistries,
it did not explicitly account for synthesizability, making the proposed vitrimers difficult to synthesize. In contrast, the virtual screening
approach ensures the synthesizability of designed vitrimers by restricting the search space to a predefined unlabeled dataset consisting
of vitrimers derived from commercially available monomers.
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Fig. 1 Overview of this work. (a) Leveraging a previously developed vitrimer dataset, the performance of seven ML models covering six feature
representation types is benchmarked. The ensemble model, which averages predictions from different models, achieves the best performance. We
also provide interpretability into the ML models and identify the most impactful descriptors and substructures. (b) The trained ensemble model is
applied to predict 7, of unlabeled datasets and novel vitrimers are discovered. (c) Two screened vitrimers are selected for experimental synthesis and
characterization, demonstrating high 7, compared with bifunctional transesterification vitrimers present in the literature.

This study focuses on establishing a ML model informed by MD data for accurate and efficient prediction of vitrimer 7,. The trained
model is subsequently employed to identify novel bifunctional transesterification vitrimers composed of carboxylic acids and epoxides in
an equimolar ratio, which is the widely adopted ratio used to synthesize transesterification vitrimers in the literature2Z31, Leveraging
open source MD-generated data from our previous study’Z, we systematically evaluate the performance of ML models in predicting
vitrimer glass transition temperature (7). We benchmark seven ML models (linear regression, random forest, support vector regression,
gradient boosting, feedforward neural network, graph neural network, and Transformer) across six molecular representations, including
molecular fingerprints, RDKit2Y descriptors, Mordred“!' descriptors, Mol2vec embeddings 2, SMILES, and graphs. Our findings indicate
that an ensemble learning approach, which averages predictions from multiple models, outperforms individual models (Fig. [Th). Our
analysis of feature importance further provides interpretability by identifying key factors that influence the T, of vitrimers. Using the
trained ensemble model, we screen an unlabeled vitrimer dataset containing approximately 1 million hypothetical vitrimers, identifying
candidates with extreme (high and low) T, values beyond the training domain which are further validated through MD simulations
(Fig. [Ip). To ensure synthesizability, we conduct an additional screening of vitrimers composed of commercially available carboxylic
acids and epoxides, selecting promising candidates for experimental evaluation. Two novel vitrimers are synthesized and characterized,
demonstrating experimentally higher 7, than any bifunctional transesterification vitrimer reported in the literature (Fig. ). The sim-
ulated and experimentally characterized 7, values validate the ability of the model to expand the property space of available vitrimers.
This study demonstrates the feasibility of using MD-generated data to train ML models in the absence of available experimental data
and successfully applies this approach to the design and validation of novel vitrimers with desirable properties through experimen-
tal synthesis and characterization. The proposed framework serves as an effective tool for polymer chemists to design synthesizable
polymers with tailored properties for diverse applications.

Methods

Datasets

We utilize the vitrimer 7, dataset curated in our previous workZ, which comprises 1 million hypothetical vitrimers randomly sampled
from 2.5 billion possible combinations of 50,000 carboxylic acid molecules and 50,000 epoxide molecules derived from the ZINC15
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Datasets Size With T, Source
Labeled dataset 8,424 Yes ZINC1583
Hypothetical unlabeled dataset 991,576 No ZINC1553
Synthesizable unlabeled dataset 259 No Sigma-Aldrich%

Table 1 Three vitrimers datasets used in this work.

database®3. Of these, 8,424 vitrimers have T, values calculated via molecular dynamics (MD) simulations. A Gaussian process (GP)
model is employed to calibrate the MD-calculated T, values against experimental data from the literature. For this study, the subset of
8,424 vitrimers with T labels serves as the training and test datasets for ML models, which is referred to as the labeled dataset. The
labeled dataset is randomly split into two datasets: 90% and 10% of the data is used for training and test, respectively. The remaining
vitrimers within the 1 million set are treated as the hypothetical unlabeled dataset. Further details on the datasets and MD simulations
can be found in Supplementary Information.

In this work, we also curate a synthesizable dataset to facilitate the experimental synthesis of screened vitrimers. This dataset is
constructed by selecting 37 commercially available bifunctional carboxylic acids and 7 bifunctional epoxides from the Sigma-Aldrich
website®4, yielding a total of 259 vitrimers that can be synthesized using off-the-shelf chemicals. The sizes and sources of all three
datasets are provided in Table

Feature engineering

We consider six different feature representations as inputs for machine learning models: molecular fingerprints, RDKit descriptors2,

Mordred descriptors?l, Mol2vec embeddings=%, SMILES%3 and graph-based representations. For each vitrimer in the dataset, the
repeating unit is obtained by opening the epoxide rings and reacting them with carboxyl groups (see Fig. S1, Supplementary Infor-
mation). These repeating units are then converted into the specified feature representations, which serve as direct inputs for the ML
models. Further details are discussed below.

e For molecular fingerprints, the repeating units are transformed into 2048-bit Morgan fingerprints22:> with a radius of 3 using

the RDKit package . Each bit in the fingerprint vector represents the frequency of a specific chemical substructure within the
vitrimer, a method known as frequency-based molecular fingerprints. This approach has been shown to outperform traditional
binary fingerprints, where each bit only indicates the presence (1) or absence (0) of a substructure=®. We select 200 substructures
that appear most frequently across the labeled dataset. Substructures with zero variance (i.e., those with identical occurrence
counts across all labeled vitrimers) are removed. The final fingerprint vector consists of 195 entries, each corresponding to a
specific substructure present in the vitrimers.

* Molecular descriptors for each vitrimer are computed using the RDKit2% and Mordred?!' packages. Since certain descriptors
are not well defined for some vitrimer chemistries, only those that are valid across both the labeled and hypothetical unlabeled
datasets are retained. Additionally, descriptors with zero variance are removed. After filtering, 166 RDKit descriptors and 620
Mordred descriptors are selected.

* Mol2vec is an unsupervised learning-based approach that represents molecules as fixed-length numerical vectors by learning
embeddings of molecular substructures=2, In this work, we utilize a pretrained Mol2vec model to encode vitrimers into 300-
dimensional vector representations, capturing their structural and chemical characteristics.

 SMILES: each vitrimer repeating unit is converted into canonical SMILES using the RDKit package“? where the asterisk symbol
(*) denotes connection sites for the repeating unit.

* Following the approach described by Hickey et al.2Z, vitrimers are represented as molecular graphs, where heavy atoms serve as
nodes and bonds as edges. Each node is characterized by atomic features including atom type, number of hydrogen atoms, va-
lency, neighbor degree and aromaticity. Edge features include bond type, as well as indicators for whether the bond is conjugated
or part of a ring. An adjacency matrix is also extracted with binary indicators of connectivity between each pair of nodes.

Machine learning models

With vitrimer repeating units encoded into various feature representations, we proceed with training and evaluating different ML
models for T, prediction. The schematic overview of all ML models is presented in Fig. S2 (Supplementary Information). We train least
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absolute shrinkage and selection operator (LASSO), random forest (RF), support vector regression (SVR), extreme gradient boosting
(XGBoost), and feedforward neural network (FFNN) models using molecular fingerprints, Mol2vec embeddings, RDKit descriptors,
and Mordred descriptors. Graph Neural Networks (GNNs) and Transformer models are trained using graph-based representations
and SMILES strings, respectively. A total number of 22 models are trained and benchmarked in this work. A brief introduction to
each ML model is provided in Supplementary Information. The LASSO, RF, and SVR models are implemented using the scikit-learn
library=8, while the XGBoost model is built using the XGBoost package®2. The FFNN, GNN, and Transformer models are implemented
in PyTorch4?, with the GNN and Transformer architectures adapted from previous implementations by Hickey et al.2Z and Xu et al.4L,
respectively. More details on model architectures, training procedures, and hyperparameter tuning are provided in the Supplementary
Information. To explore possible enhancement in prediction accuracy, we also employ an ensemble learning approach by averaging
the T, values predicted by different models. This strategy has been used in previous studies for polymer property prediction2 4, We
evaluate various combinations of all 22 ML models and identify the ensemble that yields the highest prediction performance on the test
set.

The trained ML models not only enable efficient T, prediction but also provide molecular insights into the key factors influencing vitrimer
T,. To quantify feature importance, we perform Shapley additive explanations (SHAP) analysis*® on the trained LASSO, RF, XGBoost,
and FFNN models using molecular fingerprints, RDKit descriptors, and Mordred descriptors. SVR is excluded from this evaluation due to
high computational cost. For molecular fingerprints, RDKit descriptors and Mordred descriptors, we compute the average SHAP values
(i.e., feature importance scores) across all considered ML models and training data. The most impactful substructures and descriptors
are identified based on the highest absolute average SHAP values, providing interpretability into the factors governing vitrimer 7.

After training all models and selecting the best-performing one, we proceed with screening the unlabeled datasets. Each vitrimer in
these datasets is preprocessed using the previously discussed feature representations, and its 7, is predicted using the trained model.
Promising candidates are identified for further validation. For candidates from the hypothetical dataset, MD simulations are performed
to compute their 7, following the same simulation and calibration protocols used in generating the labeled dataset (details provided in
the Supplementary Information). For candidates from the synthesizable dataset, two vitrimers are selected for experimental synthesis
and characterization based on chemical intuition, synthesizability and cost.

Experimental synthesis and characterization

Two vitrimers are synthesized by crosslinking bisphenol A diglycidyl ether (DGEBA) with D,L-malic acid (MA) and 2,6-naphthalenedicarboxy!::

acid (NA), both purchased from Sigma-Aldrich®#. The crosslinking process involves stirring a mixture of the acids with the epoxide
and 5 mol % of the catalyst triazabicyclodecene (TBD) in the presence of 5 mL of acetone. The mixture is stirred on a hot plate at
temperatures ranging from 140 to 170 °C. Subsequently, the slurry is left in the beaker for 5 to 10 minutes to remove the acetone. The
degassed resin is then transferred into a mold and covered with a top mold for further crosslinking process in a hot press. The MA-based
resin is cured at 140 °C for 5 hours, while the NA-based resin was cured at 280 °C for 6 hours under a constant pressure of 1 MPa. The
glass transition temperature (7;) of the cured samples is determined using differential scanning calorimetry (DSC) at a heating rate of
5 °C per minute.

Results

Machine learning 7, prediction

The performance of five ML models across four feature representations for 7, prediction on the test set is summarized in Fig.
XGBoost achieves the highest accuracy using molecular fingerprints, while LASSO outperforms other models for the remaining three
representations. Among 20 (out of overall 22) models evaluated, LASSO with Mordred descriptors (denoted as LASSO_Mordred)
demonstrates the highest predictive accuracy, achieving a coefficient of determination (R%) of 0.76 and a root means square error
(RMSE) of 15.72 K. The superior performance of LASSO Mordred can be attributed to the high dimensionality of Mordred descriptors,
which include 620 features, a greater number than any other feature representation (195, 300, 166 for molecular fingerprints, Mol2vec
embeddings and RDKit descriptors, respectively). Additionally, LASSO incorporates an L1 regularization term, enforcing sparsity in
model coefficients, thereby reducing overfitting and improving the accuracy of T, predictions.

The performance of LASSO_Mordred is compared with GNN and Transformer models in Fig. [3p, where it also demonstrates superior
prediction accuracy over the deep learning models. To further improve T, prediction, we implement a model ensemble approach by
averaging the predicted 7, values from multiple models. We find that an ensemble consisting of XGBoost with fingerprints (XGBoost_fp),
XGBoost with Mordred descriptors (XGBoost_Mordred), GNN, and Transformer models achieves the highest correlation with ground
truth values in the test set, yielding an R? value of 0.78 and a RMSE of 15.19 K (Fig. ). In contrast, an ensemble incorporating
all 22 models performs worse due to redundancy in overlapping features. Notably, the four models in the best-performing ensemble
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Fig. 2 Coefficient of determination (R?) and root mean square error (RMSE) between ground truth 7, and predicted T, of LASSO, RF, SVR, XGBoost
and FFNN models using (a) molecular fingerprints, (b) Mol2vec embeddings, (c) RDKit descriptors and (d) Mordred descriptors. The error bars
indicate standard deviation in the metrics across five-fold cross validation. The best-performing models are highlighted in bold.

encompass four major types of feature representations: molecular fingerprints, molecular descriptors, graphs, and SMILES strings.
These results suggest that averaging predictions from models with diverse feature representations leads to higher accuracy than relying
on any single model alone, demonstrating the effectiveness of the ensemble learning approach.

Interpretability offered by machine learning models

We perform SHAP analysis on the trained models (LASSO, RF, XGBoost, and FFNN) to gain physical insights into the structure-T, rela-
tionships. For molecular fingerprints and molecular descriptors, we compute SHAP values for each feature (substructure or descriptor),
which quantify the impact of individual features on the T of vitrimers. The ten most impactful substructures are presented in Fig.
ranked by their relative importance. Substructure 190, identified as the most impactful, negatively influences 7, due to its aliphatic
nature which makes polymer chains more flexible. The positively impactful substructures can be classified into two groups. The first
group, comprising substructures 160, 179, and 147, increases T, due to their aromaticity and increased chain rigidity. Note that while
the complete aromatic rings are not depicted in Fig. 4t due to the molecular fingerprint radius of 3, the atoms highlighted in yellow
are confirmed as part of aromatic rings based on RDKit visualization?Y. The second group, including substructures 194, 160, 147, 149,
and 188, contains oxygen and nitrogen atoms, which are involved in hydrogen bonding within the vitrimer network, leading to an
increase in 7,. These trends are consistent with previous experimental studies 40147, Furthermore, our findings align with the work of
Tao et al.12, which identified similar substructures using a LASSO model trained on an experimental T, dataset. This consistency with
literature confirms the validity of our results.
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trained LASSO, RF, XGBoost and FFNN models. (c) Schematics of the substructures. The central atom of each substructure is highlighted in blue,
while aromatic atoms are marked in yellow. The connectivity between atoms is represented in light gray.

The most impactful RDKit descriptors are shown in Fig. 4, with their definitions provided in Table S1 (Supplementary Information).
The descriptor with the most negative impact, the number of rotatable bonds, decreases vitrimer chain rigidity, leading to a negative
correlation with 7,. The most positively correlated descriptor, VSA_Estate2, is a hybrid descriptor that captures the combined effect
of van der Waals surface area and the electrotopological states of atoms. Another notable descriptor, FractionCSP3, represents the
fraction of carbon atoms that are sp3-hybridized and negatively impacts T, due to a more aliphatic and flexible molecular structure.
Several identified descriptors have also been reported in a previous study based on an experimental dataset8, further validating the
effectiveness of our analysis. The most important Mordred descriptors, along with their descriptions, are presented in Fig. S3 and Table
S2 (Supplementary Information). Similar to the RDKit descriptors, the most significant Mordred descriptor is the number of rotatable
bonds, demonstrating consistency across different models and providing cross-validation within this study.

The insights derived from molecular fingerprints and descriptors highlight two primary factors influencing vitrimer 7, across different
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Fig. 5 Virtual screening of the hypothetical unlabeled dataset (see Table and examples of discovered vitrimers whose T, is validated by MD
simulations. (a) 7 distribution of the training data and discovered vitrimers. (b) Chemical space of the training data and discovered vitrimers
visualized by PCA of molecular fingerprints. (c) Molecular structures of discovered vitrimers with high and low T,. All presented T, values are obtained
from MD simulations.

scales: chain mobility and molecular interactions. At the polymer chain scale, increased chain flexibility, facilitated by rotatable bonds
and aliphatic structures, enhances conformational freedom and segmental motion, resulting in lower T,. In contrast, the presence of
aromatic rings and bulky side groups contributes to greater chain rigidity, restricting mobility and leading to higher 7. At the atomistic
scale, molecular interactions, such as hydrogen bonding and van der Waals forces, strengthen local interactions within the vitrimer
network, increasing energy barriers to segmental motion and thereby elevating 7,. These findings offer valuable molecular design
guidelines that can inform the discovery of vitrimers with tailored thermal properties.

Discovering novel hypothetical vitrimers by virtual screening

After identifying the ensemble model with the best performance on the test set, we proceed with predicting 7, for all vitrimers in the
hypothetical unlabeled dataset (see Table . Approximately 100 vitrimers with the highest and lowest predicted T, values are selected
for validation through MD simulations and calibration. The simulation and calibration protocols remain consistent with those used in
generating the labeled dataset (see Supplementary Information for details). The discovered high-7, and low-T7, vitrimers successfully
expand the property space of the training set (Fig. [5h), potentially broadening the applicability of vitrimers for use in more extreme
environments. To further analyze the distribution of the discovered vitrimers relative to the training data, we apply principal component
analysis (PCA) to reduce the molecular fingerprint representations to two-dimensional vectors. As shown in Fig. [5p, the novel vitrimers
extend the chemical space beyond the training regime. The 10 vitrimers with the highest and lowest 7, are shown in Fig. where all
presented 7, values are obtained from MD simulations and GP calibration. The novel low-T; vitrimers exhibit a range from 218 K to

8 | Journal Name, [year], [vol.], 1


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00239g

Page 9 of 14 Digital Discovery

Open Access Article. Published on 28 July 2025. Downloaded on 8/13/2025 10:51:50 PM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online
DOI: 10.1039/D5DD00239G

237 K, while the high-T, vitrimers range from 510 K to 549 K (Fig. ). These results demonstrate that the ensemble model facilitates
efficient identification of novel vitrimers with a wide 7, range, expanding the property space and potential applications of vitrimers.

Note that some vitrimers presented in Fig. 5c contain secondary amine groups, which are also potential reaction sites with epoxides.
However, the secondary amine-epoxide reactions are less favorable than carboxyl-epoxide reactions in the presence of catalyst such
as TBD during actual synthesis. Therefore, to maintain bifunctionality in the resulting vitrimers and reduce the complexity of MD
simulations for 7, evaluation, we make the assumption that only carboxylic acids can react with epoxides while the reactions involving
amines are ignored. While this simplification does not fully capture the actual experiments, undesired amine-epoxide reactions could
be prevented by replacing nitrogen atoms with alternative heavy atoms. This strategy preserves the predicted 7, and minimizes side
reactions, as demonstrated in our previous workZ,

The most impactful substructure frequencies and descriptors (see Fig. of the discovered vitrimers are presented in Fig. S4 (Sup-
plementary Information). The occurrence of positively correlated substructures and descriptors is higher in high-7, vitrimers, while
negatively correlated features are more prevalent in low-7;, vitrimers. This consistency cross-validates our feature importance analysis,
demonstrating that the key factors identified in the training data also apply to novel vitrimers outside the training dataset. These
findings further support the universality and robustness of the interpretable insights offered by our models.

The discovered vitrimers presented in Fig. are currently hypothetical vitrimer candidates exhibiting desirable 7, and their self-
healing capabilities remain to be evaluated. Future research could focus on quantifying the healability of these vitrimers through more
complicated MD simulations, such as reactive MD. This would also allow for an investigation into the interplay between healability, T,
and other relevant properties.

Experimental synthesis and characterization of discovered vitrimers

To validate the predictive capability and practical relevance of our trained ensemble ML model, we transition from virtual screening to
experimental synthesis. The ensemble model is used to efficiently evaluate the T, of 259 vitrimer candidates composed of commercially
available acids and epoxides from the Sigma-Aldrich database®*. Guided by the model’s 7, predictions, we identify promising candi-
dates exhibiting high thermal performance. These predictions are further filtered based on chemical intuition, ease of synthesis and
purchasing, and material cost, ultimately leading to the selection of two vitrimer systems for experimental validation (Fig. [6).

Among the screened candidates, vitrimers based on D,L-malic acid (MA) and 2,6-naphthalenedicarboxylic acid (NA) paired with digly-
cidyl ether (DGEBA) are selected for synthesis, as they exhibit desired 7, values from the ML ensemble model. These acids are associated
with structural features—such as aromaticity and limited rotatable bonds in NA and hydroxyl-rich backbone in MA—that are identified
in our SHAP analysis as positively contributing to 7, reinforcing the rationale for their selection. The epoxide and acids are cured in the
presence of the catalyst TBD for vitrimer synthesis (Fig. [6p). While malic acid contains hydroxyl groups in addition to carboxyl groups,
these hydroxyl groups are less reactive towards esterification with epoxides due to the presence of acidic hydrogen®™1'>2, Therefore,
both MA-based and NA-based vitrimers are processed with an equimolar ratio of carboxyl groups to epoxides during curing.

Thermal analysis through DSC measurements reveals 7, values of 348 K (75 °C) and 395 K (122 °C) for the MA-based and NA-based
vitrimers, respectively (Fig. @:). Notably, the NA-based vitrimer exhibits a higher 7, than any bifunctional transesterification vitrimer
reported in the literature (see Table S3, Supplementary Information) to the best of our knowledge 017282919150 a5 shown in Fig. [6d.
The MA-based vitrimer also demonstrates a relatively higher T, compared to most existing bifunctional transesterification vitrimers. The
experimental 7, of both vitrimers agrees well with the ML-predicted T, (364 and 390 K), indicating the accuracy of our ML model in
predicting the actual 7; of vitrimers. To evaluate the healability of the synthesized vitrimers, pristine specimens are cut and subsequently
healed at elevated temperatures. Microscopic examination of the pristine, cut, and healed samples (Fig. [BE) demonstrates complete
damage recovery, confirming the healability of these novel vitrimer chemistries. The combination of high T, and self-healing capability
validates the effectiveness of our framework in identifying vitrimers with desirable properties, thereby broadening the scope of potential
vitrimer applications.

Conclusions

This study establishes an MD-informed ML model for accurate and efficient vitrimer 7, prediction, which facilitates discovering novel
bifunctional transesterification vitrimers with desirable properties. Leveraging MD-generated data from our previous study“Z, we sys-
tematically evaluate the predictive performance of ML models for vitrimer 7,. Seven ML models are benchmarked across six molecular
representations. Our findings demonstrate that an ensemble learning approach, which averages predictions from multiple models,
outperforms individual models in 7, prediction. Furthermore, our feature importance analysis provides interpretability, identifying key
structural and chemical factors that govern vitrimer 7;. Using the trained ensemble model, we screen an unlabeled dataset of approx-
imately 1 million hypothetical vitrimers and discover candidates with extreme 7, values beyond the training domain. We perform an
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Fig. 6 Experimental synthesis and characterization of the discovered novel vitrimers. (a) The trained ensemble model is employed to virtually screen
259 vitrimers sourced from the Sigma-Aldrich database®?. By integrating chemical intuition, we evaluate their synthesizability and cost, ultimately
selecting two vitrimers for experimental synthesis and characterization. (b) Synthesis schemes of the vitrimers. (c) DSC results to measure the T, of the
synthesized vitrimers. (d) T of the vitrimers synthesized in this work and bifunctional transesterification vitrimers present in the Iiteraturemmm.
(e) Images of pristine, cut and healed vitrimer specimens, demonstrating healability of the synthesized vitrimers in this work.

additional screening of vitrimers composed of commercially available carboxylic acids and epoxides, identifying promising candidates
for experimental evaluation. Two novel vitrimers are synthesized and characterized, confirming their desirable properties. Both vit-
rimers exhibit relatively high 7, with one surpassing the 7, of any bifunctional transesterification vitrimer reported in the literature.
The presented T, values confirm the capability of the model in accurate property prediction and expansion of the current vitrimer
property space. This study highlights the feasibility of using MD-generated data to train ML models when experimental data is limited
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and successfully demonstrates the application of this approach by designing and validating novel vitrimers in experiments.

Besides T;, self-healing efficiency is crucial for the practical applications of vitrimers. One key metric of efficient self-healing can be
associated with chain mobility, suggesting that there should be sufficient difference between 7, and the topology freezing temperature
(T,) that indicates the onset of bond exchange reactions for efficient self-healing behavior. Future research could focus on designing
vitrimers that exhibit both desirable 7; and reasonable healability characterized by a sufficient 7,-7, difference. For instance, with
sufficient data on T for vitrimers, the ML framework developed in this study could be trained to predict self-healing performance. In
addition, especially for high T, vitrimers where there may not exist sufficient separation between Ty, T, and decomposition temperature
(Ty), incorporating further chemical intuition, and 7y prediction ML models could facilitate the design of vitrimers balancing 7, and Ty
requirements with self-healing performance.

Although this work focuses on T, prediction of vitrimers in a limited design space (bifunctional transesterification vitrimers with equal
molar ratio), the presented approach can be readily adapted to other types of vitrimers with higher functionality and various molar
ratios, incorporating the effect of macromolecular structure with a greater specificity and accuracy, provided sufficient data for training
is available. The proposed framework provides an effective and efficient tool for polymer chemists to design synthesizable polymers
with tailored properties, expanding the potential applications of vitrimers.
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