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Abstract
Polymeric nanoparticles have critical roles in tackling healthcare and energy challenges with 

miniature characteristics. However, tailoring synthesis processes to meet design targets has 

traditionally depended on domain expertise and trial-and-errors. Modeling strategies, 

particularly Bayesian optimization, facilitated materials discovery with maximized/minimized 

properties. Coming from practical demands, this study integrates constrained composite 

Bayesian optimization (CCBO) to perform target-value optimization under black-box 

feasibility constraints for nanoparticle production-by-design. With a synthetic problem that 

simulates electrospraying, a representative nanomanufacturing process, CCBO avoided 

infeasible conditions and efficiently optimized towards predefined size targets, surpassing 

baseline methods and state-of-the-art optimization pipelines. CCBO was also observed to 

provide comparable decisions as experienced experts in a human vs. BO campaign. 

Furthermore, laboratory experiments validated CCBO for guided synthesis of poly(lactic-co-

glycolic acid) particles with diameters of 300 nm and 3.0 µm via electrospraying under minimal 

initial data. Overall, the CCBO approach presents a versatile and holistic optimization paradigm 

for next-generation target-driven particle synthesis empowered by artificial intelligence (AI).
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Introduction
Polymeric micro- and nano-particles have received much attention in pharmaceutics, catalysis, 

and energy applications due to their unique properties at a small scale (1,2). Diverse design 

requirements for particles, under the quality-by-design (QbD) framework, have been put 

forward by specific usages (3). For example, particles as drug delivery platforms span diverse 

sizes across hundreds of nanometers for intravenous injection to micrometers for pulmonary 

administration (4). However, the optimization of synthesis to meet these design requirements, 

within any manufacturing technology used, has mainly relied on human expertise and extensive 

trial-and-error experimentation. Modeling strategies could facilitate the optimization of 

parameters towards design targets (5,6). Traditional design of experiment (DoE) strategies can 

identify dominating factors in the processing parameters and direct towards optimum, but the 

methodology becomes less effective in high-dimensional problems or complex relationships 

(7). For example, orthogonal experiment designs, such as Plackett-Burman and Taguchi 

methods, can typically accommodate up to three levels for each variable (8). Plus, it is also 

difficult to incorporate experiment feasibility into DoE optimization frameworks unless 

analytical descriptions of constraints are available. As a different approach, machine learning 

(ML) is powerful in modeling complicated relationships (9,10). Using ML models as surrogates, 

adaptive sampling methods design sequential experiments for laboratory evaluation (11). 

Bayesian optimization (BO) was developed for efficient optimization of black-box functions, 

and worked well under small data regime (12–14). It employs a Gaussian process (GP) as a 

surrogate model, leveraging its ability to provide both mean and variance estimations for 

candidate selection. A carefully designed acquisition function is then used to score the 

candidates to explore uncertain points as well as exploit promising optimal points. 

More recently, BO has been investigated for materials and drug discovery, assisting the 

identification of optimal properties (15–17). However, two critical challenges were presented 

for the application of BO in targeted synthesis of materials. First, conventional BO is developed 

to seek for a global maximum or minimum, rather than matching a pre-defined target (18,19). 

The latter has occurred as a common requirement in materials development tasks such as 

matching physiological mechanical properties for hydrogels and tailoring releasing profiles for 

drug delivery agents. Despite its relevance, the target-matching problem remains surprisingly 

underexplored in BO applications for materials discovery. This may be attributed to the 

prevailing emphasis on discovering materials with extreme or superior properties, rather than 

those that meet specific design criteria. Another issue is associated with feasibility constraints 

in experimentation. The majority of current applications of BO within materials discovery and 

development did not incorporate feasibility (17,20,21). Nevertheless, practical concerns could 
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emerge in BO recommendations due to a myriad of reasons in laboratory experiments, such as 

impossible combination of material compositions, incompatible processing parameters, and 

limitations from apparatus. Shrinking variables’ boundaries to a practical region could be a 

direct solution at the cost of reduced search space. In a special case where known constraints 

of input variables are available (e.g., as inequality equations), optimization could be performed 

subjected to these constraints (22,23). For example, Li et al. nested an active learning loop for 

constraint modelling to restrict the candidate space selectable by BO (24). Low et al. suggested 

evolution-guided Bayesian optimization, which impose known constraints to multi-objective 

optimization problem for nanoparticle synthesis in microfluidics (25). However, these 

strategies become impossible when these constraints become unknown a priori and need to be 

evaluated through laboratory experiments. 

Several prior works on constrained and composite BO respectively have explored applications 

in hyperparameter tuning. In constraint BO, Gramacy and Lee proposed to weight the expected 

improvement (EI) acquisition function with a modelled probability to enforce preference for 

feasible candidates (26). Gardner et al. extended this approach to inequality constraints, 

assuming the feasibility could be derived from a continuous-valued constraint function (27). 

More recently, Tian et al. proposed boundary exploration method that relaxes acquisition 

function weights to encourage exploration near constraint boundaries (28). For composite BO, 

Uhrenholt and Jensen investigated target value optimization, specifically minimizing a 2-norm, 

by warping the GP to a noncentral chi-squared distribution (29). As an improvement, Astudillo 

and Frazier approached a more general problem of composite BO for arbitrary composite 

function over the objective function. They transformed the Gaussian posterior in the acquisition 

function directly with the composited function within the acquisition function (30). Although 

these strategies have been rigorously tested on synthetic benchmarks and hyperparameter 

optimization tasks, they have yet to be integrated into a combinatorial framework to facilitate 

guided laboratory experiments.

Here, we implement a constrained composite Bayesian optimization (CCBO) pipeline 

showcasing efficient identification of suitable processing parameters in rational synthesis of 

polymeric particles. Through introducing a variational inference GP component, the black-box 

experiment feasibility was modeled and incorporated into BO acquisition function. Composite 

BO, on the other hand, handles the modeling of experimental parameters and targeting particle 

size through a composite objective function. Amongst various fabrication techniques of 

particles, electrospraying was selected as the model technique for its simplicity, versatility, and 

precision as a popular manufacturing method in drug delivery research (31). It utilizes electric 

fields to deform the meniscus of polymer solution to form fine jets which eventually 

disintegrate into fine droplets. As these droplets travel towards a collector, they further shrink 
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and solidify due to solvent evaporation. Processing parameters in electrospraying such as flow 

rate, voltage, polymer concentration, and the solvent could be adjusted to tailor product 

characteristics, although the intertwined impact of these factors could lead to prolonged, if not 

infeasible, trail-and-errors (32). With CCBO, we demonstrate its superior performance in target 

parameter optimization compared with random baseline and conventional BO strategies 

through both synthetic data and wet-lab experiments of poly(lactic-co-glycolic acid) (PLGA) 

particles synthesis at multiple size targets. 

Methods
Materials. PLGA (PURASORB PDLG 5004A, 50:50 ratio) was purchased from Corbion 

(Amsterdam, The Netherlands). Chloroform and N, N-Dimethylacetamide (DMAc) were 

purchased from Sigma-Aldrich (Gillingham, UK).

Electrospraying production of particles. PLGA solutions were prepared by mixing PLGA 

granules with solvents at ambient temperature with magnetic stirring overnight. The solutions 

were fed by a syringe pump (Harvard PHD Ultra, Edenbridge, UK) to a 22-gauge needle (outer 

diameter 0.71 mm) through a capillary. The positive output of a high voltage power supply 

(Glassman High Voltage Inc., NJ, United States) was connected to the needle through a 

crocodile clamp and the collection plate was connected to the ground. Before electrospraying, 

the flow rate and voltage were adjusted to the values recommended by BO. Experiments were 

conducted at atmospheric pressure. The temperature and humidity in the room were controlled 

to be 19-22 °C and 40-50%. 

Characterization of particles. Particles were collected on a glass slide placed on the collection 

plate for Scanning Electron Microscopy (SEM) analysis. Zeiss Gemini 360 SEM (Germany) 

was used under an acceleration voltage of 1.0 kV with an SE2 detector. For each sample, three 

images were taken randomly at different locations. Images were further analyzed using ImageJ 

(National Institute of Health, USA). To obtain mean particle size, a hundred particles were 

randomly measured for their diameters. For infeasible experiments, the diameters of splashes 

from undried droplets on the collecting glass slides were recorded as a measurement of size.

Constrained composite Bayesian optimization. Two components were incorporated in the 

BO pipeline and were developed under the framework of BoTorch (33) and GPyTorch (34). 

The objective component, which tracked the distance (or particle size in the case of CCBO), 

followed the classical design of BO (see Supplementary Note 1 for details of handling 

categorical inputs) (15). Notably, due to the difficulty in determining the noise level in 

experiments, we assumed the input data from laboratory experiments, after averaging over 

triplicates, to be noiseless. In terms of the acquisition function, 𝑞-Expected Improvement (𝑞EI, 
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or batch EI) as a thoroughly investigated strategy was selected to allow consideration of 

multiple candidates jointly in each iteration (18). In its simplistic form where 𝑞 equals 1, EI 

acquisition function at a single point 𝑥0  can be given by 𝛼EI(𝑥0) = 𝔼[max(𝑦𝑜 ― 𝑓∗,0)], where 

𝑦𝑜~ 𝒩 𝜇(𝑥0),𝜎2(𝑥0)  with 𝜇(𝑥0) and 𝜎2(𝑥0) being the posterior mean and variance from the 

Gaussian process at 𝒙0, 𝑓∗ is the current best observation. As the calculation of expectation 

requires integrating over the posterior, it becomes analytically intractable under a batched 

scenario where 𝑞 > 1. We followed the strategy in BoTorch where Monte-Carlo sampling was 

used to approximate the expectation by:

𝛼qEI(𝐗) ≈
1
𝑁

𝑁

𝑖=1
max

𝑗 = 1, …,𝑞
max 𝑦𝑜,𝑖𝑗 ― 𝑔∗,0 ,𝑦𝑜,𝑖𝑗~ℙ(𝐺𝑃(𝐗)|𝔇) (1)

where 𝑁 was the total number of Monte-Carlo sampling, 𝑞 was the number of candidates to be 

evaluated in parallel, and 𝑦𝑜,𝑖𝑗 was sampled through the reparameterization trick from the 

Gaussian process conditioned on data 𝔇, 𝑔∗ represents the current closest distance (with respect 

to the target) achieved. Notably, the data 𝔇 consisted of 𝒙𝑖,𝑦𝑜,𝑖  
𝑛

𝑖=1 where 𝑦𝑜,𝑖 = 𝑔(𝑠𝑖)

= ― (𝑠𝑖 ― 𝑠𝑜)2 with 𝑠𝑜 representing the target value. Under such configurations, this vanilla 

BO pipeline could help identify suitable experiment variables 𝐗 that can maximize this negative 

distance measure 𝑦𝑜.

Furthermore, the feasibility component was introduced to learn black-box constraints in the 

experiment. Here, a variational Gaussian process was implemented for the binary classification 

of experimental success or failure (34). The details for variational inference for Gaussian 

classification were described in previous publications (35). Briefly, the latent Gaussian process 

is further wrapped with a Probit regression to limit the output between 0 and 1, for the purpose 

of approximating a Bernoulli posterior. For our latent Gaussian process, it followed the same 

constant mean prior and kernel functions to incorporate mixed inputs. To incorporate feasibility 

modelling in the Bayesian optimization process, we followed the strategy proposed earlier (26) 

to extract the posterior probability as a scaling factor in the acquisition function: 𝛼qEIcon(𝐗)

= ℙ 𝑦𝑐 = 1│𝐗 ∗ 𝛼qEI(𝐗). Incorporating this factor in the acquisition function allowed the 

suppression of the value of experiments that are potentially infeasible, creating our constrained 

BO pipeline.

Both the vanilla and constrained BO pipelines had the Gaussian process modeling 𝑦𝑜 and 

attempted to minimize this distance. As a different strategy, composite BO used a Gaussian 

process to directly model the particle size 𝑠. The composite part, namely the negative squared 

distance function 𝑔, was separated from the input data. Instead, the distance function was 

directly applied to the Gaussian posterior in the acquisition function (36):
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𝛼qEICF(𝐗) ≈
1
𝑁

𝑁

𝑖=1
max

𝑗 = 1, …,𝑞
max 𝑔 𝑠𝑖𝑗 ― 𝑔∗,0 , 𝑠𝑖𝑗~ℙ(𝐺𝑃(𝐗)|𝔇′) (2)

where 𝑠𝑖𝑗 was sampled through the reparameterization trick and 𝔇′ = (𝒙𝑖,𝑠𝑖)
𝑛
𝑖=1. When 

coupling the composite acquisition function 𝛼qEICF with the constraint probability, we have the 

acquisition function for CCBO: 𝛼qEICFcon(𝐗) = ℙ 𝑦𝑐 = 1│𝑋 ∗ 𝛼qEICF(𝐗).

In the present work, the Monte-Carlo sampling number 𝑁 was 512 and 𝑞 was fixed to 2 

throughout all BO pipelines. All input 𝐗 were normalized to unit cubes, and the flow rate 

variable was transformed to logarithm before normalization. The outcomes of the objective 

component, including the distance variable, 𝑦𝑜, in vanilla BO and constrained BO, as well as 

the particle size variable, 𝑠, in CCBO, were standardized to zero mean and unit variance. The 

outcomes of the feasibility component, 𝑦𝑐, were rescaled to { ―1,1}.

Synthetic electrospray data generation. The synthetic data of electrospray was generated 

through the following functions:

𝑠 = 2 ∗
𝑄𝐶

log(𝑈)
+ 𝛼 + 0.4 (3)

𝑦𝑐 = 1,    if  log(𝑄) ∗ (𝛼 ― 0.5) + 1.4 > 0
0,           otherwise.                (4)

where 𝑠 is the particle size (µm), 𝑄 is the flow rate (µL min-1), 𝑐 is the concentration of the 

polymer solution (% w/v), 𝑈 is the applied voltage (kV). The 𝛼 is a constant depending on the 

solvent (CHCl3: 1, DMAc: 0).

Validating BO with synthetic data. The targeting particle size 𝑠𝑜 was arbitrarily set to be 0.6, 

3.0, 6.0 and 18.0 µm to validate BO performance. In each run, three BO pipelines and the 

random baseline were performed for 10 iterations with the starting data listed on Table 1. The 

outcomes of experiments were calculated by synthetic equations (3) and (4) from the 

corresponding experimental variables. Each run was repeated 20 times to account for variations. 

The comparison between human and BO followed similar settings used previously. The starting 

data (Table 1) was first shown to the participants (N=14) with varying experience in 

electrospraying, including advanced users with more than 3 years’ experience (N=4), 

intermediate users between 1-3 years’ experience (N=4), and beginners with less than 1 years’ 

experience (N=6). At each iteration, two experiments were recommended by participants to 

optimize towards a 3.0 µm target, followed by revealing experiment results calculated by the 

synthetic equations. In total, five iterations were performed for human vs BO campaign 

considering that CCBO have achieved significant reduction within a few rounds. During the 
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campaign, the participants were not allowed to access each other’s results except for the five 

initial data provided. They were asked to follow a similar pattern to work out the 

recommendations as if they were dealing with a new electrospray setup. No strict time 

constraints were imposed on the participants to provide answers, but a typical time of 2 minutes 

was observed for participants to suggest experiments for one iteration.

The regret, defined by the closest distance towards the targeting particle size, was plotted at 

each iteration. The experimental variables proposed in a typical run were visualized on 3D plots 

with symbols representing solvent and feasibility, and colors encoding the iteration. The area 

under a curve (AUC) of each strategy and human participant was calculated based on trapezoid 

rules for quantitative comparison. One-tailed Mann-Whitey U-tests were performed with 

alternative hypothesis being CCBO had smaller AUC/regret compared to BO baselines or 

human groups, respectively.

Table 1. Boundaries of Experiment Variables for BO and the Starting Data for Synthetic Experiments.

Label
Polymer Concentration 

(% w/v)
Flow Rate (µL min-1)

Voltage 

(kV)
Solvent

Bounds [0.05-5.00] [0.01-60.00] [10.0-18.0] {CHCl3, 
DMAc}

S-1 0.50 15.00 10.0 DMAc
S-2 0.50 0.10 10.0 CHCl3
S-3 3.00 20.00 15.0 DMAc
S-4 1.00 20.00 10.0 CHCl3
S-5 0.20 0.02 10.0 CHCl3

Guiding laboratory experiments with CCBO. The boundaries of experimental variables 

remained the same as the validation with synthetic data. The starting eight experiments were 

generated through a Sobol sequence within boundaries for each variable. The targeted particle 

sizes were 300 nm and 3.0 µm based on domain expertise in drug delivery. The two experiments 

in each iteration were performed in triplicates. The results were fed back to the BO pipeline to 

obtain the next recommendations. The stopping criterion was set as achieving ±10% to the 

targeting size.

Results
Validating CCBO through synthetic data. Performance of CCBO was first validated with 

synthetic experimental data. Before introducing the benchmark results, three configurations of 

BO pipelines tested in this study are presented (Fig. 1a). More details of the implementation 

can be found in the method section. Briefly, the vanilla BO pipeline followed a traditional BO 

design where the target to be maximized was the negative squared distance 𝑦𝑜. The feasibility 

component, which leveraged a variational GP for classification, was added to track 
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experimental feasibility. Through factoring in a probability term into the acquisition function, 

the constrained BO pipeline was able to pick candidates with higher chance of success. CCBO 

adopted the same feasibility modelling, whilst modifying the objective component. It utilized 

GP to model the fundamental relationship in experiments between the processing variables 𝒙 

with the size 𝑠. The negative squared distance function was incorporated in the acquisition 

function to prioritize candidates for minimizing the distance to the pre-set target. In terms of 

the synthetic problem, the data was produced by equations simulating electrospray processing. 

Specifically, the function for determining the size of electrosprayed particles (see equation (3)) 

was inspired by scaling laws proposed for electrospray and experimental observations, where 

flow rate and polymer concentration (through affecting the viscosity) are both positively 

correlated to the diameter with voltage having a negative impact (32,37). Logarithm and power 

transformations in the function were intended to add complexity in the modeling process to 

simulate the nonlinear nature of the electrospraying process. The constant for alpha was added 

to account for the impact of solvents considered in the process. In addition, the feasibility zone, 

as visualized in Fig. 1b, was set to be highly related to the flow rate and the solvent. The 

rationale was from practical considerations where chloroform, as a highly volatile solvent, 

would result in clogged nozzle at lower flow rates. DMAc, at higher flow rates, would lead to 

insufficient evaporation of the solvent and produce splashes of droplets on the collector instead 

of solid particles.

As a benchmark, CCBO, together with random baseline, vanilla BO, and constrained BO only, 

were performed for 10 iterations. Five initial experiments were included, accounting for 

successful and failed cases for both solvents. The optimization target was set to 18 µm. Results 

for other target sizes, including 0.6, 3 and 6 µm, can be found in Supplementary Fig. 1. In 

each iteration, two sets of processing parameters were proposed and subjected to simulation 

functions to retrieve the synthetic experimental result as well as the feasibility. The regret, 

defined as the difference between the target and the closest candidate, was recorded after each 

iteration as a measurement of performance (Fig. 1c). After 10 iterations, the random baseline 

reached 0.8 µm regret. Similarly, the vanilla BO and constrained BO both achieved around 0.4 

µm regret. By contrast, the CCBO algorithm rapidly converged to the targeted diameter after 

only two iterations. Moreover, AUC of each strategy, using trapezoidal method, was calculated 

to quantify the optimization efficiency. CCBO achieved a minimal AUC of 2.47 ± 0.85, 

significantly lower than random method (19.48 ± 8.12, p<0.0001), vanilla BO (18.35 ± 3.86, 

p<0.0001) and constrained BO (16.26 ± 3.73, p<0.0001) under one-tailed Mann-Whitney U-

test. 

The benchmark on synthetic electrospray was extended to compare CCBO with state-of-the-art 

optimization methods such as Summit (38), Dragonfly (39), EDBO+ (40), and Atlas (41). 
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Notably, the implementations in Summit and Dragonfly did not support optimization under 

unknown constraints. Therefore, their performance was similar to the vanilla BO baseline. In 

terms of EDBO+, it was developed as a pool-based active learning optimization platform. The 

EDBO+ algorithm did not provide improvement on minimizing the distance towards design 

targets potentially due to lack of support for constrained optimization and the limitation of pool-

based search space compared to other strategies. Finally, the most recent development of Atlas, 

a framework library for self-driving libraries, from Hickman et al., utilized a variational GP to 

model unknown constraints for experiment feasibility (42). The optimization by Altas with a 

priori unknown constraints showed better performance than other existing strategies in the 

benchmark. However, as all of the state-of-the-art libraries do not natively support target-value 

optimization, none of these strategies outperform CCBO algorithm proposed here for 

electrospray optimization. More detailed results can be found in the Supplementary Fig. 1. 

These results have highlighted the importance of incorporating both constrained and composite 

optimization scheme for target-driven design problems in experiments.
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Fig. 1. Results for CCBO validation with synthetic data. a An illustration of configurations for vanilla 

BO, constrained BO, and CCBO. b Parameter space visualization for the synthetic data with feasibility 

zone highlighted for each solvent. c Benchmark results of target value optimization with random baseline, 

vanilla BO, constrained BO, Atlas (constrained BO), Summit (single objective BO), EDBO+ (pool-based 

BO), Dragonfly (bandit BO), and CCBO. The regret is calculated by the closest distance with respect to 

the design target, achieved at different iterations of BO. Each benchmark experiment was performed for 

10 iterations. Shaded areas indicate standard error from 20 times repetition. d Visualization of 

experimental parameters suggested. Each data point represents one synthetic experiment. The 

corresponding iteration is coded by color. Symbols represent the solvent used and feasibility of 

experiment. e Comparison of total number of successful (filled bars) and failed experiments (hatched 

bars) in a typical run of 10 iterations with the four strategies. f The particle sizes produced with 

parameters chosen by CCBO. The iteration is color-coded to the data point and the symbols represent 

the solvent and feasibility. The target (18 µm) was highlighted as a dashed line.

To understand the recommendation process, the experiments proposed were visualized in Fig. 

1d. The random baseline sampled uniformly across the experiment space with both solvents, 

resulting in many failed DMAc experiments due to the flow rate feasibility constraints. Vanilla 

BO started exploring the boundary conditions in the first few rounds. With an additional model 

to account for feasibility, the constrained BO algorithm managed to learn the feasible region 

for DMAc, as reflected by most DMAc experiments being recommended with lower flow rates. 

This corresponded well to the initial feasible zone visualized in Fig. 1b. In addition, the number 

of failed and successful attempts of each algorithm from the results in Fig. 1e were plotted, 

highlighting the reduction in infeasible experimental conditions with the help of the additional 

constraint model.

Furthermore, the CCBO strategy was observed to show highly efficient searching in a localized 

experiment space (Fig. 1d). This good performance of CCBO could be explained by its design. 

The routes taken by vanilla BO and constrained BO were directly minimizing the distance 

where the surrogate GP was forced to model more complicated results from both the experiment 

and the superimposed distance function. On the contrary, GP was solely used for modeling the 

black-box experiment results for CCBO. Our observations with CCBO echoed the findings in 

composite BO literature: extracting the analytically trackable part from the black-box function 

can drastically benefit the optimization efficiency (30). In standard BO, the EI acquisition 

function assumes Gaussian posterior distribution. However, the posterior of the composite 

function becomes non-Gaussian after the transformation with a non-linear function. To address 

this, Astudillo and Frazier suggested leaving the GP to model the black-box function. The 

composite part was instead incorporated into the acquisition function to transform the Gaussian 

posterior of the black-box function. This allows more efficient optimization through a closer 

approximation of posterior distribution in a composite scenario(36). In our implementation, the 
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composite acquisition function was optimized in the CCBO pipeline with Monte Carlo 

sampling. Through the benchmark validation, we have shown that vanilla BO or constrained 

BO alone would not be able to efficiently optimize our design problem, highlighting the 

importance of the integration of CCBO.

