Dalton Transactions

View Article Online

CORRECTION

Check for updates

Cite this: Dalton Trans., 2025, 54, 9097

Correction: Construction of ternary TiO₂/CdS/IrO₂ heterostructure photoanodes for efficient glycerol oxidation coupled with hydrogen evolution

Chenfeng Jiang,^a Yibo Ding,^a Jiayu Lin,^a Yi Sun,^b Wei Zhou,^a Xiaoyan Zhang,*^a Hongbin Zhao,^a Weimin Cao^a and Danhong Cheng^a

DOI: 10.1039/d5dt90077h rsc.li/dalton Correction for 'Construction of ternary TiO₂/CdS/IrO₂ heterostructure photoanodes for efficient glycerol oxidation coupled with hydrogen evolution' by Chenfeng Jiang *et al.*, *Dalton Trans.*, 2025, **54**, 2460–2470, https://doi.org/10.1039/D4DT03048F.

In the abstract and on page 2467 (right column), the production rate of glycerol conversion to formic acid (FA) on the TiO₂/CdS surface was given as ~603.0 mmol m⁻² h⁻¹. The correct value is 367.6 mmol m⁻² h⁻¹ within 1 h.

Additionally in the abstract, on page 2467 (right column) and in the Conclusion section, the production rate of FA after loading of IrO_2 nanoparticles was given as 863.4 mmol m⁻² h⁻¹. The correct value is 551.4 mmol m⁻² h⁻¹ within 1 h.

On page 2466, it is stated that the stabilities of the TiO_2/CdS and $TiO_2/CdS/IrO_2$ photoanodes were investigated using the transient currents (*I*-*t*) with an applied bias of 0.3 V *vs*. RHE. The correct value is 1.23 V *vs*. RHE. Here it was also stated that Fig. S5 showed that the photocurrent density of the TiO_2/CdS photoanode decreased to 78.6% of its initial value after irradiation of 5500 s. This should read as follows: "As shown in Fig. S8, the photocurrent density of the $TiO_2/CdS/IrO_2$ photoanode decreased to 78.6% of its initial value after irradiation of 3600 s."

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aDepartment of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China. E-mail: xyzhang_dd@shu.edu.cn ^bAerospace Hydrogen Energy (Shanghai) Technology Co., Ltd, Shanghai, 200241, China