Spatiotemporal Distribution Characteristics of Physicochemical Properties of Waste Plastics with Different Landfill Age and Depth
Abstract
Plastics are widely used for their excellent properties, and the primary disposal method is sanitary landfilling. Waste plastics, persisting in landfills for long periods, change their surface physicochemical properties. However, research on the physicochemical changes of plastics after landfilling is scarce. This study analyzes the physicochemical characteristics of discarded plastics in landfills, focusing on depths(2-8 meters) and ages(0-30years). The spatiotemporal distribution of waste plastics was studied using the 3D-Smoothe model. The results revealed that polypropylene (PP) and polyethylene (PE) were the predominant constituents of landfilled plastics. The carbonyl index (CI) and hydroxyl index (HI) accelerated with landfill age but increased and then decreased with landfill depth. Furthermore, the hydrophilicity of waste plastics increases with the landfill age, which is realized as 2m>5m<8m in depth. The 3D model analysis indicates that PP displays a wavy downward trend in its spatiotemporal distribution, whereas PE exhibits a vortex-like downward trend. The toughness and strength of waste plastics rapidly decline in the early stages of landfilling and then stabilize. However, variations are noted at a depth of 5 m. The influence of landfill age on the mechanical properties of waste plastics is more significant than that of landfill depth by 3D model analysis. As the age and depth of landfills increase, there is a corresponding rise in the number of surface cracks and defects, a rise in surface roughness, and an increase in the abundance of surface elements. This study provides a scientific basis for understanding the environmental risks of landfilled waste plastics.