Finally, we compared CCBO to human electrospray users with varying levels of expertise on 

this synthetic campaign. More experienced users were believed to approach the target more 

efficiently as they’ve been equipped with prior knowledge of the parameters’ influence and the 

selection of solvent. All participants (N=14) evaluated the same initial experimental data and 

suggested experiments to achieve a target particle size of 3 µm. The comparative results are 

plotted in Fig. 2a. More detailed human performance results are available in Supplementary 

Table 1 and Supplementary Fig. 2. In the first iteration, the CCBO strategy was behind 

intermediate (1-3 years’ experience, N=4) and advanced users (≥ 3 years’ experience, N=4) and 

performed similarly as beginners (<1 years’ experience, N=6). But CCBO soon overtook 

intermediate users from the second iteration onwards and surpassed advanced user on later 

iterations. Quantitatively, the AUC was calculated and plotted (Fig. 2b) with respect to each 

strategy or human group, where CCBO (1.40 ± 0.10) owned significantly smaller (p=0.01) 

AUC than beginners (2.62 ± 1.19) under one-tailed Mann-Whitney U-test. There were no 

significant reductions of AUC with CCBO compared to intermediate (1.60 ± 0.41, p=0.34) or 

advanced (1.03 ± 0.42, p=0.95) users. When focusing on overall performance (regret at final 

iteration), the regret of CCBO strategy was significantly lower than intermediate (p=0.02) and 

beginner (p<0.0001) users. Further analysis of parameter selection strategies revealed that 

advanced users predominantly followed a one-factor-at-a-time (OFAT) approach, resulting in 

linear adjustment patterns (Fig. 2c). Most beginner users and intermediate users attempted to 

adjust multiple parameters simultaneously. Unlike human participants, CCBO employed more 

strategic exploration and exploitation, effectively reducing experimental regret by targeting 

promising regions in the parameter space. Taking together, these findings demonstrated that 

CCBO could achieve performance comparable to highly experienced participants and navigate 

complex experimental spaces more effectively than human users. In addition, the performance 

differences in users with various expertise reflected a successful development of the synthetic 

problem simulating electrospraying, consolidating our confidence in proceeding to laboratory 

validation.
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Fig. 2. Comparing Human and BO performance with synthetic data. a Benchmark results with BO 

pipelines (solid lines) for 3.0 µm target in comparison with human users (dashed lines) on synthetic data. 

The experiment was performed for 5 iterations. Shaded areas for random, vanilla BO, constrained BO, 

and CCBO indicate standard error from 20 times repetition. Shaded areas for human performance, 

including beginner (N=6), intermediate (N=4), advanced (N=4), come from standard error of participants 

respectively. b Box plot with scatters on area-under-a-curve (AUC), calculated using trapezoid rule,  of 

the benchmark results from each strategy and human groups. c Visualization of experiments selected by 

CCBO and human participants with various experience levels. Each data point represents one ‘synthetic’ 

experiment. The corresponding iteration is coded by color. Symbols represent the solvent used and 

feasibility of experiment. 

Guiding laboratory electrospraying with CCBO for targeted particle production. 

Following the validation of CCBO with synthetic data, it was applied in real-world experiments 

to guide electrospraying production of micro- and nanoparticles. The initial experiments, 

generated through a Sobol sequence, were performed to accumulate starting data for BO 

pipelines (Table 2).

Table 2. Processing parameters generated through a Sobol sequence and the resulting particle sizes and 

feasibility (N=3).

Label Polymer 
Concentration (% w/v)

Flow Rate 
(µL min-1)

Voltage 
(kV) Solvent Mean Size 

(µm) Feasible?

0-1 2.40 1.73 14.0 DMAc 0.56 1
0-2 4.06 0.44 15.7 CHCl3 1.00 0
0-3 2.88 49.11 11.8 DMAc 15.00 0
0-4 0.76 0.01 17.6 CHCl3 1.20 0
0-5 0.11 10.43 14.5 CHCl3 6.26 1
0-6 3.55 0.06 12.8 DMAc 0.15 1
0-7 4.55 2.39 16.7 CHCl3 5.24 1
0-8 1.88 0.21 11.0 DMAc 1.12 1
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Two particle sizes, 300 nm and 3.0 µm, were set as the design targets based on pharmaceutical 

interests as drug carriers for intravenous injection and pulmonary delivery (4). Based on 

previous reports, the production of PLGA particles with these two particle sizes require 

distinctive processing parameters involving different solvents and flow rates (32,43). Thus, the 

setting of these targets could simulate distinct typical experimental scenarios to challenge BO 

pipelines. The workflow of targeted particle production under CCBO guidance is illustrated in 

Fig. 3a. With the initial data gathered, CCBO pipeline was implemented to propose two 

experiments in parallel for laboratory investigation. The selection of two experiments was 

based on the capacity of laboratory work and to avoid wasting materials and preparation time. 

After collecting samples and characterization, the results from triplicated experiments were 

evaluated and compared with the target. The next iteration of BO was performed based on the 

addition of the new data.

The proposed parameters by CCBO can be visualized with heatmaps in Fig. 3b. The heatmap 

of initial experiments reflected the diverse selections of parameters in Sobol sequence. In total, 

three iterations of BO were performed for the target of 300 nm and four iterations for 3.0 µm 

target. The selection of solvents was the most obvious difference for these two targets. Indeed, 

in previous reports of PLGA particle synthesis, DMAc was a popular solvent due to its high 

boiling point (44). From a mechanistic viewpoint, droplets will experience fission due to the 

competition between Coulombic repulsion and liquid surface tension in an electrospraying 

process (45). At the same time, the evaporation of solvents increases the concentration and 

viscosity of the droplet. As a non-volatile solvent, DMAc allows this fission process to fully 

develop and thus generates sub-micrometer particles (32). Chloroform, on the contrary, was 

preferred in literature to produce lager particles within tens of micrometers range(46). These 

practical considerations, normally accumulated through experiences and trial-and-error, were 

also picked up by the BO pipeline. The recommendations provided by CCBO clearly showed 

the trend of adopting DMAc for the 300 nm target and chloroform for the 3.0 µm target.

Linking the recommendations to the experiment results (Fig. 3c) could provide a more holistic 

viewpoint of the selection strategy of CCBO. For 300 nm target, the best candidate in initial 

experiments (0-8 on Table 2) used DMAc with a low polymer concentration, flow rate and 

voltage to obtain 0.15 µm particles. The recommendations from CCBO pipeline showed 

exploration of higher concentrations and fine-tuning of the flow rate parameter 

(Supplementary Table 2). Interestingly, the 3-1 and 3-2 experiments both achieved 300 nm 

particle size with distinct processing parameters, suggesting that the impact from less 

concentrated polymer solution was compensated by the higher flow rate used for 3-1. 
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Furthermore, the balance of exploration-exploitation from the EI acquisition function was 

further demonstrated through the experiment series for 3.0 µm target. In the first iteration, 

CCBO attempted both DMAc and chloroform as the solvent (Supplementary Table 3). The 

second iteration tested the lowest polymer concentration (0.05% w/v), which was shown as the 

lightest green in the heatmap (Fig. 3b). Finally, the recommendation settled down at higher 

concentration with reduced flow rates to approach the target with fine-tuning from exploitation. 

It was also observed from the SEM images (Fig. 3d) that the experiment 1-2 for 3.0 µm target 

managed to produce 2.69 µm particles with rough and polydisperse characteristic from a low 

polymer concentration (0.36% w/v) sprayed at a high flow rate of 3.65 µL min-1. The final 

experiments 4-2 suggested 4.02% w/v solution sprayed at 1.08 µL min-1 (Supplementary 

Table 3) to obtain 3.29 µm diameter particles. This result again highlighted the ability to 

achieve similar particle size through balancing polymer concentration and flow rate, together 

with adjusting other parameters. The SEM images of the final iteration experiments have shown 

satisfactory particle production at targeting sizes.

Overall, we have verified the performance of CCBO in the automatic identification of the 

experiment feasibility region and the rapid convergence to design targets through synthetic data 

validation. The comparison with human experts demonstrated CCBO’s competitive 

performance. The rational exploration of experiment space outperformed the instinct-driven 

OFAT trial and error by humans. The wet-lab experiments, as a further step, consolidated 

CCBO’s potential in real-world applications for guided particle synthesis within a few iterations.
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Fig. 3. Guiding electrospray experiments with CCBO. a A schematic diagram representing the 

experiment process with the integration of CCBO. b Heatmaps visualizing the processing parameters 

used for (top) initial experiments, (middle) 300 nm target, and (bottom) 3.0 µm target. The initial 

experiments were generated with Sobol sequence and the targeted experiment series were suggested by 

CCBO pipeline. c Experiment results of particles generated with electrospraying under parameters 

proposed for (top) 300 nm and (bottom) 3.0 µm target. Each data point represents the mean of triplicated 

laboratory experiments. Symbols represent the solvent used and feasibility of experiment. d SEM images 

of particles produced at different iterations for (top) 300 nm and (bottom) 3.0 µm target.

Discussion
The present work demonstrated the application of efficient CCBO pipeline for target value 

optimization under black-box constraints. The two components in CCBO worked cohesively to 

address the need for guiding particle synthesis. For target optimization, the composite BO 

demonstrated strong capacity in modeling under the composited distance function over the 

underlying, black-boxed electrospray relationship function. On the other hand, the constraint 

compartment managed to learn and regulate the suggested experiments with a variational 

Gaussian process. To deal with unknown feasibility boundaries, many current strategies chose 

to apply active learning for the identification of unknown feasibility regions, followed by 
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running BO pipelines under the established boundaries (47,48). As an improvement, CCBO 

was designed for integrating these two individual processes and focus on identifying the 

feasibility regions around the design target. This could be seen from the initial experiments 

where the infeasibility caused by the mismatching of high flow rate with a less volatile solvent 

DMAc (experiment 0-3 on Supplementary Table 2) was not further explored because the 

target only requires experiments in the lower flow rate region. In comparison, with an active 

learning pipeline, extra experiments would be needed to determine the possible range for 

DMAc. Thus, the design of CCBO pipeline allows efficient reduction in the number of 

experiments to save laboratory resources.

In addition, the innate exploration-exploitation trade-off from BO made possible the 

identification of multiple possible experimental parameters that can achieve the same design 

target. This is especially helpful when other design considerations coexist. For example, in the 

validation with the synthetic problem (Fig. 1f), CCBO attempted both DMAc and chloroform 

and paired them with a wide range of other processing parameters to hit the design target in 

iterations 6 to 10. From the perspective of production rate, a higher flow rate and polymer 

concentration might be preferred. Similarly, if the sustainability of the solvent is considered, 

DMAc would be selected over chloroform as a less harsh solvent. On top of the synthetic data, 

laboratory experiments also managed to find multiple parameters to produce particles with 300 

nm or 3.0 µm diameter. These particles exhibited distinctive morphology and polydispersity, 

demonstrating varying characteristics for their applications. Although not explicitly coded as a 

multiple-objective optimization problem, these sets of experimental parameters could be 

presented to the user as alternative choices. In practice, such flexibility allows the researcher to 

consider product properties, manufacturing metrics, or other aspects in production, without 

changing the main design target.

Since only two solvents have been investigated in the present work, categorial representations 

of the solvent variable were used instead of applying molecular featurization. Many modern 

BO libraries designed for chemistry and materials research support molecular featurization, 

such as Atlas and GAUCHE (41,49). Featurizing molecules with their physicochemical 

properties could incorporate chemistry knowledge in the optimization process and benefit 

molecular structure optimization and discovery tasks. For example, Griffiths et al. managed to 

leverage BO to optimize molecular design in a latent space generated from variational 

autoencoders (50). Although optimizing the solvent molecule per se was not necessarily a focus 

in particle synthesis applications, leveraging molecular fingerprints to represent solvents would 

equip the optimization process with chemically meaningful knowledge (via representing similar 

solvent with close descriptors) (51). In addition, extending the present single-objective 

optimization paradigm to multiple objectives could benefit more complicated particle design 
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tasks, including the control of both particle size and size distributions, or morphological 

features. Our implementation of constrained optimization was through feasibility-weighting of 

the acquisition function. It should be able to extend to multi-objective optimization seamlessly, 

considering that the feasibility modelling is irrelevant to the type of acquisition functions. 

Notably, Li et al. recently proposed a new method to balance (unknown) constraint modelling 

and multi-objective optimization through unifying constraint violation with hypervolume regret 

(52). They have demonstrated improved efficiency compared to baseline scalarization-based 

methods such as qParEGO (53). On the other hand, composite optimization should be 

transferable to multi-objective optimization scenarios, where objectives are scalarized. 

However, the implementation of these extensions is beyond the scope of the current manuscript 

and thus left as potential future directions here.

Finally, we highlight that CCBO could potentially be extended to other particle synthesis 

systems, such as batch methods and microfluidics, to facilitate the guided design and production 

of particles. In the past, the resource-demanding nature of experimentation and scarcity of data 

posed significant challenges and prolonged the workflow of particle synthesis. We are 

expecting CCBO to empower nanotechnology with a smarter and more efficient paradigm for 

target-driven design.

Conclusions
Achieving rational synthesis of nanoparticles often relies on extensive domain expertise and 

trial-and-error experimentation to navigate within the feasibility space with target product 

specifications. In the present work, we introduced CCBO as a unified framework to address 

constraint-aware and target-value optimization in nanoparticle production. It was evaluated in 

a synthetic electrospray problem, presenting superior performance compared baselines and 

state-of-the-art strategies. Benchmarking against human electrospray users further 

demonstrated that CCBO matches experts with at least three years’ experience. Laboratory 

experiments practically validated its ability to guide electrospray synthesis of PLGA particles 

with biomedically meaningful target diameters of 300 nm and 3.0 µm. These findings highlight 

CCBO as a powerful and efficient strategy for materials development tasks characterized by 

complex, black-box constraints and precise design objectives, contributing to the next 

generation of AI-driven nanomanufacturing.

Data availability
The code to implement CCBO presented in this study has been made available at 

https://github.com/FrankWanger/CCBO.git. The specific code and data for reproducing CCBO 
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and baselines is also archived on Zenodo: https://doi.org/10.5281/zenodo.16614771.The raw 

experiment data has been included in the supplementary information.
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Data availability
The code to implement CCBO presented in this study has been made available at 

https://github.com/FrankWanger/CCBO.git. The specific code and data for reproducing CCBO 

and baselines is also archived on Zenodo: https://doi.org/10.5281/zenodo.16614771.The raw 

experiment data has been included in the supplementary information.
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