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Low-temperature plasmas (LTPs) have received increasing attention for renewably
electrified synthesis of chemicals, such as methane reforming, NOx generation, and
ammonia synthesis, amongst others. This is due to the unique ability of LTPs to facilitate
chemical reactions under atmospheric pressure and low temperatures. Additionally,
LTPs are characterized by an abundance of high-energy electrons that can induce
vibrationally-excited species, potentially resulting in new reaction pathways and reduced
energy consumption. As such, LTP processes hold the promise to enable decentralized
and on-demand chemical production, as an alternative to large-scale and energy-
intensive centralized chemical processes. The performance of LTP processes in terms of
energy efficiency and productivity can be further enhanced via integration with catalysts.
The availability of increasing amounts of DFT data in thermal catalysis presents a unique
opportunity for plasma catalysis research to efficiently leverage this existing first-
principles knowledge of thermal catalysis towards investigating plasma-catalyst
interactions. This work highlights the vast potential of interpretable transfer learning from
thermal catalysis to plasma catalysis to mitigate excessive computational requirements
of first-principles studies in plasma catalysis, towards accelerating fundamental research
in this domain.
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Interpretable Attention-based Transfer Learning in
Plasma Catalysis: A Study on the Role of Surface
Charge’

Ketong Shao,” Aditya Dilip Lele,b* Zhiyu Shi,> Victor Von Miller,? Yiguang Jube and Al
Mesbah?

Low-temperature plasma catalysis holds promise for electrification of energy-intensive chemical pro-
cesses such as methane reforming and ammonia synthesis. However, fundamental understanding of
plasma-catalyst interactions, essential for catalyst design and screening for plasma catalysts, remains
largely limited. Recent work has demonstrated the importance of first-principles studies, including
density functional theory (DFT), for elucidating the role of electro- and photo-effects such as electric
field and charge in plasma catalysis. The availability of increasing amounts of DFT data in thermal
catalysis presents a unique opportunity for plasma catalysis research to efficiently leverage this exist-
ing first-principles knowledge of thermal catalysis towards investigating plasma-catalyst interactions.
To this end, this paper investigates interpretable transfer learning from thermal to plasma catalysis,
with a focus on the role of surface charge. Pre-trained attention-based graph neural networks (GNNs)
from the Open Catalysis Project, trained using millions of thermal catalysis DFT data points, are
structurally adapted to account for surface charge effects and fine-tuned using plasma catalysis DFT
data of single metal atoms on Al,O3 support and adsorbates involved in plasma-catalytic ammo-
nia synthesis. Not only the fine-tuned attention-based GNN model provides a high test accuracy for
predicting adsorption energies and atomic forces in plasma catalysis, but also shows adequate extrap-
olation for unseen single metal atoms in the plasma catalysis data used for the model fine-tuning. To
distinguish the effects of surface charge from other dissimilarities in DFT data of thermal and plasma
catalysis, a dual-model framework is presented that relies on two pre-trained GNNs, one of which
is specifically tasked to capture surface charge effects using an attention mechanism that provides
interpretable insights into their role. Lastly, it is demonstrated how the attention-based GNNs devel-
oped for single metal atoms can be efficiently adapted for predicting adsorption energies and atomic
forces for metal clusters in plasma catalysis. This work highlights the vast potential of interpretable
transfer learning from thermal catalysis to plasma catalysis to mitigate excessive computational re-
quirements of first-principles studies in plasma catalysis, towards accelerating fundamental research
in this domain.

1 Introduction

In recent years, low-temperature plasmas (LTPs) have received in-
creasing attention for (renewably) electrified synthesis of chem-

@ Department of Chemical & Biomolecular Engineering, University of California, Berke-
ley, USA. E-mail: mesbah@berkeley.edu

b Department of Mechanical and Aerospace Engineering, Princeton University, Prince-
ton, USA.

¢ Princeton Plasma Physics Laboratory, Princeton, USA.

+ Supplementary Information available: [details of any supplementary information
available should be included here]. See DOI: 00.0000/00000000.

1+ A.D. Lele is currently with the Department of Mechanical Engineering, Rowan Univer-
sity, Glassboro, USA

Journal Name, [year], [vol.], 1 |1


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ey00256c

Page 3 of 19

Open Access Article. Published on 19 February 2025. Downloaded on 2/21/2025 12:58:19 PM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

icals, such as methane reforming®, NOy generation, and am-
monia synthesis’®, amongst others. This is due to the unique
ability of LTPs to facilitate chemical reactions under atmospheric
pressure and low temperatures®>. Additionally, LTPs are char-
acterized by an abundance of high-energy electrons that can in-
duce vibrationally-excited species®, potentially resulting in new
reaction pathways and reduced energy consumption. As such,
LTP processes hold the promise to enable decentralized and on-
demand chemical production, as an alternative to large-scale and
energy-intensive centralized chemical processesZ.

The performance of LTP processes in terms of energy effi-
ciency and productivity can be further enhanced via integration
with catalysts®12, These improvements are postulated to arise
from the intricate, but poorly-understood, synergies between the
plasma and catalyst1314, Despite extensive experimental efforts
on investigating the role of factors such as electric field™2, sur-
face charges®18, surface reactions involving excited species®,
atoms, and photons?22% amongst others, there remain signifi-
cant gaps in the fundamental understanding of plasma-catalyst
interactions, let alone designing effective catalysts tailored for
plasma catalysis?l. On the other hand, first-principles studies,
particularly density functional theory (DFT), have proven useful
for the investigation of plasma-catalyst interactions. Liu et al.’%2
used DFT to investigate the role of Eley-Rideal (E-R), Langmuir-
Hinshelwood (L-H), and radical adsorption and dissolution pro-
cesses in plasma catalysis across nine different metals, identifying
a viable pathway for ammonia synthesis through the formation
of NNH via radical reactions. Mehta et al.® studied vibrational
excitation of N, and the resulting surface reactions with excited
species via DFT, uncovering distinct routes for plamsa-catalytic
ammonia synthesis. Bal et al.23 introduced DFT methods for
probing charged surfaces, which revealed an altered CO, binding
energy on y-Al, O3 surfaces under the influence of surface charge.
Lele et al.2% investigated the effects of surface charge on plasma-
catalytic NH3 synthesis, showing that charged catalytic surfaces
can enhance NH3 production. Shao and Mesbah'?? used an inte-
grated microkinetic-DFT model to investigate how electric field,
along with other LTP process parameters such as gas temperature,
can influence plasma-catalytic ammonia synthesis, providing new
insights into trade-offs between the NH3 production rate and en-
ergy consumption.

Despite these advances, the use of DFT for catalyst design and
screening remains an open problem in plasma catalysis. The chal-
lenge is two-fold. First, there is a need for new theory, and possi-
bly computational methods, to effectively account for the myriad
of plasma-induced effects on surfaces via DFT. Second, the inclu-
sion of these effects in DFT calculations can significantly increase
their complexity, cost, and computational requirements. On the
other hand, DFT is increasingly used to inform catalyst design and
screening in thermal catalysis2®, which has led to an abundance
of data generated from DFT calculations. These efforts are further
facilitated by the advances in machine learning to learn computa-
tionally efficient surrogates for DFT, towards accelerating the dis-
covery of thermal catalysts2Z. Notably, DFT surrogates are trained
on millions of data points that encompass various metal surfaces
and adsorbates?®. These surrogates can then perform tasks such
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as rapid prediction of system energy and atomic forces, as well as
fast geometry relaxation. By predicting atomic forces and thus the
relaxed system energy, DFT surrogates can significantly speed up
catalyst screening, enabling resource-efficient evaluation of po-
tential catalysts without the need for costly full DFT calculations.

Yet, there are barely any similar efforts in the area of plasma
catalysis. One notable work is by Wan et al.2? in which graph
neural networks (GNNs) were used to study electric field-dipole
effects in ammonia synthesis using Ru catalyst, a topic closely re-
lated to plasma-catalytic ammonia synthesis. It was demonstrated
that a pre-trained GNN model for Ru catalyst could be fine-tuned
using a limited amount of DFT data for Fe catalyst to efficiently
transfer acquired knowledge from Ru to Fe, while maintaining
a high accuracy in predicting adsorption energy. Another sig-
nificant effort in this direction is by Zhang et al®Y, wherein
an attention-based GNN was developed to explore the compo-
sitional space of Ni-Co-Fe-Pd-Pt for high-entropy electrocataly-
sis. The proposed GNN model successfully predicted adsorption
Gibbs energies and atomic forces for OOH, O, and OH at sur-
face sites across various compositions. These predictions in turn
enabled identification of optimal compositions, including non-
equal atomic compositions (e.g., Nig 13Cog.13Feq.13Pdo.10Pto.50 and
Nig.10C0o0.10Fe0.10Pdo.30Pto.40), using volcano plots, which were
subsequently validated through experiments. This study effec-
tively showcased the utility of DFT surrogate models in acceler-
ating catalyst design by avoiding the costly exploration of vast
catalyst composition spaces.

Nonetheless, these works generally rely on training DFT sur-
rogates from scratch, disregarding existing knowledge and data
from thermal catalysis. Despite the intricacies of electro- and
photo-effects such as electric field and charge in plasma catal-
ysis, fundamental insights into atomic interactions and bonding
can be akin to those in thermal catalysis. Leveraging existing
DFT data for thermal catalysis can present a unique opportunity
for enabling fundamental plasma-surface studies and accelerat-
ing catalyst design and screening in the plasma catalysis domain.
Central to this is transfer learning®L, where knowledge from one
task is systematically utilized to solve problems in related tasks
with a limited amount of data. A recent study by Kolluru et al.32
illustrates the potential of transfer learning in thermal catalysis
using an attention-based adaptor and pre-trained models derived
from the Open Catalyst 2020 (OC20) dataset?®, which was gen-
erated based on extensive DFT calculations performed using the
Vienna Ab-initio Simulation Package (VASP)=2. The findings of
this work revealed that not only the transferred model excels in
learning in-domain tasks similar to the OC20 dataset, but also ex-
hibits a remarkable performance for out-of-domain tasks. This is
while transfer learning significantly mitigates the intensive com-
putational requirements when compared to training the DFT sur-
rogate model entirely from scratch. Furthermore, recent work by
Wang et al.®¥ demonstrates that transfer learning can substan-
tially reduce the number of required DFT calculations in out-of-
domain transfer learning from inorganic to organic adsorbates in
heterogeneous catalysis.

Another useful concept is the attention mechanism, which has
shown significant promise, in particular in natural language pro-
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cessing=2, since it can provide interpretability by automatically
assigning weights to the importance of relationships between a
central word/node and its neighbors=®. Zhang et al.2% demon-
strated that the attention mechanism can reveal how variations in
energy and atomic forces are confined to the third nearest atom
of O in high-entropy electrocatalysis. This can be explained by
the destabilization of the second-nearest-neighbor atoms of oxy-
gen, as the binding strength of the first-nearest-neighbor atoms is
shared by the adsorbed oxygen atoms. However, the utility of the
attention mechanism in thermal catalysis thus far generally lacks
the incorporation of rich physical information, such as the angles
formed by three atoms or the geometric configuration formed by
multiple atoms, as demonstrated, e.g., in SchNet®Z, GemNet28,
Most recently, Liao et al.®? introduced an attention-based GNN
EquiformerV2 tailored specifically for catalysis, a promising de-
velopment in this direction. This model currently shows the best
prediction accuracy for system/adsorption energy, atomic forces
and geometry relaxation, as can be seen in the Open Catalyst
Project Leaderboard2€.

Despite the rich body of knowledge in thermal heterogeneous
catalysis, this knowledge remains underutilized in plasma cataly-
sis due to lack of effective tools for systematic and interpretable
knowledge transfer in this domain. This paper addresses this gap
by demonstrating the promise of attention-based transfer learn-
ing for leveraging the extensive DFT knowledge in thermal catal-
ysis for first-principles plasma catalysis studies. To this end, we
consider plasma-catalytic ammonia synthesis as the model sys-
tem. We show how small amounts of plasma catalysis DFT data
can be used to efficiently fine-tune existing pre-trained models of
thermal catalysis to obtain accurate predictions of adsorption en-
ergy and atomic forces for single metal atoms and metal clusters.
Moreover, transfer learning allows the model to hold a strong
extrapolation ability for unseen atoms in the plasma catalysis
dataset. Thus, the fine-tuned model has the potential to enable
rapid geometry relaxation, since it can be used to replace or re-
duce DFT calculations, as also shown in thermal catalysis®%. The
ability to develop models for predicting adsorption energies and
atomic forces in a resource-efficient way can in turn open new
avenues for catalyst design and screening for plasma-catalytic
systems, which remain grand open challenges in this field2140,
Furthermore, integrating predictions of these quantities with mi-
crokinetic models serves as a critical step towards establishing a
foundational understanding of plasma-catalyst interactions<140,
which is a prerequisite for advancing theoretical and practical in-
sights into plasma-catalytic processes.

We use two pre-trained GNNs, namely the EquiformerV2 model
with the attention mechanism and the GemNet-dT model, both
of which trained using the OC20 dataset from the Open Cat-
alyst Project?®, For model refinement, DFT calculations for
N,H, species adsorbed onto single metal atoms supported on
Al, O3 are performed using CP2K4L to account for plasma-induced
charge effects, arguably one of the key contributors to plasma-
catalyst synergy, on adsorption energies and atomic forces of the
atoms. Although we are not aware of any experimental study
combining single metal atom catalysts and plasma, single metal
atom catalysts have been experimentally and theoretically stud-
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ied for almost two decades*2, including on Al,O3 as a support.
Nonetheless, the focus of this work is to isolate and systemati-
cally study the effect of surface charging across several common
catalysts. Hence, we have adopted the single metal atom models
for transfer learning. We demonstrate that by structurally adapt-
ing the pre-trained EquiformerV2 model and freezing a subset of
its learnable parameters during transfer learning, the fine-tuned
model can provide accurate predictions of adsorption energies
and atomic forces for unseen single metal atoms. This indicates
the ability of the fine-tuned model to effectively retain knowledge
from thermal catalysis since the unseen single metal atoms were
only part of the OC20 dataset and not the plasma catalysis DFT
data used for fine-tuning the EquiformerV2 model. Moreover, we
show that the pre-trained EquiformerV2 model can be efficiently
fine-tuned with only a limited amount of plasma catalysis DFT
data for Pt metal clusters, along with the single-metal-atom data,
to predict adsorption energies and atomic forces for unseen Ru
metal clusters.

A standard practice in transfer learning is to use data ac-
quired for a new task to fine-tune pre-trained models by adapt-
ing all their learnable parameters, typically without delineating
various discrepancies that may exist between the old and new
tasks#3, In this work, to enhance the interpretability of the
fine-tuned attention-based EquiformerV2 model with respect to
plasma-induced surface charge effects, we look to delineate these
effects from other dissimilarities between the OC20 dataset and
the DFT data generated for plasma catalysis, namely the dissim-
ilarities in atomic interactions and discrepancies between DFT
calculations performed by VASP and CP2K. To this end, we pro-
pose a dual-model framework for interpretable transfer learn-
ing that combines the pre-trained GemNet-DT model® for ther-
mal catalysis and the above-described structurally-adapted pre-
trained EquiformerV2 model, which is tasked to account for sur-
face charge effects. The surface charge effects are encoded into
the fine-tuned EquiformerV2 model via a loss function designed
for this purpose. The attention scores extracted from the fine-
tuned EquiformerV2 model in this dual-model framework exhibit
strong correlations to surface charge distribution, providing use-
ful insights into the important role of charge distribution on ad-
sorption processes in plasma catalysis.

2  Methods

2.1 Density Functional Theory

To model the effect of plasma-induced surface charge on catalytic
surfaces, we used single-metal-atom and metal-cluster models, as
reported in Refs.2324  The DFT calculations that describe sur-
face charge effects on adsorption energies for single metal atoms
and the corresponding free atom atomic forces are performed us-
ing CP2K244L Briefly, these calculations make use of the Quick-
step module of the CP2K code. Fig. [1| shows the schematic of
the DFT calculations, which are performed for a y-Al,O3 (110)
surface (6 aluminum layers with 2x2 anhydrous super cell), as
derived from##. The hydrous 110 surface is the most stable sur-
face termination for y-Al,O3. However, it has been shown that
the surface charge effect can be effectively modelled using anhy-
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drous surface?, Hence, to reduce computational complexity, we
employ an anhydrous y-Al,03 (110) supercell in the DFT calcu-
lations performed in this work. The Quickstep uses the combined
Gaussian and plane wave method to calculate system energies.
The exchange and correlation is calculated using Perdew-Burke-
Ernzerhof (PBE)“2 functional supplemented by D3 dispersion cor-
rection®, The DFT calculations use GTH pseudopotentials with
a polarized double-¢ (m-DZVP) basis set. Considering the size of
the system geometry, the calculations are performed at I'-point
only. To account for the effects of surface charge, a proton is
introduced in the simulation cell. A proton was introduced in
CP2K by defining an H atom type without a basis set, prevent-
ing electron assignment. It was then fixed at a Z-height of 40
A, while forcing the entire system to be charge neutral. Hence,
this proton introduces a negative charge on the surface. This
counter-ion or proton position was chosen to minimize the ef-
fects of electric field generated by the charge-countercharge sys-
tem. The charge-countercharge interactions become negligible
if the countercharge is placed at a Z-height of more than 30 A.
However, to be on the conservative side and to further isolate the
effect of surface charge, we decided to place the counter-ion 40
A away from the surface. This introduces a negative charge on
the surface. The simulation cell is treated non-periodically in the
z-direction using Martyna-Tuckerman Poisson solver4Z48, The
convergence and accuracy of the calculations are examined in re-
lation to parameters such as the location of counter-ion, choice of
functional, and energy cut-off; see Ref24 for further details. We
use a single positive counter-ion in our calculations, resulting in
a surface charge density of 0.06 G/m?2. This is considered to be
within the range of plasma-induced surface charge, as measured
experimentally®? and reported in modeling studies®Y. We note
that this method can be easily adopted to account for different
surface charge densities in a plasma catalytic process.

To account for the surface charge effects on the adsorption of
different N H, species on different catalysts, a set of single metal
atoms and metal clusters are first adsorbed on the y-Al,03 sur-
face. Then, the adsorption energies of the different adsorbates
are calculated by:

Eads = Eslab+adsorbate — Eslab — Eadsorbate

in the presence and absence of the surface charge. y-Al,03 offers
7 unique adsorption sites, including 2 or 3 coordinated O atom
sites and 3 or 4 coordinated Al atom sites. All these adsorption
sites are explored for the single metal atoms. For metal clusters,
they are first energy minimized without the support and then ad-
sorbed on the y-Al,O3 support. Although more realistic, direct
surface adsorption calculations on metal-cluster models (metal
clusters adsorbed on y-Al,03 (110) surface) are configuration de-
pendent. That is, the size and shape of the metal clusters can
impact the extent of the surface charge effect. Single-metal-atom
models, on the other hand, provide a more consistent way to com-
pare the effect of surface charge on different catalysts due to their
relative configurational independence.

We consider 11 single metal atoms, namely Ag, Au, Cu, Re, Ru,
Co, Ni, Pd, Fe, Pt and Rh, using the single metal atom model,
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®

T

Y-Al, 0,

Fig. 1 Schematic of a typical DFT calculation with surface charge. A
counter-ion (shown by the + symbol) is placed away from and in the
surface normal direction the y-Al,O3 surface to introduce a negative
charge on the surface (shown by the — symbol). “M" represents a single
metal atom, or a metal cluster, and “Ads" represents different adsorbed
N,H, species.

where the last three metals are only used for testing the general-
ization performance of the fine-tuned model for the single metal
atoms. We consider the adsorption of seven different adsorbates,
namely N, N, H, Hp, NH, NH,, and NH;3, which are involved
in NH3 synthesis. DFT calculations are also performed for metal
clusters of Ru and Pt on the y-Al,O3 surface. To ensure that the
sensitivity of the adsorbates to surface structures is considered,
we calculated the adsorption energies for all adsorbates on the
seven unique adsorption sites offered by the y-Al;O3 (110) sup-
port, as well as their co-adsorption on the support and metal atom
combined. Our analysis showed that adsorption on the metal
atom/cluster was always favored for the adsorbates investigated
in this work. Additional details about the DFT calculations per-

formed in this work can be found in Refs. 2324,

2.2 Data Structure

For each pairing of the eleven single metal atoms with the
seven distinct adsorbates, the complete geometry relaxations are
treated as individual data points. That is, for example, given
the combination of H+Au+y-Al, O3, if achieving the final relaxed
structure involved creating 100 profiles during the geometry re-
laxation, these 100 profiles would be counted as 100 separate
data points. Since only CP2K is used in this work to generate
data, to account for the discrepancies stemming from using VASP
software to generate the OC20 dataset for thermal catalysis’%®
and CP2K software, the above-described DFT calculations are per-
formed both in the presence and absence of the surface charge.
Consequently, a dataset of 5164 data points is compiled for Ag,
Au, Cu, Re, Ry, Co, Ni, and Pd, whereas the independent datasets
for Fe, Rh, and Pt include 472, 435, and 587 data points, respec-
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tively. The former dataset is then divided into training, validation,
and test sets in the ratio of 70/20/10 %. The data labels consist
of the adsorption energy and atomic forces for each individual
atom.

A similar data structure is also used for Pt and Ru metal clus-
ters on y-Al, O3, yielding datasets of 3965 and 3627 data points
for Pt and Ru clusters, respectively. The Pt cluster dataset is fur-
ther divided into training, validation, and test sets using the same
ratio as above to aid in model fine-tuning. The Ru cluster dataset
is only utilized for testing the generalization performance of the
fine-tuned model for the metal clusters.

2.3 Pre-trained Models from Thermal Catalysis

In this work, we utilize two GNNs from the Open Catalyst Project,
i.e., pre-trained using the OC20 dataset?8] to enable transfer
learning from thermal to plasma catalysis. The two models are
an EquiformerV2 model using the attention mechanism and a
GemNet-dT model popular in thermal catalysis. These architec-
tures are depicted in Fig. 2] The EquiformerV2 model first con-
verts atoms to their corresponding embeddings according to their
atomic number. The geometric information among atoms, such as
atom-atom distance, is encoded into the embeddings that are vec-
tors having the same dimension as the atom embeddings. These
two embeddings are then summed up and fed into an arbitrary
number of Equiformer blocks. Within each Equiformer block,
new learnable atom embeddings are defined to further learn the
atom-atom edge geometric information. Along with this geo-
metric information, the fed embedding of each atom is updated
according to the embeddings of its N closest neighbors within
each Equiformer block. Here, attention scores are learned that
weigh the contribution of the N surrounding atoms. Therefore,
the attention scores provide a degree of interpretability as they
reveal the interactions between atoms. EquiformerV2 also uses
a multi-head attention mechanism, where each head has its own
attention score to capture different aspects of relationships be-
tween atoms; see Ref.2 for further details on attention scores of
EquiformerV2, which are different from classical attention scores
as in Ref.?2. The outputs of the final Equiformer block are fed into
a force and an energy block to predict the atomic force for each
atom in xyz directions and the structure adsorption energy. The
Force block is a graph attention layer, which is also a structure
used in the Equiformer blocks. The Energy block is a feedforward
layer. Here, we choose the lightest pre-trained EquiformerV2
model with eight Equiformer blocks based on OC2028852 since
it demonstrated a sufficiently good performance for the transfer
learning task at hand. This model considers N = 20 closest neigh-
bors for each atom in each attention head, and uses eight-head
attention in each Equiformer and Force block. This Equiformerv2
model is used in all the three transfer learning tasks of this work,
as detailed in the next section.

The construction of the initial part of the GemNet-dT model is
similar to that of EquiformerV2, with the geometric information
extracted and atoms converted into embeddings. Then, graph
interaction blocks update these embeddings according to the ge-
ometric information. In the original GemNet-dT model without
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an adaptor, each interaction block, as well as the initial embed-
ding are followed by a feedforward block. The outputs of these
feedforward blocks are added to predict the adsorption energy
and atomic forces. In this work, however, we use a modified
GemNet-dT model that utilizes a multi-head attention adaptor
to balance information from the intermediate graph-based blocks
for improved transfer learning®?. In the modified GemNet-dT
model, the feedforward layers in the interaction blocks are re-
moved and, instead, a weighted summation is performed in the
adaptor to make predictions. To further enhance transfer learn-
ing ability, additional interaction blocks with feedforward layers
are introduced®?. The outputs of these interaction blocks are di-
rectly added to the output from the multi-head attention adap-
tor, yielding the adsorption energy and atomic force predictions.
In the modified GemNet-dT model, the parameters of the adap-
tor, the additional interaction blocks and their feedforward layers
must be trained, whereas other parts of the model are based on
the pre-trained GemNet-dt model of OC20 with three interaction
blocks. We note that the modified GemNet-dT model is only used
in the dual-model framework of the task “Interpretation of Sur-
face Charge Effects" to capture discrepancies between the ther-
mal catalysis and plasma catalysis datasets other than the surface
charge effects

2.4 Attention-Based Transfer Learning Tasks

In this work, we investigate three different tasks to demon-
strate the usefulness of transfer learning from thermal catalysis to
plasma catalysis. In the first task, we focus on assessing the pre-
diction accuracy and generalizability of fine-tuned models for the
case of single metal atoms. In the second task, we use attention-
based transfer learning to provide interpretable insights into the
effects of surface charge in plasma catalysis. In the third task, we
investigate transfer learning from single atoms to metal clusters.

2.4.1 Task 1: Transfer Learning from Thermal Catalysis to
Plasma Catalysis for Single Metal Atoms

In this transfer learning task, we wuse the pre-trained
EquiformerV2 model introduced in the Pre-trained Models from
Thermal Catalysis section, due to its superior performance on the
OC20 dataset. Several adaptations to the original Equiformerv2
model architecture are made for the transfer learning task at
hand. An example of the structurally adapted EquiformerV2
model is shown in Fig. where only the middle three
Equiformer blocks B6-8 and all the proton embeddings are un-
frozen during transfer learning. In the Geometric Information,
B1 to B8 and Force blocks of the adapted model, each atom is
impacted by its 20 closest neighbors and the proton.

#Fine-tuning of all the pre-trained models is based on the same setting as in 0C20, but
a different batch size of 4 and number of epochs 100. We used a batch size of 4, since
for GNNs the batch size refers to the number of graphs used during training. In this
study, each graph consists of around 240 atoms and approximately 240 x 21 = 5040
edges, creating a substantial load on the GPUs. We utilized four GPUs with 12 GB
of memory, each capable of processing only one graph at a time. We observed that
increasing the batch size would yield minimal improvement in the transfer learning
results. Therefore, we opted to use a batch size of 4 for computational efficiency.
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Fig. 2 Architectures of the two graph neural network models, pre-trained using the OC20 dataset for thermal catalysis. The left is the EquiformerV2
architecture with eight Equiformer blocks32. The right is the GemNet-dT architectureB® with a multi-head attention adaptor for improved transfer

Iearning. The number of additional interaction blocks is set to one.

These adaptations are made out of several considerations.
First, proton is placed far away from all atoms, whereas the im-
pact of proton may be appreciable on all atoms. Therefore, since
the EquiformerV2 model only considers the nearest 20 atoms for
each atom, the model is adapted to also account for the effects
of the proton. Furthermore, atom embeddings remain constant
during transfer learning. This is because the updated embed-
dings may affect the attention blocks of the EquiformerV2 model
adversely, potentially hindering the extrapolation capability on
unseen atoms. Earlier layers of the pre-trained model tend to
capture structural knowledge, such as edge between atoms and
rotational equivalence of the catalyst structure®23%. Therefore,
freezing these layers can also be beneficial to the extrapolation
capability of the fine-tuned model. However, the number of ini-
tial layers to be frozen can have a significant influence on the
model performance. Thus, we investigate the impact of freez-
ing different numbers of initial layers of the pre-trained model on
the extrapolation capability of the fine-tuned model. Additionally,
freezing of the output Energy and Force blocks is also tested since
these blocks are responsible for projecting the outputs from the
eight Equiformer block (B8) to the energy and force predictions.
As for learning the proton embeddings, they are initialized us-
ing the hydrogen embeddings from the pre-trained Equiformerv2
model and their parameters are updated during transfer learning.
In theory, hydrogen embeddings represent the closest approxima-
tion to that of proton. Table [1| summarizes all the adaptations

6 | Journal Name, [year], [vol.], 1

of the pre-trained EquiformerV2 model used for transfer learning
from thermal to plasma catalysis. An ablation study is performed
to test the performance of these models.

2.4.2 Task 2: Interpretable Transfer Learning to Elucidate
the Role of Surface Charge

There are several discrepancies between the OC20 data used for
learning the pre-trained EquiformerV2 model and the plasma
catalysis DFT data used for fine-tuning the model. These in-
clude differences in DFT calculations made by VASP and CP2K
for generating thermal and plasma catalysis data, respectively,
the catalyst-adsorbate configurations shifting from metal clusters
plus adsorbates in the OC20 dataset to single metal atoms plus ad-
sorbate with support in the plasma catalysis dataset, the overall
atom count, and the introduction of surface charge by protons.
While using the above-described fine-tuned EquiformerV2 mod-
els can enable satisfactory transfer learning outcomes, including
good test and extrapolation scores, extracting meaningful insights
from the attention mechanism of the Equiformer blocks, such as
B6-B8 in Fig. [3] can be infeasible since they cannot delineate the
above discrepancies. This is because the attention scores, which
capture the impact of the 20 closest atoms and proton on any
atom, are updated based on the plasma catalysis DFT data, mak-
ing discerning the surface charge effects from other differences
impossible.

To elucidate the role of surface charge, we propose a dual-
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Fig. 3 An example of the adapted EquiformerV2 model for transfer
learning to plasma catalysis. The layers up to and including the fifth
Equiformer block (B5) and the Force and Energy blocks are frozen, as
depicted by the white cross. The atom embeddings are frozen, including
in the Equiformer blocks B6-B8. However, the proton embeddings of all
layers are unfrozen and are updated during transfer learning, initialized
from hydrogen embeddings of the pre-trained model.

model architecture that isolates the effects of proton-induced
surface charges in the EquiformerV2 model. Meanwhile, to en-
sure that all other discrepancies are effectively captured, we em-
ploy the GemNet-dT+A architecture, as proposed in®2 which
has demonstrated strong transfer learning capabilities for out-of-
domain tasks. As shown in Fig. [4 the proposed architecture
consists of two pre-trained models operating concurrently: the
GemNet-dT+A model that is fine-tuned using single metal atom
data of CP2K when proton is removed, and the EquiformerV2
model fine-tuned with CP2K data with the proton effects ac-
counted for. For fine-tuning of the GemNet-dT+A model using
single metal atom data of CP2K, proton is removed before a sin-
gle metal atom structure is fed to the model. This allows the
fine-tuned GemNet-dT+A model to learn the discrepancies be-
tween the pre-trained model using the OC20 thermal catalysis
data and the CP2K data generated in this work. This is while a sin-
gle metal atom structure with proton is fed to the EquiformerV2
model, serving as a corrector to predictions of the fine-tuned
GemNet-dT+A model by accounting for surface charge effects.
This way the dual-model architecture can delineate the role of
surface charge from other discrepancies between the thermal and
plasma catalysis data. The combined outputs of the two models

View Article Online
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Table 1 Adaptations of the pre-trained EquiformerV2 model from the
Open Catalyst Project used for transfer learning from thermal to
plasma catalysis.

Model Pre-  Proton Atom  Geometric Equiformer and Output Blocks

Abbreviation trained Embedding Embedding  Info.

B1 B2 B3 B4 B5 B6 B7 B8 Energy & Force

S F

H T H

A T X

HA T H X

L1 T H x x X

L3 T H X X X X X

L5 T H x x X X X X X

L7 T H X X X X X X X X X

L8 T H X X X X X X X X X X

EF T H X x
L1EF T H X X X X
L3EF T H X X X X X - - - - - X
LSEF T H X X X X X X X - - - X
L7EF T H X X X X X X X X X - x

1 F means the weights do not start from those of the pre-trained model.

2T means the weights start from those of the pre-trained model.

3 H means the proton embeddings are unfrozen and start from the hydrogen embeddings of the
pre-trained model.

4 _ means this part is unfrozen.

5 x means this part is frozen.

yield the predictions for adsorption energy and atomic forces. To
train the models, the following loss functions are devised. For sin-
gle metal atom structures with proton, the loss function J;jasma is
defined as Eq. (1), whereas for structures without proton, the loss
function Jierma takes the form of Eq. (2), i.e.,

A
Jplasma =06\E —E, *Eb| + B Z(|Fj,x 7Fjsxsa 7Fj,x.b|+
J (€Y}

|Fjy = Fiya—Ejypl +1Fjz = Fjza—Eiznl),

A
Jithermal =2 (‘E —E4|+ |Eb|) +B Z(|Fj,x —Fjxal + u:j,x,b|+
J )]

|Fjy = Fiyal +1Ejybl +Fje = Fjzal + |Ej o))

Here, E denotes the actual adsorption energy, while £, and £,
represent the energy predictions from the GemNet-dT+A and
EquiformerV2 models, respectively. A stands for the total number
of free atoms in the structure, and Fj,x,a, Fj,x,b (similarly for y and
z directions) are the atomic force predictions from the GemNet-
dT+A and EquiformerV2 models, respectively. The coefficients o
and f trade off the loss contributions from the energy and atomic
force predictions, with values of oo =4 and = 100 used in this
work, as in Ref28,

To fine-tune the GemNet-dT+A model, the initial atom embed-
dings and the existing interaction blocks in the pre-trained model
are frozen. One additional interaction block is added and the
number of heads in the multi-head attention adaptor is set as five,
as in®2. Since these newly added layers are not pre-trained, they
are initialized randomly. For the EquiformerV2 model, we utilize
the model architecture outlined in Fig. However, we only
allow fine-tuning of proton embeddings and the 8" Equiformer
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Fig. 4 The dual-model architecture that isolates the surface charge effects from other differences in thermal and plasma catalysis data. The
EquiformerV2 model is used for capturing the surface charge effects, where only the eight Equiformer block (B8) and proton embeddings are relaxed.
The GemNet-dT+A model is used to retain the thermal catalysis knowledge, wherein the Additional Interaction block, the Multi-Head Attention
Adaptor, and the Energy & Force Feedforward block are unfrozen. The outputs of the two models are summed to give the energy and force
predictions. A single metal atom structure for plasma catalysis is directly fed to the EquiformerV2 model, whereas proton is removed when the
structure is fed to the GemNet-dT+A model. Accordingly, EquiformerV2 is tasked to “correct” the predictions of GemNet-dT+A by capturing the
surface charge effects. If a structure does not have proton, it is fed to both models, while the EquiformerV2 model predicts an output correction of

0. White cross denotes blocks of the pre-trained models that are frozen during model fine-tuning.

block (B8), in the pre-trained EquiformerV2 model. Addi-
tionally, the output layers responsible for predicting energy and
atomic forces remain unchanged during model fine-tuning. This
is based on the consideration that each Equiformer block within
the pre-trained EquiformerV2 model has its own atom embed-
dings. Allowing all Equiformer blocks to adapt during model
fine-tuning could disperse the surface charge effects across var-
ious blocks, rendering the predictions uninterpretable.

2.4.3 Task 3: Transfer Learning from Single Atoms to Metal
Clusters

In this task, we look to investigate if the pre-trained models for
single metal atoms can be effectively fine-tuned for metal clus-
ters. To this end, we use the single metal atom data for all the
above-mentioned metals and the metal cluster data of Pt, leaving
the Ru cluster data for testing the generalization performance of
the model. Note that we avoid any potential bias caused due to

8 | Journal Name, [year], [vol.], 1

excluding the single metal atom data for Pt in model refinement;
for example, as a result of missing the connections between Pt
and other metals, and the link between single Pt and Pt cluster
systems. In this task, we use the same pre-trained EquiformerV2
model as in Task 1. The choice of which blocks of the pe-trained
model to freeze is made based on the best performing models
of Task 1 in terms of both test accuracy and generalization per-
formance. We investigated three strategies for transfer learning,
as summarized in Table 2. The first strategy involves using the
metal cluster data for fine-tuning of the pre-trained model. The
second strategy further fine-tunes the transfer learning model of
Task 1 using metal cluster data, whereas the third strategy uses
the mixture of single metal atom and metal cluster data to fine-
tune the pre-trained model. For all three strategies, we maintain
a training-validation-test ratio of 70/20/10 %.
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Table 2 Transfer learning from single atoms to metal clusters.

Strategy Description

S1 (base- Use the pre-trained EquiformerV2 model and

line) metal cluster data to directly perform transfer
learning.

S2 Use the pre-trained EquiformerV2 model and sin-
gle metal atom data to perform transfer learning.
Then, the updated model is further fine-tuned us-
ing the metal cluster data.

S3 Use the pre-trained EquiformerV2 model and the

mixture of the single metal atom and metal clus-
ter data to fine-tune the model in one step.

3 Results and Discussion

3.1 Taskl: Transfer Learning from Thermal Catalysis to
Plasma Catalysis for Single Metal Atoms

To enable effective transfer learning towards extrapolation to un-
seen single metal atoms, we first discuss how relevant knowl-
edge, such as atom-atom interactions, from thermal catalysis is
retained within the fine-tuned models. In transfer learning, the
initial layers of a model generally encapsulate geometric infor-
mation. For example, the initial layers in a pre-trained GNN learn
more basic representations of a catalyst structure, such as edges
between atoms=2. This is while the final layers of a pre-trained
GNN contain more abstract, high-level information amenable to
fine-tuning. Here, we investigate which components of a pre-
trained EquiformerV2 model should remain unchanged to enable
accurate predictions for previously unseen metal atoms during
transfer learning. Fig. |5| demonstrates the performance of sev-
eral fine-tuned models, as detailed in Table [1} in terms of their
test accuracy and extrapolation capability on unseen single metal
atoms of Fe, Rh and Pt. The analysis reveals that the majority of
the fine-tuned models in Table [1|exhibit comparable performance
in the adsorption energy and atomic forces on the test data, as
evidenced by their R? scores close to 1. Model S, which is an
EquiformerV2 model architecture trained from scratch using the
same training dataset, and model L8, wherein only the output
blocks for energy and force are fine-tuned, show a notably worse
test accuracy than other models. The poor performance of model
S corroborates the successful transfer of thermal catalysis knowl-
edge from the pre-trained model to the plasma catalysis domain.
Moreover, the excessive rigidity of a fine-tuned model by freezing
too many layers as in L8 can severely constrain transfer learning.

A comparison of models H and HA, which differ solely in
whether the atom embeddings are fixed, demonstrates that re-
laxing the pre-trained atom embeddings significantly diminishes
the model’s extrapolation capability. This is evident in predict-
ing atomic forces for the unseen metals Fe, Rh and Pt as shown
in Figs. c) and (d). Yet, both models exhibit relatively poor
extrapolation for Fe as in Fig. b), likely due to its minuscule
atomic forces near the optimal structure. This difficulty stems
from the transfer learning process of the model H, which also

View Article Online
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updates the embeddings for metals present in the transfer learn-
ing data. This means the differences between thermal catalysis
and plasma catalysis impact the embeddings of the seen metals
in the model H, while leaving the embeddings for unseen metals
unchanged. Using these embeddings of unseen metals for extrap-
olation thus will lead to missing information on these differences.
On the other hand, comparing the performance of models A and
HA suggest that initializing the proton embedding using the pre-
trained hydrogen embedding may not have a notable impact on
the model’s generalization performance. Model A outperforms
model HA in terms of predicting the adsorption energy for Rh,
while showing an inferior performance in predicting the atomic
force, as can be seen in Fig. c). This is reversed for the case of
Pt, where model A performs better in predicting the atomic force
and worse in predicting the adsorption energy (Fig. [5(d)). The
reason that initializing the proton embedding from the hydrogen
embedding does not yield superior predictions can be attributed
to the inherent flexibility of the pre-trained EquiformerV2 model
with fixed atom embeddings. As the large number of weights of
other layers are unfrozen, it makes the starting point of the proton
embedding unimportant. Given the chemical similarity between
proton and hydrogen, we opted to initiate the proton embedding
based on the hydrogen embedding in the rest of the fine-tuned
models in Table[I]

We now examine the impact of the number of frozen layers in
the pre-trained EquiformerV2. Fig.[5|(b) shows that the fine-tuned
models with a greater degree of flexibility (i.e., a fewer number
of frozen layers) underperform in extrapolation in the case of Fe.
This underscores the important role of the initial layers of the
EquiformerV2 model shown in Fig. In particular, in the case
of atomic force predictions for the unseen atoms, freezing layers
up to and including the seventh Equiformer block (B7) yields the
best performing models, as seen in Figs. b), (c¢) and (d). This
is while the extrapolation performance of models L7 and L7EF
is comparable, suggesting that freezing the output Energy and
Force blocks may not be critical. Note that these output blocks
are responsible for converting the abstract output from the eighth
Equiformer block (B8) to the adsorption energy and atomic force
predictions. Hence, with the eighth Equiformer layer unfrozen,
allowing the Energy and Force blocks to be fine-tuned, as in model
L7 can enable a more effective transfer learning to plasma catal-
ysis.

We now compare the performance of the fine-tuned model L7
to that of the model S, i.e., an EquiformerV2 model architecture
fully trained using the same training dataset. Fig. [6] shows par-
ity plots of the predicted adsorption energy and atomic force for
the unseen metals Fe, Rh and Pt against their corresponding true
values. Model L7 significantly outperforms model S trained from
scratch, in particular for atomic force predictions, as depicted in
Figs. E](b), (d), and (f). Notice that model S tends to either over
predict the atomic forces, as in Figs. E](b) and (d), or yield numer-
ous zero predictions as in Fig. [B[(f). These parity plots imply that
via careful fine-tuning of the EquiformerV2 model pre-trained on
thermal catalysis data adequate generalization performance can
be achieved for single metal atoms in the case of plasma cataly-
sis. Additionally, for a metal seen with a large amount of ther-
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Fig. 5 Transfer learning from thermal to plasma catalysis for single metal atoms. Accuracy of the different fine-tuned models, detailed in Table in
predicting the adsorption energy and atomic force, quantified by R? score. (a) Test accuracy of the fine-tuned models for all atoms in the test dataset.
(b) Predictive accuracy of the fine-tuned models for the unseen Fe atom. (c) Predictive accuracy of the fine-tuned models for the unseen Rh atom.

(d) Predictive accuracy of the fine-tuned models for the unseen Pt atom.
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mal catalysis data during the EquiformerV2 pre-training, the fine-
tuned model provides satisfactory generalization performance for
these metals even if not seen during transfer learning. We note
that only 3614 plasma catalysis datapoints were used for fine-
tuning model, as compared to the millions of datapoints used to
establish the pre-trained EquiformerV2 model. Therefore, trans-
fer learning using a pre-trained model based on a large dataset
and a large array of atom types can provide valuable extrapolative
predictions for unseen catalysts in plasma catalysis with a much
smaller amount of new DFT data, thus accelerating the catalyst
discovery process.

3.2 Task 2: Elucidating the Role of Surface Charge

As detailed in the Methods section, we use an attention-based,
dual-model framework that is designed to distinguish surface
charge effects on model predictions from other discrepancies be-
tween the OC20 data used for pre-training the models and the
plasma catalysis DFT data used for model fine-tuning. By un-
freezing the eighth Equiformer block (B8) and the proton embed-
ding, the pre-trained EquiformerV2 model in Fig. [4] captures the
surface charge effects via B8. Specifically, we focus on the nitro-
gen adsorbate, which plays an important role in plasma-catalytic
synthesis of ammonial#>1, The attention scores for nitrogen re-
flect the influence of its 20 neighboring atoms and proton, a row
vector of dimension 1 x 21. The pre-trained EquiformerV2 model
leverages an eight-head attention in each of its Equiformer blocks
to capture different aspects of atom-atom relationships=2, such as
atom-atom interactions induced by charges. Therefore, the atten-
tion scores of the eight head from B8 are concatenated, forming
a row vector of 1 x 168. We then apply principal component anal-
ysis (PCA) to this high-dimensional vector to project it onto a 3-
dimensional space. We do not apply methods like SHAP>2, since
attention scores inherently represent the importance of neighbor-
ing atoms and are intermediate values that can vary across train-
ing instances. The PCA results shown in Fig.[7|reveal interpretable
patterns for the single metal atoms. Notably, Au and Ag, which
have a valence electron count of 1, can be clustered as one group
in the 3D principal component space. Similarly, Cu and Ni form
another cluster, likely due to their sequential placement in the pe-
riodic table and their ability to create 17 and 2" ions, unlike Ag
and Au. The remaining metals—Re, Ru, Co, and Pd—establish
distinct groups, possibly due to their different valence electron
counts of 7, 8, 9, and 10, respectively.

We now investigate the relationship between the attention
scores and the surface charge distribution for the Al,03-Ni-N sys-
tem. It is observed that some of the eight attention heads give
large weights to the attention scores of the single metal atom and
proton. This is expected as the single metal atom bonds with the
N adsorbate, and proton imposes the additional negative charge
on the surface. Conceivably, both of these atoms would play an
important role on the adsorption energy and forces of the system.
However, a notable correlation is also observed between some of
the attention heads and the partial charge of atoms. Fig. [g|(a)
demonstrates the importance of the closest 19 atoms in the Al,O3
support to the N adsorbate, as captured by the third attention
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head of the Equiformer block B8 for the Al,O3-Ni-N system. An
atom with a color closer to purple has a larger attention score,
demonstrating a more significant contribution to the N adsorbate.
The contributions of Ni atom and proton are not considered, as
they both hold a large amount of charge. Fig. [8|(b) illustrates the
Mulliken charge distribution on the 19 atoms. Here, a deeper red
color indicates a stronger positive charge on aluminum, while a
deeper blue color indicates a stronger negative charge on oxy-
gen. The correlation between the attention scores and the ab-
solute Mulliken charges tends to be inverse. That is, an oxygen
atom with deeper blue color (i.e., more negatively charged) in
Fig. [8(b) shows a smaller attention score, as indicated by lighter
purple in Fig.[8|(a). Alternatively, an aluminum atom with a more
positive charge (deeper red) in Fig. [8(b) has a lower attention
score, as shown in orange in Fig. [8(a). This can be attributed
to the excess negative charge on the surface that modifies the
reactivity of the surface atoms. The adsorption energy of an ad-
sorbate would be affected by the distribution of the excess nega-
tive charge on the surface. Hence, the distribution of the excess
surface charge introduced on the catalyst surface, calculated in
terms of Mulliken charges, is a strong indicator of the effect of
surface charge on adsorption energies. Less absolute charge on
Al and O atoms receiving higher attention scores could mean that
these atoms affect the distribution of additional charge on the
surface more significantly than other Al and O atoms, as their
Mulliken charges differ from other Al and O atoms highlighted in
Fig. [8} The inverse correlation between the attention score and
the absolute surface charge distribution is also validated through
Spearman correlation analysis®3, which measures the strength
of association based on the ranking of values. This analysis re-
sults in a correlation coefficient of -0.68 and a p-value of 0.0021,
indicating a strong correlation between the attention score and
the absolute surface charge distribution. Notably, the inputs to
the dual-model framework shown in Fig. [4] are solely structural
(atom types, edges and distances between atoms), without any
explicit charge information. This highlights the ability of the at-
tention mechanism to infer underlying physical concepts. Similar
analyses for the other single metal atoms and adsorbates consis-
tently show strong correlations between the attention scores and
the Mulliken charges, with absolute values of Spearman correla-
tion coefficients ranging between 0.6 to 0.8 and p values always
less than 0.01, further demonstrating the model’s interpretabil-
ity. Such interpretable attention-based models can highlight the
key atoms in a catalyst structure that have significant interactions
with the adsorbate, beyond the Mulliken net charge effects con-
sidered in this study. These insights can in turn inform further
targeted DFT studies on these surface atoms for catalyst design
and discovery. Furthermore, Mulliken net charge effects could
be isolated by treating them as additional learning targets, sim-
ilar to atomic forces. This could enhance the interpretability of
attention-based models, enabling a deeper understanding of how
surface charge would impact the catalyst.
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Fig. 6 Parity plots of the adsorption energy and atomic force predictions of models S and L7, as detailed in Table for the unseen metal atoms of Fe,
Rh and Pt. (a) and (b): Actual adsorption energy against its corresponding predicted values for structures containing Fe, as well as the real atomic
forces experienced by Fe versus predicted atomic forces. (c) and (d): Actual adsorption energy against its corresponding predicted values for structures
containing Rh, as well as the real atomic forces experienced by Rh versus predicted atomic forces. (e) and (f): Actual adsorption energy against its
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corresponding predicted values for structures containing Pt, as well as the real atomic forces experienced by Pt versus predicted atomic forces.

12 | Journal Name, [year], [vol.], 1

3.3 Task 3: Transfer Learning from Single Atoms to Metal

Clusters

The first transfer learning task focused on a system composed of
Al;03, a single metal atom, and an adsorbate. In practice, how-


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ey00256c

Open Access Article. Published on 19 February 2025. Downloaded on 2/21/2025 12:58:19 PM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

EES Catalysis

0.10

diouidd
o
o
[$)]

o
o
S

¢ Jusuodwo) [e

—0.05

View Article Online
DOI: 10.1039/D4EY00256C

Co

Ru

Fig. 7 Principal component analysis is applied to project the 168th-dimensional attention scores of the eight blocks of the Equiformer model of Fig.
4 onto a 3-dimesnional space. This figure shows the projected attention scores onto the 3-dimesnional space. The 2-dimensional contours of the

3-dimesnional space can be found in figures SP1, SP2 and SP3.

ever, catalytic systems typically involve metal clusters on a sup-
port. Due to the resource-intensive nature of DFT calculations
for such systems, we look to investigate whether knowledge of
simpler single metal atom systems under the impact of surface
charge can be effectively transferred to complex metal cluster sys-
tems. To this end, we consider two distinct strategies S2 and S3,
both of which using the single-metal-atom data, as detailed in
Table[2] This is while the baseline strategy S1 fine-tunes the pre-
trained model using the metal cluster data directly. The transfer
learning strategies S1, S2 and S3 are applied to the model fine-
tuning schemes L5, L5EF, L7 and L7EF, as summarized in Table
Fig. [9]shows the performance of the different fine-tuned mod-
els. In comparison with direct transfer learning using the Pt clus-
ter data (strategy S1), the models fine-tuned using strategies S2
and S3 have a higher generalization performance despite slightly
lower test accuracy. The better generalization performance may
be attributed to the initial model parameter updates for the sin-
gle metal atom systems, which necessitates subsequent adjust-
ments towards metal clusters during further fine-tuning, poten-
tially causing information loss. Conversely, strategy S3 fine-tunes
model parameters in a manner that benefits both the single metal

atom and metal cluster systems. For example, not only model
L5-S3 almost matches the test accuracy of model L5-S1, but also
yields more accurate predictions for the unseen Ru compared to
model L5-S2. Similar trends are also observed for the other mod-
els fine-tunned using the S3 strategy. Additionally, it is seen that
unfreezing more blocks of the pre-trained EquiformerV2 model
would result in higher test accuracies, but at the expense of re-
duced extrapolation performance; for example, compare models
L5-S3 and L7-S3, or L5EF-S3 and L7EF-S3. Among the 12 fine-
tuned models in Fig. 9, model L7-S3 is considered to have the
overall best performance, demonstrating both high test accuracy
and extrapolation performance. This suggests that fine-tuning the
pre-trained model using the mixture of single metal and metal
cluster data in one shot (S3) can be a more effective transfer
learning strategy than first performing the transfer learning from
thermal to plasma catalysis using single metal atom and then fine-
tuning the resulting model using the metal cluster data (S2).

Fig. [[(b) suggests that model L7 has a superior extrapolation
performance for predicting adsorption energy, whereas model
L7EF is superior for predicting atomic forces. Fig. [10| shows the
parity plots for predictions made by these two models when fine-
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Fig. 9 Transfer learning from single atoms to metal clusters. Accuracy of the fine-tuned models of Table in predicting the adsorption energy and
atomic forces, as quantified in terms of Mean Absolute Error (MAE). (a) Test accuracy of the fine-tuned models for the Pt cluster test data. (b)

Predictive accuracy of the fine-tuned models for the unseen Ru cluster.

tuned via the three transfer learning strategies of Table[2|for metal
clusters. The results indicate that strategies S2 and S3, which in-
clude single-atom data, outperform strategy S1 in extrapolating
energy and force predictions, as seen with model L7 in Figs. [I0|(a)
and [10}(b). While strategy S3 excels in predicting atomic forces
(Fig. d)) under model L7EF with even lower MAE for force

14 | Journal Name, [year], [vol.], 1

predictions, it does not consistently provide the best energy pre-
dictions (Fig. [10|(c)), highlighting the trade-off between predict-
ing system energy and atomic forces in extrapolation tasks. While
incorporating single-atom data clearly enhances transfer learning
for metal clusters, the optimal strategy may depend on whether
the focus is on energy or force predictions. We note that the par-


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ey00256c

Open Access Article. Published on 19 February 2025. Downloaded on 2/21/2025 12:58:19 PM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

EES Catalysis

ticularly large deviation for strongly negative adsorption energies
in the case of Ru clusters (Figs. a) and c)) can be attributed
to the limited amount of training data with adsorption energies
below -10 €V for Pt clusters, as shown in Fig. SP4. As such, the
extrapolation to Ru clusters becomes more challenging, leading
to underfitting in this energy range due to insufficient data.

4 Conclusions and Future Work

This paper showed how the extensive knowledge from thermal
catalysis could be transferred to plasma catalysis in a systematic
and interpretable manner, specifically addressing plasma-catalyst
interactions involving surface charges. We employed a model pre-
trained on the OC20 dataset, consisting of millions of DFT cal-
culations for thermal catalysis. After fine-tuning the pre-trained
model using limited plasma catalysis DFT data, the fine-tuned
model exhibited accurate predictions of adsorption energies and
atomic forces, as well as extrapolation capacity for unseen metals
in the plasma catalysis data. This suggests that essential chem-
ical kinetic information from thermal catalysis is preserved dur-
ing transfer learning to plasma catalysis. Moreover, by leverag-
ing the attention mechanism within the pre-trained model, we
examined how attention scores could reveal the underlying phys-
ical phenomena in the data, namely the surface charge effects.
We observed a strong correlation between the attention scores
and surface charge distributions calculated by DFT, despite the
model never encountering charge distribution data during the
transfer learning task. This underscores the high interpretabil-
ity of the attention mechanism. Additionally, we observed that
metals with similar chemical properties clustered closely in the
reduced-dimensional space. The attention scores highlighted the
key surface atoms crucial for the adsorbate, suggesting that the at-
tention mechanism could inform catalyst design for plasma catal-
ysis by grouping metals and pinpointing pivotal surface atoms for
manipulation. Lastly, we examined how pre-trained models for
simpler single-metal-atom systems could be transferred to more
complex metal cluster systems.

Our future work will focus on studying a broader range of
plasma-catalyst interactions to further evaluate the effectiveness
of transfer learning approaches for developing more comprehen-
sive plasma-catalyst interaction models. We envision that larger
and more diverse plasma catalysis datasets will improve the qual-
ity of transfer learning. Additionally, we will incorporate Mul-
liken net charge as an extra prediction target to explore whether
it enhances the GNN'’s learned representations. Furthermore, we
will integrate predictions of atomic forces and adsorption ener-
gies with microkinetic models to enable holistic investigations of
plasma-catalyst synergies and reaction mechanisms in plasma-
catalytic systems, towards experimental validation of the pre-
sented approach.
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output files and processed Python-readable databanks. The data used for producing
figures can also be found in the same repository.

Code Availability

The scripts for DFT calculations and transfer learning can be found at
www.github.com/wwwccttoo/ocp.
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