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gh spectral resolution lidar-
derived PM2.5 concentration from SEAC4RS,
ACEPOL, and three DISCOVER-AQ campaigns†

Bethany Sutherland ‡ and Nicholas Meskhidze *

PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 mm) exposure at elevated levels has

been associated with adverse health outcomes. However, the high spatiotemporal variability of aerosols

poses challenges in monitoring PM2.5 using ground-based measurement networks. Previously, we

developed a new method (referred to as HSRL-CH) to estimate surface PM2.5 concentration and

chemical composition using High Spectral Resolution Lidar (HSRL)-retrieved extinction and derived

aerosol types. In this study, we evaluate HSRL-CH performance across the United States using HSRL

retrievals from five campaigns: DISCOVER-AQ California, SEAC4RS, DISCOVER-AQ Texas, DISCOVER-AQ

Colorado, and ACEPOL. We assess the remotely derived PM2.5 estimates against measurements from the

EPA Air Quality System (AQS) and compare HSRL-CH-derived aerosol chemical compositions with AQS-

measured compositions. Across all campaigns, HSRL-CH-derived PM2.5 shows a mean absolute error

(MAE) of 10.2 mg m−3. The DISCOVER-AQ California campaign had the highest MAE (14.8 mg m−3), while

other campaigns had MAE # 7.2 mg m−3. The lowest MAE occurs when dusty mix type aerosols

dominate the retrieved aerosol optical depth, while the highest MAE is associated with smoke type

aerosols. Different planetary boundary layer height estimates can lead to a 20% difference in MAE. We

anticipate that the HSRL-CH method will provide reliable estimates of PM2.5 concentration and chemical

composition once satellite-based HSRL data acquisition becomes feasible.
Environmental signicance

Our study introduces an innovative approach for determining both PM2.5 concentrations and their chemical composition using remotely sensed observations.
The key innovation lies in our use of high spectral resolution lidar (HSRL) data. Having previously demonstrated success with DISCOVER-AQ Baltimore–
Washington data in the United States and KORUS-AQ in South Korea, we now expand our validation to include HSRL measurements from ve additional eld
campaigns: DISCOVER-AQ (California, Texas, and Colorado), SEAC4RS, and ACEPOL. The ndings pave the way for satellite-based HSRL applications,
enhancing aerosol monitoring and public health insights.
1 Introduction

Particulate matter with an aerodynamic diameter of less than
2.5 mm (PM2.5) has been linked to a variety of respiratory and
cardiovascular problems.1–5 The surface concentration of PM2.5

has been designated as one of the criteria pollutants6 and is
monitored and regulated by the U.S. Environmental Protection
Agency (EPA). Despite its importance, monitoring of PM2.5

remains predominantly limited to highly populated areas or
regions of known concern, leaving large portions of the pop-
ulation unrepresented.7,8 To ll the gaps in ground
tte Drive Campus Box 8208, Raleigh, NC

tion (ESI) available. See DOI:

Center, USA.

270–290
measurements of PM2.5, much work has been done to remotely
monitor the amount of particulate matter in the air and esti-
mate the concentration of aerosols at the surface (e.g. ref. 7 and
9–12).

Despite advancements in remote sensing techniques, accu-
rately estimating surface PM2.5 concentrations remains
a complex challenge due to several factors. In addition to
microphysical properties such as size and shape, the optical
properties of aerosols depend on their chemical
composition.13–16 For example, aerosols predominantly
composed of black carbon exhibit much stronger radiation
absorption in the visible range than aerosols composed
primarily of sulfate, which mainly scatter radiation.17 Addi-
tionally, the uptake of water by aerosol particles alters their
optical properties.14,18 However, this hygroscopic behavior is
highly dependent on the specic composition of the aerosol.19

Given these challenges, incorporating information about the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 List of AQS sites with speciation measurements used in this
analysis

ID AQS site ID Location (latitude [°N], longitude [°E])

A 06_107_2002 Visalia, CA (36.332179, −119.291228)
B 06_019_0011 Fresno, CA (36.78538, −119.77321)
C 06_029_0014 Bakerseld, CA (35.356615, −119.062613)
D 06_059_0007 Anaheim, CA (33.83062, −117.93845)
E 06_099_0005 Modesto, CA (37.642165, −120.994212)
F 48_203_0002 Marshall, TX (32.669001, −94.167468)
G 48_201_1039 Deer Park, TX (29.670025, −95.128508)
H 08_031_0026 Denver, CO (39.77949, −105.00518)
I 08_001_0006 Commerce City, CO (39.826007, −104.937438)
J 08_123_0008 Platteville, CO (40.209387, −104.82405)
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likely composition of aerosols becomes crucial for improving
the accuracy of PM2.5 estimates derived from remote sensing
methods.

Meskhidze et al. developed an aerosol type-based remote
sensing methodology, referred to as HSRL-CH, for estimating
PM2.5 concentrations.20 This approach integrates airborne High
Spectral Resolution Lidar (HSRL)-retrieved extinction data and
derived aerosol types (i.e., dusty mix, maritime, smoke, fresh
smoke, and urban) with chemical composition information
specic to each aerosol type. The chemical composition data are
obtained through a combination of GEOS-Chem modeling and
the Creating Aerosol Types from CHemisty (CATCH) algo-
rithm.21 A key strength of the HSRL-CHmethod lies in its ability
to account for the varying hygroscopic properties and dry mass
extinction coefficients of individual species (organics, black
carbon, etc.). This is achieved by leveraging the intrinsic prop-
erties of aerosols as determined by their assigned type.

The HSRL-CH method has been tested using data from two
campaigns with considerably different meteorological condi-
tions and aerosol sources: the Deriving Information on Surface
conditions from Column and Vertically Resolved Observations
Relevant to Air Quality (DISCOVER-AQ) Baltimore–Washington
D.C. campaign20 and the Korea–United States Air Quality
(KORUS-AQ) campaign.22 When applied to retrievals from these
campaigns, the agreement between surface PM2.5 measure-
ments and PM2.5 estimated using the HSRL-CH method was
comparable to or better than that of PM2.5 simulated using
state-of-the-art models such as GEOS-Chem and Community
Multiscale Air Quality Modeling (CMAQ). The Mean Absolute
Error (MAE) between the HSRL-CH methodology and AQS sites
during the DISCOVER-AQ Baltimore–Washington D.C.
campaign was 6.2 mg m−3, while the CMAQ model showed an
MAE of 9.2 mg m−3 (33% higher). During the KORUS-AQ
campaign, the HSRL-CH methodology's MAE of 12.5 mg m−3

was 36% lower than that of CMAQ simulations (MAE = 19.4 mg
m−3) and 39% lower than that of GEOS-Chem simulations (20.5
mg m−3) when compared to PM2.5 measured at National Insti-
tute of Environmental Research (NIER) ground sites.

This study builds upon the work of Meskhidze et al.20 and
Sutherland et al.,22 addressing a key limitation in their research:
the insufficient validation of GEOS-Chem/CATCH-derived
aerosol type-specic compositions due to limited collocated
HSRL aerosol type retrievals and in situ composition measure-
ments. We signicantly expand the scope of analysis by incor-
porating data from ve additional campaigns, encompassing
nearly one hundred research ights with NASA HSRL retrievals
across the United States. This expanded dataset offers a more
comprehensive view across diverse geographic regions, seasons,
and years, enabling a more rigorous testing of the HSRL-CH
method and providing deeper insights into the chemical
composition of each HSRL-derived aerosol type. Our analysis
compares surface PM2.5 estimates along ight tracks from three
DISCOVER-AQ campaigns, the Aerosol Characterization from
the Polarimeter and Lidar (ACEPOL) campaign, and the Studies
of Emissions and Atmospheric Composition, Clouds and
Climate Coupling by Regional Surveys (SEAC4RS) campaign to
measurements from EPA Air Quality System (AQS) sites. This
© 2025 The Author(s). Published by the Royal Society of Chemistry
extensive comparison enhances our understanding of the
HSRL-CH method's performance across varied conditions and
improves our ability to characterize aerosol compositions
associated with different HSRL-derived types, ultimately
advancing our capability to estimate PM2.5 concentrations
through remote sensing techniques.
2 Data

The data for the eld campaigns are publicly available in the
mission archives (see the Data availability section). The
DISCOVER-AQ California (CA) campaign took place in January
and February 2013 with ights predominantly conducted in the
San Joaquin Valley. The DISCOVER-AQ Texas (TX) campaign
took place in September 2013 with ights around the Houston
area and the northern Gulf of Mexico. The DISCOVER-AQ Col-
orado (CO) campaign happened in July and August 2014 and
consisted of ights mainly in the area between Denver and
Cheyenne, Wyoming, but with a few ights extending east into
neighboring states even as far as Virginia. The ACEPOL
campaign took place in California and neighboring states
during October and November of 2017. The SEAC4RS campaign
took place in August and September of 2013 with ights ranging
from off the west coast of the U.S. to Georgia and from Canada
to the Gulf of Mexico.
2.1 AQS measurements

This study compares remotely derived PM2.5 with surface
measurements collected at the EPA AQS sites. We utilize re-
ported hourly averaged PM2.5 data (parameter code 88101) from
23 AQS sites (ESI Table 1S†) located near one or more of the
research ights.

Chemical speciation data are collected at select AQS sites
every 3 or 6 days and averaged over 24 hours. The 99 ights
conducted across the ve campaigns resulted in 25 days where
HSRL extinction retrievals and assigned aerosol types coincided
with data collection at 10 different speciation sites (see Table 1).
Concentrations for each species – sulfate + nitrate + ammonium
(SNA), organic matter (OM), black carbon (BC), dust, and sea
salt – in mg m−3 were calculated using the AQS parameter codes
as described in Meskhidze et al.20 ESI Table 2S† summarizes the
Environ. Sci.: Atmos., 2025, 5, 270–290 | 271
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EPA parameter codes and derivation process for each aerosol
species examined in this study.

2.2 HSRL-retrievals

The NASA LaRC second generation HSRL-2 23,24 was own on the
NASA B200 aircra during the DISCOVER-AQ CO, DISCOVER-
AQ TX, and DISCOVER-AQ CA campaigns and on the ER-2
aircra during ACEPOL. The DIAL-HSRL instrument23,25 was
own on NASA's DC-8 aircra during SEAC4RS.

Burton et al. demonstrated that NASA HSRL retrievals could
be used to classify aerosols into types such as ice, pure dust,
dusty mix, maritime, polluted maritime, urban, fresh smoke,
and smoke.26 Types are classied based on the following aerosol
intensive properties: aerosol depolarization (532 nm), aerosol
lidar ratio (532 nm), aerosol backscatter color ratio (the ratio of
aerosol backscatter coefficients at 532 nm and 1064 nm), and
the spectral depolarization ratio (the ratio of depolarization
ratios at 1064 nm and 532 nm). Both the HSRL-2 and the DIAL-
HSRL perform the retrievals necessary to assign aerosol types
using the methodology of Burton et al.26 HSRL retrievals and
assigned aerosol types were obtained from the campaign data
archives. Instances of multiple consecutive retrievals being
logged at the same time were corrected by assuming that each
retrieval was 0.0028 hours aer the previous one.

For comparison with surface measurements, we use HSRL
retrievals within 8 km of the measurement location (see Section
3.3), following Meskhidze et al.20 and Sutherland et al.22 When
comparing with AQS PM2.5 data, we use HSRL retrievals from
the same hour for hourly measurements and from the same day
for daily speciation data.

2.3 Vertical mixing height

There is general consensus that the planetary boundary layer
height (PBLH) and the mixing layer height (MLH) signicantly
inuence surface air quality. The PBL is the portion of the
troposphere directly inuenced by surface properties (e.g.
turbulence, convection, and sensible and latent heat ux),
whereas the MLH describes the depth of turbulent mixing
specically.27 Although PBLH and MLH are distinct concepts,
both provide valuable insights into the atmospheric layer
directly inuenced by Earth's surface over short time periods.28

However, neither PBLH nor MLH can be measured directly.
Their values depend on both the calculation algorithms used
and the instruments employed, leading to signicant discrep-
ancies in estimated values.29–32 We utilize three different
approaches to estimate this well-mixed layer: PBLH predicted by
the North American Mesoscale Forecast System (NAM),33 PBLH
estimates from NASA's Modern-Era Retrospective Analysis for
Research and Applications, version 2 (MERRA-2) reanalysis,34

and MLH values derived from HSRL retrievals.35,36 The use of
multiple metrics allows for a more comprehensive under-
standing of the vertical structure of the atmosphere and helps to
mitigate potential biases or limitations inherent in any single
approach.

Previous studies20,22 have shown that the application of HSRL
retrievals for surface PM2.5 predictions presents an additional
272 | Environ. Sci.: Atmos., 2025, 5, 270–290
challenge: extinction and aerosol types cannot be reported
within ∼300 m of the surface due to potential ground return
interference with the atmospheric signal. To address this limi-
tation, in previous studies we assumed that conditions above
300 m could represent surface conditions. While this assump-
tion may hold true for well-mixed atmospheres with signicant
vertical extent, it may not be valid for shallow PBLH or MLH
conditions, especially given signicant model and measure-
ment uncertainties.

2.4 Hygroscopic growth of particles

Relative humidity (RH)-dependent scattering enhancements
caused by the water uptake of aerosols (hygroscopic growth)
were calculated using species-specic hygroscopic growth
factors following Meskhidze et al.20 and Sutherland et al.22 For
organic matter, hygroscopic growth at 532 nm is calculated as
fOM = 1 + 0.03 × RH/(100 − RH) following ref. 14. Hygroscopic

growth of sea salt is calculated as fSS ¼ 1þ 21:13
�
RH
100

�10:81

following ref. 37 for the t at 550 nm. Hygroscopic growth for
SNA is taken from Table 3 of ref. 15 for small sulfate and nitrate
particles. The RH values were taken from the MERRA-2 rean-
alysis as in Sutherland et al.22

3. Methodology
3.1 HSRL data processing

The methodology for processing aerosol type and extinction
data was largely based on the approaches described in Mes-
khidze et al.20 and Sutherland et al.,22 with some adjustments.
We opted not to use the HSRL cumulative aerosol optical depth
(Column_AOT_pr) product to ll in gaps in the HSRL-retrieved
extinctions, as this method produced noisy near-surface
extinction results. Instead, we solely relied on the reported
HSRL extinction at 532 nm (sHSRL). We modied the assump-
tion about extending the lowest assigned aerosol types to the
surface. In this study, we only applied this assumption when the
lowest assigned types were within the NAM PBLH. Following
Sutherland et al.,22 we consolidated certain aerosol categories:
the HSRL-assigned pure dust and dusty mix types were
combined into a single “dusty mix” category and the polluted
maritime and maritime types were combined into a single
“maritime” category. These modications aimed to improve the
accuracy and consistency of the aerosol data processing while
maintaining compatibility with previous studies.

3.2 Derived chemical components for different aerosol types

Aerosol chemical compositions for HSRL-retrieved aerosol types
were derived using the CATCH algorithm21 as discussed in
Meskhidze et al.20 and Sutherland et al.22 CATCH was designed
to assign aerosol types analogous to the HSRL-derived types
based on GEOS-Chem modeled parameters as a means to link
remotely sensed aerosol types with specic aerosol chemical
composition. CATCH classies aerosol type according to the
Mahalanobis distance from a pre-specied cluster and was
trained using HSRL derived aerosol types from the Ship-Aircra
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 CATCH-derived PM2.5 chemical composition (the proportion of the mass of each aerosol type, which comprises dust, black carbon (BC),
sulfate + nitrate + ammonium (SNA), organic matter (OM) and sea salt) for each aerosol type.
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Bio-Optical Research (SABOR) campaign. However, for the dusty
mix aerosol type, we diverged from the CATCH-derived
composition and instead used prescribed mass fractions
based on the ndings of Shin et al.,38 following the approach of
Sutherland et al.22 This adjustment was necessary because the
CATCH-derived dust proportion was excessively high for accu-
rately representing continental aerosols. It is worth noting that
for all aerosol types, the majority of the mass is composed of
hygroscopic species, underscoring the importance of composi-
tion information in properly accounting for hygroscopic
growth. The normalized chemical composition (where the
fractional contribution of all species totals 100%) for each
aerosol type used in this study is presented in Fig. 1.
3.3 HSRL-CH method for PM2.5 estimation

Meskhidze et al.20 developed the HSRL-CH method for esti-
mating atmospheric PM2.5 and aerosol chemical makeup using
the HSRL-retrieved aerosol extinction values and types. In this
method, PM2.5 is estimated as

½PM2:5 HSRL-CH� ¼ sHSRL P5
j¼1

bjfjðRHÞRj

! (1)

where j (=1, 2, . 5) refers to chemical species (SNA, OM, BC,
dust, and sea salt). The relative abundance of each species is
accounted for using Rj ¼

P
itypeiKi;j, where typei is the

proportion of extinction within the grid that is assigned to
aerosol type i (i.e., dusty mix, maritime, urban, smoke, and fresh
© 2025 The Author(s). Published by the Royal Society of Chemistry
smoke), and Ki,j is themass fraction of species j for aerosol type i
(as shown in Fig. 1 divided by 100%). As PM2.5 is estimated on
the HSRL retrieval grid, typei can only be equal to 0 or 1. bj and
fj(RH) are the dry mass extinction efficiencies and RH-
dependent hygroscopic growth factors for each species as
described in Section 2.4. We use drymass extinction coefficients
bSNA = 3.0, bOM = 4.0, bBC = 10.0, bDust = 1.0, and bSeasalt = 1.37
m2 g−1.15,39,40 As PM2.5 is directly proportional to the retrieved
extinction in eqn (1), relative errors in the retrieved extinction
will correspond to proportional error in the derived PM2.5.
Rogers et al. performed a comparison of AOD and extinction
retrievals from other contemporary instruments and the NASA
Langley HSRL.41

HSRL retrievals of aerosol extinction are not reported within
about 300 m of the surface, and the HSRL ight paths do not
directly overpass the location of the AQS measurement sites.
Therefore, the estimation of surface PM2.5 involves an averaging
process using the HSRL-CHmethod-derived PM2.5 data. All data
points are averaged below a specic mixing height vertically (see
Section 4.1) and horizontally for all retrievals within an 8 km
diameter circle centered on the AQS measurement stations.
This 8 km colocation distance was determined to be appropriate
for use with HSRL-CH in the Baltimore–Washington area, based
on ndings from Meskhidze et al.20 To generate a continuous
PM2.5 prole along a ight path, the PM2.5 value at each location
is calculated by averaging all retrievals within an 8 km radius of
that point. It is important to note that any retrievals lacking an
assigned aerosol type are excluded from this analysis.
Environ. Sci.: Atmos., 2025, 5, 270–290 | 273
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An important consideration is the impact of inexact coloca-
tion criteria when validating the remote sensing methodology
using hourly PM2.5 concentrations and daily averaged PM2.5

compositions. As was noted in Dawson et al., atmospheric
conditions that create highly inhomogeneous aerosol distribu-
tions across space (8 km and within the PBLH) and time (hourly
or daily) are inherently less suitable for comparison with surface
measurements.22 This limitation does not necessarily reect the
effectiveness of the HSRL-CH method but rather highlights the
challenges of validation using data from eld campaigns
designed for different scientic objectives.
4 Results and discussion
4.1 Designation of vertical mixing height

The relationship between surface PM2.5 and remotely retrieved
aerosol optical depth (AOD) has been a subject of interest in
various studies. Previous studies have shown that these two
measurements can be poorly correlated when aerosol plumes
are elevated above the boundary layer or the boundary layer is
not well mixed.9,42–44 Lidars can provide the vertical curtains of
aerosol extinction, allowing for a more detailed understanding
of aerosol distribution throughout the atmospheric column.
When using the HSRL-CH methodology to estimate surface
PM2.5, concentrations, a critical consideration emerges: deter-
mining the appropriate vertical extent of retrievals that can
accurately represent the surface conditions. The importance of
this vertical extent selection stems from the need to capture the
aerosol characteristics that are most representative of ground-
level conditions while avoiding the inclusion of elevated
plumes that may not inuence surface air quality.
Fig. 2 (a) NAM PBLH vs.HSRLMLH (redmarkers) andMERRA-2 PBLH (blu
AQS sites, and (b) zoomed in to only show cases where NAM PBLH is le

274 | Environ. Sci.: Atmos., 2025, 5, 270–290
Fig. 2 presents a comparison of NAM PBLH, MERRA-2 PBLH,
and HSRL-derived MLH for instances when the HSRL was
within 8 km of an AQS site. The analysis revealed an average
difference of 361 ± 541 m between these estimates. This
substantial variability indicates that the choice of height
parameter can signicantly inuence the vertical range of
retrievals included when deriving surface PM2.5 using the HSRL-
CH methodology. For shallow PBLH or MLH conditions, it
becomes difficult to determine whether the lowest HSRL
retrievals originate from within the boundary layer or free
troposphere, complicating accurate interpretation. Further-
more, when the estimated mixing height is lower, fewer vertical
retrievals are available. This can amplify the inuence of
outliers (potentially related to local inhomogeneities), leading
to signicant effects on the derived surface PM2.5 values. These
ndings underscore the critical importance of carefully select-
ing the vertical mixing height estimation method when
applying the HSRL-CH methodology for surface PM2.5

derivation.
Table 2 provides a summary of the statistical comparison

between HSRL-CH-derived and AQS-measured PM2.5. The table
includes key metrics such as the mean absolute error (MAE), the
normalized mean absolute error (NMAE), the mean error (ME),
the coefficient of determination (r2), and the number of data
points (N). A notable nding from this comparison is that
different choices for the vertical extent of retrievals can result in
∼20% variability in the MAE, ME, and r2 values. Despite this
variability, the analysis does not conclusively demonstrate
a clear advantage of one methodology over the others. Given
this lack of denitive superiority, we have opted for simplicity in
our approach for the remainder of this study. Specically, we
emarkers) for all times when a flight path was within 8 km of one of the
ss than 1 km.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Summary statistics for comparison of HSRL-CH-derived and
AQS-measured PM2.5 for different representations of vertical mixing
height. N is the number of data points

Height used MAE (mg m−3) NMAE ME (mg m−3) r2 N

NAM PBLH 10.2 48 6.1 0.50 320
MERRA-2 PBLH 8.5 43 3.3 0.55 301
HSRL MLH 9.7 49 7.3 0.62 319

Table 3 Summary statistics when different NAM PBLH thresholds are
applied to surface PM2.5 estimates using HSRL-CH

PBLH threshold MAE (mg m−3) NMAE ME (mg m−3) r2 N

No threshold 10.2 48 6.1 0.50 320
300 m 9.8 47 5.8 0.52 305
500 m 8.1 44 5.1 0.64 255
600 m 7.2 49 5.2 0.68 207
700 m 6.7 51 4.7 0.65 182
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have chosen to use the NAM PBLH for detailed comparisons
between HSRL-CH-derived and AQS-measured PM2.5. This
choice of NAM PBLH was made primarily to maintain consis-
tency with the study by Meskhidze et al.,20 which tested the
HSRL-CH method over the Eastern US.

Building on the work of Sutherland et al.22 which demon-
strated improved performance of HSRL-CH estimates of surface
PM2.5 by excluding the data with HSLR-derived MLH below 600
m, we conducted a similar analysis across ve measurement
campaigns. Our analysis, summarized in Table 3, reveals a clear
trend: as we increase the NAM PBLH threshold, we observe
a reduction in MAE and an improved agreement between HSRL-
CH-estimated and AQS-measured surface PM2.5. Fig. 3 shows
the dependency of MAE and r2 on PBLH thresholds observed in
this study and what was found using retrievals from the KORUS-
AQ campaign and the MLH thresholds as reported by
Fig. 3 Dependence of MAE (purple) and r2 (blue) on the PBLH/MLH
threshold.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Sutherland et al.22 The consistency of these results across
different continents and aerosol regimes indicates that for
HSRL-CH to be effectively used in monitoring PM2.5 from
spaceborne HSRL-retrievals, implementing quality control
lters that remove cases of shallow mixed layers may be
necessary. Alternatively, this nding points to the potential
benet of developing a hybrid approach. Such an approach
would handle instances of shallow mixed layers separately,
using a different methodology tailored to these challenging
conditions.

4.2 PM2.5 comparison

The ve campaigns resulted in 320 instances where HSRL data
were successfully retrieved within an 8 km radius of an AQS site
with concurrent PM2.5 measurements. Aggregating data from all
ve campaigns, we found that the HSRL-CH derived and AQS
measured PM2.5 had r2 = 0.5 and MAE = 10.2 mg m−3 (Table 4).
According to the summary statistics (Table 4), four out of the
ve campaigns demonstrated MAE values comparable to that
found in the DISCOVER-AQ Baltimore–Washington D.C.
campaign (i.e., 6.2 mg m−3) when using a similar methodology.20

The outlier was the DISCOVER-AQ CA campaign (diamonds in
Fig. 4), which exhibited a notably higher MAE of 14.8 mg m−3.
However, the DISCOVER-AQ CA campaign was also associated
with generally higher aerosol loadings than those observed
during the other campaigns (Fig. 4). Table 4 shows that the
NMAE for DISCOVER-AQ was well within the range of that from
the other campaigns.

Fig. 4 employs a sophisticated color-coding system to
represent the aerosol types that dominate the boundary layer
AOD for each retrieval. The coloring scheme is as follows. The
outer color of each marker indicates the aerosol type that
contributed the most to the AOD within the NAM PBLH
(AODPBLH). In cases where multiple aerosol types signicantly
contribute to the AOD within the retrieval range, the inner color
of the marker represents the second most dominant aerosol
Table 4 Summary statistics for results shown in Fig. 4. Subsets of the
data are shown, grouped either by campaign or by the aerosol type
that was assigned the majority of AODPBLH

MAE (mg m−3) NMAE ME (mg m−3) r2 N

Entire dataset 10.2 48.3 6.1 0.50 320

Campaign
DISCOVER-AQ CA 14.8 45.8 8.6 0.15 159
SEAC4RS 7.2 62.2 0.5 0.06 9
DISCOVER-AQ TX 7.1 77.3 6.6 0.23 51
DISCOVER-AQ CO 4.9 50.2 2.8 0.27 89
ACEPOL 5.2 30.4 −0.3 0.64 12

Aerosol type
Fresh smoke 10.0 25.2 −0.7 0.24 45
Smoke 23.8 63.9 19.4 0.00 40
Urban 8.1 46.3 5.1 0.57 145
Maritime 12.1 117.6 11.6 0.23 39
Dusty mix 4.6 40.3 0.3 0.51 51
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Fig. 4 (a) HSRL-CH method-derived and AQS-measured hourly PM2.5 and (b) the difference between HSRL-CH method-derived and AQS-
measured PM2.5 as a function of AQS measurements. For each point, the outer color indicates the aerosol type that contributed the most to
AODPBLH. When multiple types were derived within the same hour as the AQS measurement, the inner color shows the aerosol type that
contributed the secondmost to AODPBLH. The shapes of themarkers indicate the field campaign that the data came from. Points from 20, 21, and
22 January 2013 are indicated by light grey, grey, and black dots respectively in the center of the diamond markers.
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type. This color scheme allows for the identication of general
trends in aerosol composition and distribution. A notable
observation from Fig. 4 is that, for this ve-campaign dataset,
276 | Environ. Sci.: Atmos., 2025, 5, 270–290
high aerosol loadings are frequently associated with smoke and
fresh smoke types. The gure provides a comprehensive visual
summary of aerosol type distributions and their relative
© 2025 The Author(s). Published by the Royal Society of Chemistry
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contributions to AODPBLH across the dataset. A more detailed
analysis of aerosol-type specic results is provided in Section 4.3
of the study. This section delves deeper into the chemical
speciation comparison of different aerosol types and their
potential impacts on PM2.5 estimations.

4.2.1 PM2.5 case study. The ights on 22 January 2013
provided a compelling case study, showcasing both instances of
near-perfect agreement and signicant discrepancies between
HSRL-CH-derived and AQS-measured PM2.5. This day's ights
serve as an informative case study to explore the sources of
discrepancy between derived and measured PM2.5 and offer
valuable insights into the potential sources of these
discrepancies.

Fig. 5 shows a comprehensive summary of different param-
eters along the ight paths over the San Joaquin Valley for some
of themorning ights. The full summary is given in ESI Fig. 1S.†
These gures reveal a general pattern of higher PM2.5 concen-
trations in the valley and lower concentrations at sites in the
surrounding mountains. This distribution reects the general
circulation patterns due to its unique topography, known to
contribute to the San Joaquin Valley's consistent air quality
issues.45,46 Surrounded by the Sierra Nevada Mountain Range to
the east, Diablo and Santa Lucia Ranges to the west, and
Tehachapi Mountains to the south, the valley experiences
specic ow patterns. Air masses enter from the densely
populated San Francisco Bay area to the north (also home to
several reneries) and then move southward along the corridor.
This unique topography oen leads to air stagnation47 and
Fig. 5 (a) 09:00 and (b) 10:00 local time for the morning flight on 22 Jan
Along the flight path shown from the center of the flight track outward a
532 nmwithin the NAM PBLH, HSRL-derived aerosol type that contribute
Square markers indicate PM2.5 concentration measured at AQS sites fo
coloring of the border of the box indicates the difference between th
Locations where daily speciation data were recorded for this day are indi
Table 1 and ESI Table 1S.†

© 2025 The Author(s). Published by the Royal Society of Chemistry
mixing with local urban, transportation, and agricultural
emissions.48–50 PM2.5 accumulation is particularly problematic
in this region during winter due to elevated combustion emis-
sions from residential heating, lower planetary boundary layer,
and weather conditions favorable for increased formation of
Secondary Organic Aerosols (SOAs).46,51

On 22 January 2013, the ight paths intersected within an 8
km radius of six AQS sites labeled as A, B, C, K, L, and M in
Fig. 5. These sites provide an excellent opportunity to explore
the complexities associated with deriving PM2.5 remotely for
comparison with hourly surface measurements in complex
terrains. Four of these sites are particularly noteworthy due to
their diverse locations and characteristics. Sites B and M are
situated within the highly populated Fresno metropolitan area,
separated by 6.3 km. Their proximity and shared urban envi-
ronment make them interesting points of comparison. Site L is
located in the smaller city of Hanford, south of Fresno. This site
represents a less urbanized area compared to the Fresno sites.
Site K is positioned in the middle of a large agricultural area to
the southwest of Fresno and offers a contrast to the urban
locations. The varied settings of these sites – from major urban
centers to smaller cities and agricultural areas – provide a range
of conditions for evaluating the performance of remotely
derived PM2.5 measurements. This diversity allows for a more
comprehensive assessment of the HSRL-CH methodology
across different environmental contexts.

Fig. 6 illustrates the diurnal pattern of PM2.5 concentrations,
showing an initial increase between 6 and 8 am local time, likely
uary 2013. Gray shading indicates the 8 km radius along the flight path.
re: PM2.5 derived using HSRL-CH, average HSRL retrieved extinction at
d most to extinction within the NAM PBLH, and the measurement time.
r that hour. For AQS sites that are within 8 km of the flight path, the
e HSRL-CH-derived PM2.5 and the AQS measurement for that hour.
cated by yellow stars. Letters with arrows indicate site IDs as defined in

Environ. Sci.: Atmos., 2025, 5, 270–290 | 277

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ea00143e


Fig. 6 Hourly PM2.5 (local time) measured at AQS sites K, B, M, and L on 22 January 2013.
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corresponding to morning rush hour traffic. In urban areas,
PM2.5 levels peak around 10 to 11 am, followed by a decrease. A
secondary increase is observed later in the aernoon, presum-
ably due to the aernoon rush hour. This PM2.5 variability
appears to be closely linked to the diurnal dynamics of the
PBLH. During the day, as the PBL grows, it entrains cleaner air
from above, diluting pollutants. Conversely, the aernoon
reduction in PBLH and the formation of nocturnal boundary
layers lead to signicant near-ground pollution accumulation.
An exception to this pattern is observed at site K, located in an
agricultural region downwind from urban areas. Here, PM2.5

concentrations continue to rise until later in the aernoon.
Comparing AQS-measured and HSRL-CH method-derived

PM2.5 concentrations reveals intriguing trends. For sites B, L,
and M, morning concentration values show good agreement,
suggesting that remotely measured extinction within the PBLH
accurately represents surface conditions. Aernoon HSRL-CH-
derived PM2.5 values are notably lower than AQS measure-
ments. This indicates that despite the general PM2.5 reduction
due to boundary layer growth, surface concentrations remain
signicantly higher than those inferred from the average PBLH.
At site K, HSRL-CH-derived PM2.5 values consistently exceed
AQS measurements, suggesting that pollution from urban areas
is advected at higher elevations without signicantly impacting
surface conditions. Interestingly, Fig. 6 also reveals substantial
differences (up to 35 mg m−3) between AQS measurements at
sites B and M, despite their proximity (6.3 km apart). This
discrepancy lacks a clear explanation but may be attributed to
local sources inuencing surface PM2.5 values.

These results highlight the complexities involved in accu-
rately estimating surface PM2.5 concentrations using remote
sensing techniques and underscore the importance of consid-
ering local meteorological factors and topography for diurnal
variations in air quality assessments using remote sensing
techniques.
4.3 Chemical speciation comparison

Our analysis will begin with an examination of the daily aver-
ages of aerosol composition across all campaigns. This
278 | Environ. Sci.: Atmos., 2025, 5, 270–290
approach offers a comprehensive overview of the general trends
and patterns within our dataset. By focusing on these daily
averages, we can establish a broad understanding of how the
HSRL-CH-derived compositions compare to AQSmeasurements
on a day-to-day basis. This initial overview helps identify over-
arching patterns in the data, allows us to spot potential differ-
ences between the HSRL-CH method and AQS measurements,
and provides a foundation for more detailed analyses to follow.
Following this broad assessment, we will transition to a more
granular examination of type-specic data. This detailed anal-
ysis will explore how different aerosol types contribute to the
observed compositions, investigate any type-specic variations
or biases in the HSRL-CHmethod, and provide insights into the
performance of the HSRL-CH method across various aerosol
categories.

By structuring our analysis in this two-tiered approach –

from general to specic – we aim to provide a comprehensive
understanding of the aerosol composition data. This method
allows us to capture both the broad trends across campaigns
and details specic to each aerosol type. Ultimately, this
analytical strategy will enable us to draw meaningful conclu-
sions about the effectiveness and accuracy of the HSRL-CH
method in characterizing aerosol compositions across diverse
atmospheric conditions and geographical locations.

4.3.1 Daily averages. Fig. 7 presents a comparative analysis
of daily average PM2.5 species measurements from AQS sites
against those derived using the HSRL-CH method. This
comparison is inherently complex due to several factors stem-
ming from the intricate spatiotemporal distribution of aerosols
and campaign ight patterns:

(1) Temporal variability: while AQS measurements are aver-
aged over 24 hour periods, retrievals were collected at various
times throughout the day, subject to diurnal uctuations in
aerosol composition and concentration.

(2) Diversity in aerosol types: multiple aerosol types were
oen assigned to retrievals within an 8 km radius of the AQS
sites, reecting the heterogeneous nature of atmospheric
particulate matter.

Fig. 7 displays paired data from both sources for days when
AQS speciation measurements and HSRL retrievals were
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Daily aerosol speciation measured at AQS sites (black outlines) and derived using HSRL-CH (blue outlines). (a) The fractional AODPBLH

assigned to each aerosol type. (b) Comparison of measured and derived species concentrations. Black dots above AQS measurements indicate
the total concentration as reported by the parameter code 88101 and letters above the measurements indicate the site ID (Table 1) of the AQS
site. (c) Chemical speciation of PM2.5 calculated by normalizing each species concentration from (b) by the total concentration of all species. (d)
The average of all compositions from (c) for AQS and HSRL-derived compositions.
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available within 8 km of the ground site. For each pair, AQS
measurements appear on the le with black outlines, while
HSRL retrieval-derived results appear on the right with blue
outlines. Letters above the AQS data in Fig. 7(b) correspond to
AQS sites listed in Table 1.

Fig. 7(a) contextualizes the HSRL-CH-derived compositions
by showing the proportion of collocated AODPBLH retrievals for
each aerosol type. This representation serves two purposes.
First, it reveals the dominant aerosol types present during
measurements, helping interpret agreements or discrepancies
between HSRL-CH and AQS measurements. Second, it indicates
the relative amount of HSRL-CH-derived PM2.5 calculated using
each aerosol type-specic composition shown in Fig. 1. Since
AQS measurements do not classify aerosol types, only HSRL-
derived results appear in this top panel.

Fig. 7(b) presents a side-by-side comparison of species
concentrations from two sources: AQS-measured concentra-
tions (black outlines) and HSRL-CH-derived concentrations
(blue outlines). A critical aspect to consider when interpreting
this comparison is the fundamental difference in the temporal
resolution between these two datasets. HSRL-CH-derived values
are based on brief periods of retrievals from random instances
throughout the day when co-location conditions were met. In
contrast, AQS measurements represent continuous sampling
over a 24 hour period. This disparity in sampling duration and
frequency is signicant because numerous processes inu-
encing surface aerosol concentration exhibit substantial
diurnal variability.52–54 Consequently, it is reasonable to antici-
pate considerable differences between the remotely derived,
semi-instantaneous concentrations fromHSRL-CH and the AQS
daily observations. Understanding these inherent differences in
data collection methods is crucial for accurately assessing the
© 2025 The Author(s). Published by the Royal Society of Chemistry
strengths and limitations of the HSRL-CHmethod in relation to
traditional ground-based measurements.

Fig. 7(c) presents an alternative approach to comparing AQS-
measured and HSRL-CH-derived data by examining the frac-
tional contribution of each species to the total speciated mass,
rather than absolute concentrations. This approach helps
mitigate the effects of concentration variability. The analysis
reveals general trends – for example, when retrievals were
assigned to the maritime aerosol type, the HSRL-CH-derived
composition showed a higher proportion of sea salt than that
measured at the ground level. These insights into each aerosol
type are explored in detail in the following section.

Fig. 7(d) offers a synthesized view, displaying the average of
all fractional compositions shown in Fig. 7(c). This averaged
representation reveals several notable trends in the HSRL-CH
derived composition compared to AQS measurements: HSRL-
CH derived composition has much higher proportions of SNA
and much lower proportions of OM than those measured at the
AQS sites. To a smaller degree, there is more sea salt and less BC
and dust in HSRL-CH derived composition than that observed.

4.3.2 Type-specic analysis
4.3.2.1 Dusty mix aerosol type. The best agreement between

HSRL-CH derived and AQS measured hourly PM2.5 occurred
when the dusty mix aerosol type contributed the most to the
boundary layer AOD values. Table 4 shows that the 51 dusty mix
retrievals had the lowest MAE (4.6 mg m−3) and no consistent
bias (ME = 0.3 mg m−3). However, despite this close agreement
in hourly PM2.5, the speciation analysis (Fig. 7) reveals large
differences between the AQS measured and HSRL-CH-derived
chemical compositions. Fig. 7 shows that there were seven
days when the dusty mix aerosol type accounted for over 50% of
AODPBLH. These instances occurred at various sites and dates:
Environ. Sci.: Atmos., 2025, 5, 270–290 | 279
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site F on 8 August 2013, site G on 25 September 2013, sites H, I,
and J on 22 July 2014, site H on 6 August 2014, and site B on 25
October 2017. For these particular days, the HSRL-CH method
overestimated the fraction of SNA by ∼40% compared to the
measured values. This overestimation of SNA was largely offset
by an underestimation of OM. The fractions of other species –

namely dust, sea salt, and BC – showed better agreement, with
differences of about 10% or less.

The overestimation of SNA (Fig. 7(c)) in the presence of
mineral dust (Fig. 7(a)) can sometimes be attributed to diffi-
culties in aerosol type classication of complex aerosol
mixtures. A notable example of this occurred on 8 August 2013,
at site F, where the dusty mix aerosol type dominated AODPBLH,
as shown in Fig. 7(a). On this day, AQS measurements indicated
both the total concentration (Fig. 7(b)) and the fractional
contribution of dust (Fig. 7(c)) to be about four times higher
than those derived using the HSRL-CH method. This discrep-
ancy can be explained by the transport of a large Saharan dust
layer across the Atlantic Ocean.55 MERRA-2 reanalysis reveals
(see ESI Fig. 2S†) that PM2.5 dust particle transport mainly
occurred at the beginning of the month, with the remnants of
Fig. 8 (a) HSRL assigned aerosol types and (b) HSRL retrieved extinction
east of the Texas/New Mexico border. The red line indicates the NAM PB
the location where the plane was passing within 8 km of the AQS specia

280 | Environ. Sci.: Atmos., 2025, 5, 270–290
the plume extending across Texas, Louisiana, and the Gulf of
Mexico on August 8, 2013. Fig. 8 illustrates that the HSRL-
assigned aerosol type within the NAM-predicted boundary
layer was predominantly dusty mix along almost the entire
ight path. HYSPLIT backward trajectories reveal that before
reaching Marshall, Texas (site F), the air masses had traversed
the Gulf of Mexico and then passed at low elevation over the
highly polluted Galveston Bay/Houston area.

This trajectory offers insight into the mechanism behind the
mixture of Saharan dust and anthropogenic aerosols, explain-
ing why the particles were classied as a dusty mix rather than
pure dust types. The combination of long-range transported
Saharan dust with local anthropogenic pollutants resulted in
a complex aerosol mixture that challenged the classication
capabilities of the HSRL-CH method. It is worth noting that the
high proportion of dust observed on 8 August 2013 was unique
among the AQS measurements collected at site F during the
campaign (see ESI Fig. 3S†).

This case study underscores the difficulties in accurately
classifying and quantifying complex aerosol mixtures, particu-
larly when long-distance transport events interact with local
at 532 nm along flight curtains for a portion of the 8 August 2013 flight
LH, the thin black line indicates the surface altitude, and the stars show
tion site.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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pollution sources. It emphasizes two key points. The need for
ongoing improvement of remote sensing techniques to rene
aerosol classications, enabling better capture of these
nuanced scenarios and the importance of maintaining separate
categories for pure dust and dusty mix types, rather than
merging them into a single category (as was done in Fig. 1). This
latter nding is consistent with research by Sutherland et al.,22

which demonstrated that in South Korea, aerosol chemical
composition was more accurately represented when aerosol
speciation for dusty mix types was based on local measurements
of aerosols in the presence of mineral dust.

4.3.2.2 Maritime aerosol type. When the maritime aerosol
type contributed a discernible fraction to AODPBLH, HSRL-CH-
derived hourly PM2.5 concentrations consistently exceeded
measurements from AQS sites, with MAE= 12.1 mg m−3 andME
= 11.6 mg m−3 leading to a NMAE, which was more than twice
that of any other aerosol type (see Table 4). Fig. 7(a) reveals that
there were no days when themajority of AODPBLH was attributed
to maritime aerosol for retrievals within an 8 km radius of AQS
speciation sites. The highest proportion of AODPBLH attributed
to the maritime aerosol type, as shown in Fig. 7(a), was 33%
observed at site B on 31 January 2013. This case will serve as
Fig. 9 (a) HSRL assigned aerosol types and (b) HSRL retrieved extinctio
flights on 31 January 2013.

© 2025 The Author(s). Published by the Royal Society of Chemistry
a basis for examining the application of HSRL-CH in the context
of maritime aerosol analysis.

HYSPLIT backward trajectories (see ESI Fig. 4S†) indicate
that the air masses near site B on 31 January 2013 originated
from the North Pacic and then traversed Oregon and western
Nevada, passing over the Nevada Mountains before reaching
Fresno, CA. On this day, two research ights were conducted
over the San Joaquin Valley region. Fig. 9(a) reveals a complex
vertical structure of aerosol types along the HSRL ight path.
Polluted maritime aerosols were sandwiched between urban
aerosols closer to the surface and dusty mix aerosols alo. The
NAM-predicted PBLH was located near the top of the polluted
maritime layer. The AQS speciation data for this day (Fig. 7(c))
showed a composition of 47% SNA and 43% OM, with less than
1% sea salt. This composition supports the hypothesis that the
polluted maritime aerosols were not mixed down to the surface
as supported by the HSRL-retrievals. This case study highlights
the importance of accurate prediction of the PBL height and the
challenges in comparing remotely sensed aerosols with surface
concentrations when vertical inhomogeneities exist within the
predicted PBLH.
n at 532 nm along flight curtains during both morning and afternoon
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Fig. 9 shows that a signicant fraction of aerosol extinction
within the NAM-predicted PBL was attributed to the polluted
maritime aerosol type. This likely explains why the HSRL-CH-
derived sea salt concentration was signicantly higher
compared to the AQS measurements, as shown in Fig. 7(b).

For all cases with a notable presence of polluted maritime
aerosols in Fig. 7(a) (e.g., site B on 31 January and site G on 04
and 13 September 2013), HSRL-CH method-derived PM2.5

concentrations were considerably higher than the AQS
measurements. This is notable because sea salt is highly
hygroscopic and has the highest mass extinction coefficient
among aerosol species considered in this study. Because of this,
an overestimate of sea salt would be expected to result in an
underestimation of PM2.5 concentration, as sea salt's ability to
take up more water would yield higher extinction values and
lower dry mass. However, this was not the case in our study,
suggesting that the error in predicted PM2.5 is more likely
related to the non-homogeneous vertical structure of aerosols
within the boundary layer.

Our analysis of the data reveals that the CATCH-derived
composition for maritime aerosols, which assumes nearly
90% sea salt content (as shown in Fig. 1), may not be
Fig. 10 (a) HSRL assigned aerosol types and (b) HSRL retrieved extinctio
flights on 28 July 2014.

282 | Environ. Sci.: Atmos., 2025, 5, 270–290
appropriate for use over land, particularly in urban areas. In
these regions, signicant amounts of anthropogenic aerosols
can mix with air masses originating from the oceans, leading to
a more complex aerosol composition. These ndings suggest
that the two types (maritime and polluted maritime) derived
from HSRL measurements should be considered separately,
rather than consolidated into a single category. A key
improvement would be the development of a polluted maritime
type within the CATCH algorithm, which would have a lower
proportion of sea salt in its composition. This new category
could potentially lead to better agreement between HSRL-CH-
derived concentrations and measured concentrations over
continental areas. By introducing this distinction, we can
account for the transformation that maritime air masses
undergo as they travel over land and interact with urban and
industrial emissions. This approach would enhance the accu-
racy of the HSRL-CH method in characterizing aerosol compo-
sitions in diverse environments, particularly in coastal urban
areas where marine and anthropogenic inuences intersect.

4.3.2.3 Urban aerosol type. Table 4 shows that when urban
aerosol types contributed the most to AODPBLH, hourly PM2.5

had the second lowest MAE (8.1 mg m−3) and the highest
n at 532 nm along flight curtains during both morning and afternoon
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coefficient of determination (r2 = 0.57) when comparing HSRL-
CH predictions to AQS measurements. Fig. 7(a) shows 12 days
when over 50% of the AODPBLH was assigned to the urban type.
These instances occurred at sites A, B, and C on 16 January
2013, site C on 6 February 2013, site G on 4 September 2013 and
13 September 2013, sites H, I, and J on 28 July 2014 and 3 August
2014. For the urban aerosol type, Fig. 7(c) generally indicates
that the HSRL-CH method tends to overestimate SNA concen-
trations while underestimating organic aerosols when
compared to the AQS measurements.

On 28 July 2014, 90%, 89%, and 81% of AODPBLH near sites
H, I, and J respectively were classied as urban (Fig. 7(a)). Sites
H and I are located in the greater Denver metropolitan area,
while site J is located in the more rural town of Platteville about
43 km to the north. Fig. 10 shows a complex mixture of aerosols
in this region. During the DISCOVER-AQ Colorado campaign,
all AQS-measured compositions from these sites showed 48% or
more OM, yet the proportion of organics derived using HSRL-
CH was 22% to 35% lower than the measured values (see
Fig. 7(c)). We attribute this signicant underestimation of
organic aerosols to a distinct chemical signature of aerosols
classied as urban by the HSRL in this region. This high
Fig. 11 (a) HSRL assigned aerosol types and (b) HSRL retrieved extinctio
flights on 22 January 2013.

© 2025 The Author(s). Published by the Royal Society of Chemistry
proportion of organics may be linked to Colorado's oil and gas
industry. By 2017, Colorado had over 53 000 active oil and
natural gas wells, with a large concentration northeast of Den-
ver.56 Oil and gas production is known to generate enhanced
levels of volatile organic compounds (VOCs),56–58 which can lead
to the formation of SOAs. Bahreini et al. found that in the area
surrounding Denver, plumes inuenced by oil and natural gas
emissions had 40% higher OA concentration than plumes
inuenced by urban emissions.59

4.3.2.4 Smoke and fresh smoke aerosol types. The majority of
retrievals classied as smoke or fresh smoke type occurred on
20, 21, or 22 January 2013. These data points are represented by
grey-to-black dots within the diamondmarkers in Fig. 4. During
these days, a mixture of smoke and fresh smoke aerosols was
observed along the ight curtains, with many retrievals within
an 8 km radius of AQS sites. Due to their comparable chemical
composition (as shown in Fig. 1), we combined these two types
for comparison with AQS speciation measurements.

Table 4 shows that the largest differences between the HSRL-
CH-derived and AQS-measured hourly PM2.5 concentrations
occurred when the smoke aerosol type was the primary
contributor to AODPBLH. For these cases, the MAE was 23.8 mg
n at 532 nm along flight curtains during both morning and afternoon
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m−3 and there was no correlation between HSRL-CH-derived
and AQS-measured hourly PM2.5 (r

2 ∼ 0, as shown in Table 4).
However, cases where the fresh smoke aerosol type was the
main contributor to AODPBLH generally showed much better
performance. These instances had a lower MAE of 10.0 mg m−3,
and minimal bias, with a ME of −0.7 mg m−3 (as shown in Table
4). While Table 4 shows that fresh smoke aerosols were asso-
ciated with the lowest NMAE, smoke aerosols were associated
with the second highest, showcasing the contrast in success
between these two types.

The discrepancy between measured and derived PM2.5

concentrations during smoke events may be linked to PBLH
prediction accuracy. As illustrated in Fig. 11, smoke and fresh
smoke aerosols typically concentrate at altitudes between 250
and 500 m above ground level. When the planetary boundary
layer expands, these elevated aerosol layers can be mixed
downward, signicantly inuencing surface PM2.5 concentra-
tions recorded at AQS monitoring stations.

Although HSRL-CH-derived and AQS-measured hourly PM2.5

concentrations generally showed poor correlation across the
dataset (n= 95), we observed remarkably good agreement in two
specic cases. These cases occurred on January 22, 2013, when
smoke and fresh smoke aerosols accounted for more than 50%
of AODPBLH (Fig. 7(a)) within an 8 km radius of AQS sites with
available chemical composition data. According to Fig. 7(b), the
difference between HSRL-CH-derived and AQS-measured total
PM2.5 concentrations was minimal: 0.2 mg m−3 at site A and 3.0
mg m−3 at site B (both less than a 5% difference). Furthermore,
the chemical composition analysis (Fig. 7(c)) showed excellent
agreement between both sites. In contrast, measurements at
AQS site C on the same day showed weaker agreement. At this
location, AQS measurements indicated notably higher SNA
concentrations compared to HSRL-CH-derived values, as shown
in Fig. 7(c). For comprehensive reference, ESI Fig. 5S† provides
the complete dataset of retrieved extinction values and the
corresponding aerosol type classications for all ight curtains
across all campaigns.
5 Conclusions

In this study, we employ HSRL retrievals of aerosol extinction
and assign aerosol types to estimate surface PM2.5 concentra-
tion and chemical composition using the HSLR-CH method-
ology. Previously developed and evaluated by Meskhidze et al.20

and Sutherland et al.,22 HSRL-CH was extensively tested using
the data from ve additional eld campaigns: DISCOVER-AQ
California, SEAC4RS, DISCOVER-AQ Texas, DISCOVER-AQ Col-
orado, and ACEPOL. This comprehensive dataset yielded 320
datapoints for hourly PM2.5 and 25 cases for aerosol chemical
speciation comparison.
5.1. Our analysis revealed several key ndings

1. Dusty mix aerosols: when this type contributed most to
AODPBLH, we observed the lowest Mean Absolute Error (MAE) of
4.6 mg m−3 and negligible bias (Mean Error, ME = 0.3 mg m−3).
However, HSRL-CH derived composition typically had ∼40%
284 | Environ. Sci.: Atmos., 2025, 5, 270–290
more Sulfate–Nitrate–Ammonium (SNA) than the AQS-
measured composition with a compensating underrepresenta-
tion of Organic Matter (OM). This discrepancy may be due to the
mixing of dust with urban aerosols, as seen in the Houston
metro area on August 8, 2013.

2. Maritime aerosols: retrievals dominated by this type led to
consistent overestimation of PM2.5 (ME = 11.6 mg m−3) by the
HSRL-CH method. The CATCH-derived maritime aerosol
composition, being ∼90% sea salt, resulted in signicant sea
salt aerosol overestimation whenever the maritime type was
assigned.

3. Urban aerosols: these showed the second lowest MAE (8.1
mg m−3). However, higher urban aerosol amounts generally
correlated with larger differences between AQS measured and
HSRL-CH derived compositions, typically overestimating SNA
and underestimating OM.

4. Smoke and fresh smoke aerosols: smoke-dominated
retrievals showed the largest differences between HSRL-CH
derived and AQS-measured PM2.5, with an MAE of 23.8 mg
m−3. Fresh smoke aerosols performed better, with an MAE of
10.0 mg m−3. Interestingly, despite these large errors, the HSRL-
CH-derived composition for smoke and fresh smoke dominated
days showed the best agreement with AQS-measured
composition.

5. Planetary boundary layer heights (PBLHs): our study
underscores the critical importance of accurately determining
PBLHs in deriving surface concentrations using remotely
sensed data. The vertical extent of retrievals included in these
derivations signicantly impacts the results. We observed that
in several instances, discrepancies between AQS-measured and
HSRL-CH-derived aerosol compositions could be attributed to
layers of different aerosol types alo compared to those near the
surface. These alo layers, while included in the HSRL-CH-
derived composition, may not be reected in the AQS-
measured speciation, suggesting that they might not be
within the atmospheric layer mixing down to the surface.
Consistent with Sutherland et al.,22 we found that the best
results occur with high boundary layers. This is likely because
when the boundary layer is low, errors in its designation have
a disproportionate effect on surface concentration calculations,
as these are based on a smaller number of retrievals. For
example, if the PBLH is set 100 m too high this would result in
the inclusion of an additional 100 m of retrievals, which may
not be representative of the surface conditions. For atmospheric
conditions with a high PBLH (say 1 to 1.5 km), including this
additional 100 m will minimally affect results averaged across
the entire layer. However, when the PBLH is low (say 500 m or
below) the additional 100 m of retrievals will comprise a higher
proportion of the total retrievals and signicantly impact the
results. In our analysis, we compared the results using three
different methods to determine the vertical extent of retrievals
for surface concentration derivation: NAM PBLH, MERRA2
PBLH, and HSRL MLH. We found that the choice of the verti-
cally mixed layer led to about 20% variability in the MAE when
comparing HSRL-CH-derived PM2.5 to AQS surface
measurements.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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These ndings have important implications for the future
development of the HSRL-CH methodology:

1. Separate compositions should be developed for dust and
dusty mix aerosol types for use with HSRL-CH.

2. Distinct maritime and polluted maritime aerosol type
compositions should be created for HSRL-CH, as the current
CATCH-derived maritime type composition is unsuitable for
use over land.

3. The discrepancies in urban aerosol chemical composition
estimations should be further investigated. This may be
particularly important in the regions where aerosol chemical
composition is strongly dominated by a particular industrial
sector.

4. The reasons behind the good compositional agreement
but poor concentration estimates for smoke and fresh smoke
aerosols should be explored.

5. Given that one of the primary motivations for developing
the HSRL-CH method is to create a model-independent
approach for deriving surface PM2.5, efforts should concen-
trate on determining the best way to derive the vertically mixed
layer directly from the HSRL retrievals.

This approach would enhance the HSRL-CH method's
independence and improve its accuracy across various atmo-
spheric conditions and geographical locations.
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