Environmental Science: Atmospheres

CORRECTION

View Article Online

Cite this: DOI: 10.1039/d5ea90009c

Correction: Numerical one-dimensional investigations on a multi-cylinder spark ignition engine using hydrogen/ethanol, hydrogen/methanol and gasoline in dual fuel mode

Ufaith Qadiri*

DOI: 10.1039/d5ea90009c

rsc.li/esatmospheres

Correction for 'Numerical one-dimensional investigations on a multi-cylinder spark ignition engine using hydrogen/ethanol, hydrogen/methanol and gasoline in dual fuel mode' by Ufaith Qadiri, *Environ. Sci.: Atmos.*, 2024, 4, 233–242, https://doi.org/10.1039/D3EA00139C.

The author regrets their oversight in omitting attributing Tables 1 and 2 and Fig. 2 to their original sources, which were not cited in this article. Table 2 and Fig. 2 were published under a CC BY licence and therefore, the author had permission to reproduce the images but regrets not including appropriate attribution statements.

The corrected captions are shown below:

Table 1 Properties of various alternative fuels, including conventional gasoline. Reproduced from U. Qadiri *et al.*, with permission from Elsevier

Table 2 Engine description of a test rig that is static. Reproduced from U. Qadiri²

Fig. 2 AVL Boost software's model of a one-dimensional, multi-cylinder spark-ignition engine diagram. Reproduced from U. Qadiri.²

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

References

- 1 U. Qadiri and A. AlFantazi, Numerical 1-D simulations on Single-Cylinder stationary spark ignition engine using Micro-Emulsions, gasoline, and hydrogen in dual fuel mode, *Cleaner Chem. Eng.*, 2022, **2**, 100009, DOI: **10.1016/j.clce.2022.100009**.
- 2 U. Qadiri, Computational investigations on MPFI engine fueled blended ethanol, H₂O based Micro-emulsions, and conventional gasoline, *Environ. Adv.*, 2023, **12**, 100367, DOI: **10.1016/j.envadv.2023.100367**.