Effects of Ti3C2Tx (MXene) on growth, oxidative stress, and metabolism of Microcystis aeruginosa

Abstract

The potential ecotoxicity of Ti3C2Tx (MXene) is becoming a growing concern due to its widespread use in the field of environmental remediation. Unfortunately, little is known about the toxic effects and mechanisms of Ti3C2Tx on aquatic phytoplankton. Herein, we investigated the influence of Ti3C2Tx on the growth, oxidative stress, and metabolism of the phytoplankton Microcystis aeruginosa using conventional toxicological and metabolomics methods. Results showed that Ti3C2Tx had a dose-dependent effect on the physiological ecology of M. aeruginosa. Although low Ti3C2Tx concentrations (≤1 mg L−1) did not significantly change the M. aeruginosa growth, oxidative status, and cell morphology, high concentrations (≥5 mg L−1) substantially reduced its proliferation and photosynthetic capacity. The metabolomics results showed that low (1 mg L−1) and high (5 mg L−1) Ti3C2Tx concentrations induced the expression of 43 and 128 differential metabolites in M. aeruginosa, respectively, which were mainly enriched in the amino acid metabolism and lipid metabolism pathways. These results suggest that Ti3C2Tx resulted in metabolic disorders in M. aeruginosa, such as porphyrin and chlorophyll metabolism and glycerophospholipid metabolism, thereby inhibiting the photosynthetic activity of M. aeruginosa and ultimately leading to a decrease in algal growth. This study provides new insights into the toxicity mechanism of Ti3C2Tx against M. aeruginosa, which helps us understand the potential risks of Ti3C2Tx in the aquatic environment.

Graphical abstract: Effects of Ti3C2Tx (MXene) on growth, oxidative stress, and metabolism of Microcystis aeruginosa

Supplementary files

Article information

Article type
Paper
Submitted
18 Nov 2024
Accepted
10 Feb 2025
First published
20 Feb 2025

Environ. Sci.: Nano, 2025, Advance Article

Effects of Ti3C2Tx (MXene) on growth, oxidative stress, and metabolism of Microcystis aeruginosa

Q. Xiang, Z. Ju, R. Zhu, M. Niu, Y. Lin and X. Chang, Environ. Sci.: Nano, 2025, Advance Article , DOI: 10.1039/D4EN01074D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements