Issue 1, 2025

High-entropy doping for high-performance zero-cobalt high-nickel layered cathode materials

Abstract

Considering the high price and scarcity of cobalt resources, zero-cobalt, high-nickel layered cathode materials (LNMs) have been considered as the most promising material for next-generation high-energy-density lithium-ion batteries (LIBs). However, current LNMs face severe structural instability and poor electrochemical performance. Here, a high-entropy doping strategy has been developed to prepare high-performance LNMs by a typical co-precipitation method. Supported by transmission electron microscopy, in situ X-ray diffraction and X-ray absorption near edge structure analysis, the material exhibits small crystal size variations and no changes of (Ni, Mn)–O and (Ni, Mn)–Ni coordination distances, resulting in greatly reduced irreversible phase transformation and cracks. Formation energy and diffusion energy barrier analysis indicates that the material has a fast lithium-ion diffusion kinetics. Benefiting from these advantages, it exhibits excellent rate and cycling performance. This study provides a feasible high-entropy doping strategy to effectively achieve stable material circulation under a high capacity and gives more insights for developing new high-energy-density cathode materials.

Graphical abstract: High-entropy doping for high-performance zero-cobalt high-nickel layered cathode materials

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
28 Oct 2024
Accepted
11 Nov 2024
First published
12 Nov 2024

Energy Environ. Sci., 2025,18, 347-353

High-entropy doping for high-performance zero-cobalt high-nickel layered cathode materials

J. Zhou, J. Hu, X. Zhou, Z. Shang, Y. Yang and S. Xu, Energy Environ. Sci., 2025, 18, 347 DOI: 10.1039/D4EE05020G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements