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Data-driven techniques for establishing quantitative structure property relations are a pillar

of modern materials and molecular discovery. Fuelled by the recent progress in deep

learning methodology and the abundance of new algorithms, it is tempting to chase

benchmarks and incrementally build ever more capable machine learning (ML) models.

While model evaluation has made significant progress, the intrinsic limitations arising

from the underlying experimental data are often overlooked. In the chemical sciences

data collection is costly, thus datasets are small and experimental errors can be

significant. These limitations of such datasets affect their predictive power, a fact that is

rarely considered in a quantitative way. In this study, we analyse commonly used ML

datasets for regression and classification from drug discovery, molecular discovery, and

materials discovery. We derived maximum and realistic performance bounds for nine

such datasets by introducing noise based on estimated or actual experimental errors.

We then compared the estimated performance bounds to the reported performance of

leading ML models in the literature. Out of the nine datasets and corresponding ML

models considered, four were identified to have reached or surpassed dataset

performance limitations and thus, they may potentially be fitting noise. More generally,

we systematically examine how data range, the magnitude of experimental error, and

the number of data points influence dataset performance bounds. Alongside this paper,

we release the Python package NoiseEstimator and provide a web-based application for

computing realistic performance bounds. This study and the resulting tools will

help practitioners in the field understand the limitations of datasets and set realistic

expectations for ML model performance. This work stands as a reference point,

offering analysis and tools to guide development of future ML models in the chemical

sciences.
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1 Introduction

Machine learning (ML) models are widely used tools in the elds of chemistry, drug
discovery, molecular science, and materials-discovery.1–4 These models aid the
development of quantitative structure activity relations (QSAR) or quantitative
structure property relations (QSPR), which can be used to predict various properties
such as bioactivity, physicochemical characteristics, reaction data, or quantum
mechanical properties.5–9 The focus of the ML community and literature is oen on
state-of-the-art algorithms. However, the recent and past successes of ML models in
biology and chemistry are not only due to algorithmic advancements, but also
because of increasing amounts of data, either deposited to databases or laboriously
curated from existing literature.10–13 Assessing the variability in experimental data is
important,14 but ML applications in chemistry are also oen limited by the high cost
and presence of experimental noise in the data. This challenge is recognised but not
always accounted for when evaluating ML model performance and uncertainty.15

The ML literature distinguishes two types of uncertainty: aleatoric and
epistemic.16–18 Aleatoric uncertainty arises due to random or systematic noise in
the data. ML models are capable of tting noise perfectly,19 therefore it is
important to consider the aleatoric limit, a maximum performance limit of ML
models due to noise in the underlying data. The aleatoric limit primarily refers to
the evaluation or test set data: it has been shown that performance of ML models
trained on noisy data can potentially surpass the expected performance due to
noise in the training set, if evaluated on a noise-free dataset.18 Nonetheless, in
practice, training and test datasets usually have comparable noise levels, and this
effect most likely remains hidden. Epistemic uncertainty, on the other hand, is
uncertainty due to limited expressiveness of a model, known as model bias; and
suboptimal parameter choice, oen referred to as model variance.17

In this study, we specically focus on how aleatoric uncertainty, or experi-
mental noise, can limit ML model performance. We extend the method by Brown
et al. to dene performance bounds for common datasets in chemistry and
materials, distinguishing between experimental noise (sE) and prediction noise
(spred). Assuming a perfect model (spred = 0), we obtain the aleatoric limit or
maximum performance bound. When incorporating non-zero model prediction
noise spred, which could arise from model bias, model variance, or noise in the
training dataset, we also identify a realistic performance bound.

The method of Brown derives performance bounds by computing performance
metrics between a set of data points and the same set with added noise. If the
added noise matches the size of the underlying experimental error, the method
reveals limits of model accuracy that should not be surpassed.

We investigate the impact of data range, experimental error, and dataset size on
these performance bounds. We then examine nine ML datasets from biological,
chemical, and materials science domains, estimate performance bounds based on
experimental errors, and compare to reported performance of leading ML models.
2 Results and discussion

In Section 2.1, we analyse the general inuence of dataset properties, such as the
data range, the size of experimental errors, and the number of data points on the
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 304–321 | 305
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maximum and realistic performance bounds of datasets used for ML models.
Utilising synthetic datasets, we specically investigate how Gaussian noise,
applied at one and two levels, affects these bounds. This analysis is the founda-
tion for Section 2.2, where we compare estimated performance bounds of nine
real-world ML datasets to reported performance of leading ML models. This
allows us to distinguish between datasets where ML models have reached the
limit of performance due to experimental error, and datasets where there is still
room for ML model improvement.
2.1 Impact of data range, experimental error, and number of datapoints on
realistic and maximum performance bounds

In the following, we investigate the effect of data range, magnitude of experi-
mental error, and dataset size on performance bounds using the method devel-
oped by Brown et al.20 described in detail in Section 4.1 and extended by us to
classication datasets. We dene two types of performance bounds: a maximum
performance bound where we only assume presence of an experimental error sE,
and a realistic performance bound, which also considers model prediction error
spred. The maximum performance bounds consider an intrinsic predictive limi-
tation when evaluating ML models, based on the experimental uncertainty
present in the datasets alone. For the realistic performance bounds, we assumed
a prediction error spred equal to the experimental error sE, which we assume to be
reasonable for most ML models.

Our analysis uses synthetic datasets uniformly distributed in the range [0,1].
For regression tasks, we use both the Pearson correlation coefficient R and the
coefficient of determination r2 as evaluation metrics. To obtain maximum
performance bounds, we add noise to the dataset labels and compute the eval-
uation metrics between the original dataset labels and the noisy labels. For the
realistic performance bounds, instead of the original dataset labels, we consider
a second set of noisy prediction labels, which simulate a model evaluation.
Repeating this procedure multiple times yields distributions for each perfor-
mance metric, from which we can estimate standard deviations or condence
intervals of the performance bounds.

Additionally, we compute a maximum performance bound for binary classi-
cation tasks obtained from regression datasets, for which we use the Matthews
correlation coefficient MCC, as well as the Area Under the Receiver Operating
Characteristic Curve ROC-AUC as performance metrics. Details of this method are
described in Section 4.1.

The performance bounds can be computed for different noise distributions.
Here, we exclusively consider Gaussian noise: rst, we add Gaussian noise of
a single level across all data points to identify general trends. Next, we mirror real-
world data complexities by considering different noise levels depending on the
label size. We study how the presence of two noise levels changes performance
bounds relative to Gaussian noise of a single level. In principle, performance
bounds could also be derived for other noise distributions, such as uniform,
bimodal, or cosh distributed noise.

2.1.1 Gaussian noise of one level. First, we consider adding Gaussian noise
with standard deviations s, which we present in % relative to the dataset range
[0,1] of the synthetic datasets: a noise level of 10% corresponds to Gaussian noise
306 | Faraday Discuss., 2025, 256, 304–321 This journal is © The Royal Society of Chemistry 2025
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drawn from a normal distribution with m = 0 and standard deviation s = 0.1.
Fig. 1 shows maximum performance bounds (sE) for regression (Fig. 1a and d),
realistic performance bounds (spred = sE) for regression (Fig. 1b and e), and
maximum performance bounds (sE) for classication (Fig. 1c and f) for different
dataset size and noise levels. As expected, increased noise levels reduced the
maximum and realistic performance bounds of a dataset. For regression tasks,
noise levels of sE # 15% yielded maximum Pearson correlation coefficients of R >
0.9. Noise levels of sE # 10% yielded r2 scores of r2 > 0.9. To increase performance
bounds of a dataset, one therefore needs to reduce noise levels or increase the
range of the data.

What is the impact of dataset size on these bounds? Increasing the dataset size
at constant noise levels did not improve the maximum or realistic performance
bounds of the datasets. However, the standard deviations of the observed
performance metrics reduced. Thus, the predictive power of a dataset of larger
size can be more condently dened. This effect is similar to what is observed for
signicance testing, when comparing two distributions.3 The performance
bounds considered here do not assess how well or efficiently a ML model might
learn from a given dataset. The maximum performance bounds consider an
intrinsic predictive limitation when evaluating models, based on the experi-
mental uncertainty present in the datasets alone. The realistic performance
Fig. 1 Shown are the distributions of different performance metrics for regression (a, b,
d and e) and classification (c and f) of synthetic datasets as heatmaps. The mean values of
the performance metrics are shown in the heatmaps, the standard deviations are over-
layed as black contour lines. The synthetic datasets vary in sample size as shown on the x-
axes and noise levels s, given in relative units to the data range on the y-axes. For cases (a),
(d), (c) and (f), we only considered experimental noise sE; for cases (b) and (e), we
considered experimental noise sE and predictor noise spred = sE. The range for all datasets
is [0,1], with datapoints distributed uniformly over the whole range. For the classification
datasets, the regression datasets were divided into 0 (inactive) for values < 0.5, and 1
(active) for values $ 0.5. This was done before and after addition of noise, such that noise
can lead to misclassification of datapoints.
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bounds also consider a prediction error spred. It is important to point out that
spred will likely depend on the specic MLmodel and contributions of model bias,
model variance, as well as how well the model can deal with experimental noise in
the training data. In principle, models trained on datasets with noise-levels of sE
can achieve higher predictive performance (i.e. spred < sE), if evaluated on a test
set with noise < sE.18 A future avenue of research could be to train ML models on
abundant noisy data, while evaluation could be performed on smaller high-
quality datasets. Thus, models with high predictive power could be obtained,
even if the performance bounds of the training data sets are lower.

2.1.2 Gaussian noise of two levels in a single dataset. For some experimental
measurements, error sizes can vary with the absolute size of the quantity
measured. Size dependent errors were seen in the Rzepiela dataset,21 one of the
nine datasets we study in more detail in Section 2.2. Here, we simulate this effect
for a synthetic dataset of N = 100 of range [0,1], by adding Gaussian noise with
sE,1 = 0.2 to the lower half of the dataset (< 0.5), and a second noise level of sE,2 =
0.05 to the other half of the dataset ($ 0.5). We compute maximum performance
bounds and directly compare this case to adding Gaussian noise of sE= {0.05, 0.1,
0.2} to the whole dataset.

As can be seen in Fig. 2, the dataset with sE = 0.1 had a higher maximum
performance bound relative to the dataset with the two noise levels. Furthermore,
the performance bound was more sharply dened, i.e. had a lower standard
deviation sR. For comparison, the resulting distributions of Pearson correlation R
for single noise levels of sE = 0.05 and sE = 0.2 are also plotted. Therefore, noise
of two levels (high and low) is worse than amoderate noise level for all datapoints.
Fig. 2 (a) Synthetic dataset of size N = 100 with Gaussian noise of two levels added (sE,1
for [0, 0.5), sE,2 for [0.5,1]) is shown in blue. The same synthetic dataset with Gaussian noise
of sE = 0.1 is shown in red. (b) Shown are the distribution of Pearson correlation R for the
two different scenarios as histograms. As can be seen, the maximum expected perfor-
mance for a dataset with the two levels of low and high noise (blue) is worse than the single
level of moderate noise (red). For comparison, the low and high noise levels are also shown
when applied to the whole dataset (see black dashed/dotted lines, respectively). (c)
Variation of mean and standard deviation of the Pearson correlation R with the noise
barrier location of a uniform synthetic dataset. Varying the noise barrier location corre-
sponds to varying the fraction of the dataset that experiences high noise addition. At
a barrier location of 0, Gaussian noise with sE,1 = 0.05 is added to the entire dataset
(dashed line in (b)). If the barrier location is 1.0, the entire dataset experiences Gaussian
noise with sE,2 = 0.2 (dotted line in (b)). The barrier location of 0.5 corresponds to the blue
case in (b).
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http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00091a


Paper Faraday Discussions
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 0
4 

Ju
ne

 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/2

2/
20

25
 2

:4
2:

20
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
This hints at a wider ranging conclusion: presence of a few outliers or datapoints
with high noise in an otherwise low-noise dataset can degrade performance
disproportionately. We exemplarily show this by varying the location of the noise
barrier, as shown in Fig. 2c, which is equivalent to changing the fraction of the
dataset that is exposed to high noise levels. The maximum expected performance
bound decreased steadily with increasing fraction of datapoints experiencing
high noise levels. Therefore, datapoints with high noise levels should be
excluded, if possible, to maximise predictive performance of a given dataset.
2.2 Are we tting data or noise? Assessing performance bounds of application
datasets and comparison to ML model performance

The maximum and realistic performance bounds for a total of nine datasets from
drug discovery, materials discovery, and molecular discovery applications, that
were used for building ML models are shown in Table 1 and Fig. 3. We used error
estimates in the following order of preference as available: (1) reported experi-
mental standard deviations for datapoints, (2) reported standard deviation for the
specic experimental assay, (3) standard deviation estimated from duplicate
values via pairwise comparison (see Section 4.4 for details), (4) standard deviation
obtained from inter-lab comparison studies of the general method. Table 1 shows
a detailed overview of the datasets used, the experimental error estimates, and the
resulting maximum and realistic performance bounds for Pearson R/MCC, as well
as the performance bounds in the evaluation metric of the best performing ML
models from the literature. Fig. 3 shows a direct comparison of the performance
bounds with the reported ML performance for all datasets considered. For three
out of the nine datasets, MLmodel performance exceeded or was at the maximum
performance bound, and thus the reported ML performance seems unrealistically
high given the error estimates made here. An additional ML model exceeds the
realistic performance bound but is below the maximum performance bound. The
other ve datasets have ML models that are below the performance bounds. We
discuss the individual datasets in more detail as follows.

2.2.1 Drug binding tasks. Both the CASF2016 (ref. 22) and the BACE23 data-
sets (BACE-c: classication, BACE-r: regression) report measured binding affini-
ties. The CASF2016 (also sometimes referred to as PDBBind 2016 core set) covers
multiple targets, the BACE dataset is a set of inhibitors of human b-secretase 1
(BACE-1) with both quantitative (IC50) labels (here: BACE-r) and qualitative binary
labels (here: BACE-c). CASF2016 has a range of 9.75 log units, while BACE-r only
covers 6 log units. Since both datasets originate from different laboratories and
do not necessarily use the exact same experimental protocol, we estimated the
experimental error sE = 0.69 log units. This estimate is based on a systematic
study of duplicate values in the ChEMBL database.12,24 Owing to the greater range,
the maximum and realistic performance bounds of CASF2016 are higher than
that of BACE-r, even though the experimental error estimate is the same. For both
BACE-r and CASF2016, development of improved ML models seems possible,
given the dataset performance bounds. Conversion of the BACE dataset into
a classication task (BACE-c) leads to a ML model that exceeds the maximum
predictive performance of the classication dataset. This suggests that the clas-
sication task simplied the bioactivity prediction task, however, the model
might also t to noise in the dataset.
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 304–321 | 309
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Fig. 3 Performance bounds for different datasets compared to reported ML performance
from the literature. Metrics that have best performance at a value of 1.0 are shown in blue
(left axis), error-metrics with the best performance at values of 0 are shown in orange
(right axis). For each dataset, the mean and standard deviation of the realistic performance
bounds (sE = spred), as well as the mean of the maximum performance bounds are shown,
if defined. The reported ML model performances for the BACE classification dataset
(BACE-c), the Caco-2, and the Rzepiela datasets seem unrealistically high, given the
estimated experimental error. For most other datasets, reported ML model performance
remains below the realistic performance bounds, indicating further room for ML model
improvement.
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2.2.2 Drug pharmacokinetics and molecular ML tasks. Next, we consider
properties relevant in both molecular and drug discovery settings: chemical
reaction yields via the Buchwald–Hartwig HTE dataset,25 physicochemical prop-
erties such as aqueous solubility and lipophilicity, as well as in vitro (PAMPA) and
in vivo (Caco-2) permeability assays.

The AqSolDB dataset26 is an aggregation of aqueous solubility measurements.
We estimated the experimental error as sE= 0.56 log units via reported duplicates
in the raw data that were removed in the compiled dataset. Since the range of the
AqSolDB dataset is large (15.3 log units) relative to the error estimate (0.56 log
units), performance bounds are high. The best reported ML model performance
does not reach the performance bounds.

The lipophilicity dataset27 has a smaller range of 6.0 log units compared to
some of the previous datasets, however, estimated performance bounds are still
high. This is because all datapoints are from the same assay with an estimated
experimental error of sE = 0.32 log units of the assay.28 Reported ML models have
not reached the performance bounds of the dataset.

The Rzepiela dataset (ref. 21) is a collection of PAMPA permeability
measurements, all performed via the same assay. In the publication, the authors
report experimental error estimates that are different for high and low perme-
ability compounds. We have simulated the effect of two levels of noise in Section
2.1 for a synthetic dataset and apply the same method here. We used a value of
312 | Faraday Discuss., 2025, 256, 304–321 This journal is © The Royal Society of Chemistry 2025
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sE,1 = 0.2 log units for values of log Peff > −7.6, and a value of sE,2 = 0.6 log units
for values of log Peff#−7.6. As already seen for the synthetic dataset, performance
bounds are decreased due to the higher noise levels of some of the data points.
The ML model performance reported exceeds the performance bounds estimated
here. It could be that the reported experimental error is too large, or theMLmodel
might be tting to noise in the dataset. The authors applied 10-fold cross-
validation with random splits to generate training and test data sets and eval-
uate ML model performance. The dataset contained 48 topologically different
macrocyclic scaffolds, so there might have been structurally similar compounds
in the train and test set, and it would be interesting to see how performance of the
reported QSPR models would change for e.g. a scaffold-based split.

The Caco-2 dataset29 is a collection of Caco-2 permeability measurements with
a range of 4.25 log units, aggregated from different publications. We used an error
estimate of sE = 0.42 log units from an inter-lab comparison study for Caco-2
assays.30 The reported ML model performance is higher than the maximum
performance bounds, indicating potential issues with tting to noise.

Finally, we investigated a dataset of reaction yields (range of 0–100%) of
Buchwald–Hartwig reactions from a high throughput experiment.25 We estimated
a noise level of sE = 5.3%, which is based on repeat measurements performed as
part of validating the original experimental protocol.31 The best reported ML
models have high reported r2 scores and are between the realistic and maximum
performance bounds. This could indicate a high-quality ML model, but since the
dataset was split randomly, some tting of noise cannot be ruled out.

2.2.3 Materials science datasets. Many of the common materials science ML
datasets have computational rather than experimental endpoints. This avoids the
issue of experimental noise and allows construction of accurate ML models. We
chose a dataset of experimentally measured band gaps32 reported as part of the
Matbench suite33 of materials science benchmarks. However, only non-zero
values were measured experimentally. We estimated the experimental noise as
sE = 0.14 eV from the unprocessed dataset that contained duplicate values. The
estimated performance bounds are high, since the noise value is small relative to
the range of the dataset (11.7 eV) and further ML model improvements seem
possible.

2.2.4 ML model performances exceeding performance bounds. Out of the
nine datasets studied, four datasets surpassed the estimated realistic perfor-
mance bounds. Three out of these four cases also reached or surpassed the
estimated maximum performance bounds. Why do certain ML models surpass
our calculated performance bounds? two of the agged models (Rzepiela, Buch-
wald) were evaluated using random data splits, which might lead to inated
performance estimates due to overtting to noise, memorisation, and overlap
between train and test sets.

The Rzepiela and Caco-2 permeability datasets and ML models were both
agged. The underlying datasets are complex permeability endpoints with
a narrow data range relative to the estimated error, resulting in relatively low
performance bounds.

The BACE classication ML model also exceeded the performance bounds
estimated.

Our ndings highlight the need to carefully consider noise when building ML
models based on experimental data, since several ML models report
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 304–321 | 313
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performances that seem unlikely given the estimated experimental error of the
underlying data. Future studies and novel ML algorithms should consider the
easy to calculate performance bounds when evaluating model performance, to
ensure that advancements in ML models are genuine and do not result from
overtting to experimental noise.

3 Conclusions

This study has investigated the impact of experimental noise on predictive
performance of commonly used experimental ML datasets. Based on the work of
Brown et al., we dene maximum and realistic performance bounds. Maximum
bounds only consider experimental noise in the dataset used for evaluation, while
realistic performance bounds also consider the estimated MLmodel performance
uncertainty. In general, increasing the dataset size leads to higher condence in
the value of the performance metrics, but does not yield increases in the
performance bounds themselves. The value of the maximum and realistic
performance bounds is determined by the size of the experimental noise relative
to the data range. The here dened performance bounds can serve as a quanti-
tative evaluation metric to assess if models t to noise. This could also be applied
during model training: evaluating ML models on a validation dataset and
ensuring that performance bounds are not exceeded could serve as an alternative,
quantitative metric to avoid over-tting. As part of this study, we identied 9
commonly used ML datasets from drug-, molecular-, and materials-discovery and
derived a systematic protocol to estimate realistic experimental errors. We show
that for some datasets, reported ML model performance exceeds or is close to
what we believe to be an upper performance limit. High ML performance is
encouraging, but only if the model evaluation was rigorous. ML model perfor-
mance that is at the performance bounds or even higher suggests that some ML
models may be tting to noise. This is a signicant issue because these models
will likely underperform in application scenarios. For some of the datasets
investigated, ML model performance has not yet reached the maximum perfor-
mance that could theoretically be achieved with the underlying datasets. This
highlights the need for further efforts relating to model and algorithm develop-
ment, e.g. for ligand binding affinity predictions.

ML model evaluations themselves are still a debated topic, but efforts such as
the therapeutic data commons (TDC) that include pre-dened datasets, data-
splits and standardised evaluation metrics are a step in the right direction.
However, the commonly reported tabular benchmarks of ML models are not
enough, and more thorough evaluations based on statistical tests should be used
to convincingly claim performance advances of new algorithms.3 When gener-
ating evaluation datasets, we recommend increasing the data range, or reducing
the experimental error if possible. Additionally, the use of low-noise data points as
test sets should be considered, if data of varying quality is available.

Datasets with computational endpoints are oen used in materials science
applications. Such datasets do not have experimental noise, and use of these
synthetic datasets is a promising path forward if experimental data is scarce or
impossible to acquire. For synthetic datasets and corresponding ML models, it
will be interesting to further study the addition of articial noise of varying levels
to see how different ML models deal with noise, and if they can surpass the noise
314 | Faraday Discuss., 2025, 256, 304–321 This journal is © The Royal Society of Chemistry 2025

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4fd00091a


Paper Faraday Discussions
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 0
4 

Ju
ne

 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/2

2/
20

25
 2

:4
2:

20
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
levels given in training datasets when evaluated on noise-free or low-noise test
sets.18 When constructing synthetic datasets of experimentally measurable
endpoints, e.g. via physics-based simulations, addition of noise to the same levels
as observed in experiments should be considered. Further, one should ensure to
mirror the data range of experimental assays with the synthetic datasets. Other-
wise, the performance bounds will be articially increased, the task is effectively
simplied, and models should not be expected to transfer well to predicting the
underlying experimental tasks.

4 Methods
4.1 Addition of Gaussian noise and estimation of performance metric bounds

For a dataset of size N, with range [ymin, ymax], and labels y we draw N random
samples from a normal (Gaussian) distribution with mean m = 0 and standard
deviation s equal to the desired experimental noise level via the NumPy package.40

The probability density for the Gaussian distribution is

pðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e�
ðx�mÞ2
2s2 :

We obtain the noisy labels y0 by adding noise to the labels y (see Fig. 4 for
several examples of synthetic datasets with different noise levels). Given an
original label yi, a noise sample ni, we obtain a noisy label y

0
i via:

y
0
i ¼ yi þ ni

We can then compute regression metrics, such as the Pearson correlation
coefficient R, coefficient of determination r2, etc., directly between the original
dataset labels y, and the noisy labels y0 to obtain maximum performance bounds,
since we do not consider any predictor noise. For estimating a realistic perfor-
mance bound, we draw a second set of noisy labels y

0
pred, with noise from

a Gaussian with mean m = 0 and standard deviation spred. We then compute the
relevant metrics between y0 and y

0
pred, which effectively simulates evaluation of

a ML model.
To simulate effects of noise when converting regression datasets to binary

classication datasets, we add noise as described to the labels y to obtain noisy
Fig. 4 Uniformly distributed synthetic datasets of size N = 50, with no added noise (a),
Gaussian noise addedwith standard deviations of sE= 0.1 (b), sE= 0.25 (c), and sE= 0.5 (d).
If we consider the classification case, the boundary b is shown as a vertical dashed line.
Resulting false negatives (fn) and false positives (fp) due to addition of noise are colour
coded. Predictor noise spred = 0 for all cases.
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labels y0. Then, with a sharply dened class boundary b, which serves to split the
dataset into binary classes {0,1}, we obtain the noise-free class labels yc via

yc ¼
(
0 if y\b

1 if y$ b
:

The noisy classication labels y
0
c are then equivalently dened as

y
0
c ¼

8<
: 0 if y

0\b

1 if y
0
$ b

:

We can then compute classication metrics, such as Matthews correlation
coefficient MCC, or ROC-AUC, etc. between yc and y

0
c. For both classication and

regression performance bound estimates, we independently repeat the noise
addition and performance bound computation 1000 times if not specied
otherwise. This yields a distribution of values for each metric considered, of
which we report the mean and standard deviation.

We also performed addition of Gaussian noise of two different levels. For this,
we split the dataset along a boundary b0. To obtain the noisy labels y0, we add
Gaussian noise of s1 to all values of y that are below b0; for values above b0 we add
Gaussian noise of s2. The estimation of the performance bounds is then per-
formed as described above.

4.2 Synthetic dataset generation

Synthetic datasets were generated via the NumPy package.40 All synthetic datasets
are of range [0,1] with datapoints distributed uniformly over the full range. Aer
generating a uniformly distributed dataset of size N, we draw N random samples
from a normal (Gaussian) distribution with m= 0 and s equal to the desired noise
level as described in the previous section. This noise is then added to the data-
points as described in Section 4.1 to obtain y0 or y

0
pred. Fig. 4 shows an example

synthetic dataset with N = 50 with various levels of experimental noise added in
(b), (c), (d).

4.3 Experimental dataset selection and dataset details

We selected datasets that were used for ML modelling from drug discovery,
materials science, and molecular science applications. We can distinguish data-
sets based on the following attributes:

� Labels: experimental or computational observable.
� Source: single source and assay or aggregate of multiple sources or assays.
� Task: regression task, or classication task (or regression converted to

classication).
Every dataset has the following properties: (1) range of labels or number of

classes in the classication context, (2) size of experimental error, which is oen
unknown or not reported, and (3) number of datapoints. When estimating
performance bounds, selection of a realistic estimate of the experimental noise is
key. In the following, we detail the selected datasets and how error estimates were
obtained.
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4.3.1 Drug binding datasets. The CASF 2016 dataset22 (also referred to as
PDBbind 2016 core set, N = 285) is a commonly used evaluation dataset for ML/
DL scoring functions for the prediction of protein ligand binding affinities.41

Experimental error of binding affinity data depends on the specic binding assay
method, error estimates range from around 0.2 log units for industrial drug
research up to 0.69 log units for public affinity data from various sources, as
applicable for PDBbind.15,24 The data was obtained from https://
www.pdbbind.org.cn/casf.php. The experimental error estimate used was 0.69
log units, as derived in Kramer et al. This is based on 2540 systems with 7667
measurements.

The BACE dataset23 (N= 1513) is part of theMoleculeNet benchmark suite.42 As
the BACE dataset originates from various sources, we assume an experimental
error of 0.69 log units, identical to the CASF 2016 dataset. Since the BACE dataset
has been used for both regression and classication, we also derive performance
bounds for the classication task. The BACE dataset was obtained from https://
moleculenet.org/datasets-1 on March 21, 2024.

4.3.2 Drug pharmacokinetics and molecular datasets. The AstraZeneca lip-
ophilicity dataset27 (N = 4200), as deposited to ChEMBL12 and listed in the
Therapeutic Data Commons repository43,44 and MoleculeNet,42 is a dataset of
experimental octanol/water distribution coefficients (logD at pH 7.4). All data
points were measured via a single, well-dened shake-ask method,28 and we
estimated an experimental standard deviation of 0.34 log units (RMSE: 0.46 log
units). This value was based on a pairwise comparison of reported assay values to
the 22 reference literature values as reported in the assay publication.28 This
includes six compounds for which the reported assay values were outside of the
assay range, <−1.5 or >4.5; we set those values to be equal to −1.5 or 4.5,
respectively. The assay publication lists an RMSE of 0.2 log units (corresponding
standard deviation of 0.16 log units), which can be obtained if the six ‘out-of-
range’ datapoints are excluded. The experimental range of the assay is 6.0 log
units. The lipophilicity dataset was obtained via the Therapeutic Data Commons
python package, as described at https://tdcommons.ai/single_pred_tasks/adme/
#lipophilicity-astrazeneca on March 20, 2024.

The Wang Caco-2 permeability dataset29 (N = 906) is another of the datasets
listed in the Therapeutic Data Commons repository. The dataset is an aggregate of
Caco-2 permeability measurements from different sources. Caco-2 cells are used
as an in vitro model to simulate the human intestinal tissue. Since this dataset
was compiled from different sources, we estimated the experimental error based
on a quantitative inter-lab comparison study to be 0.42 log units.30 This is based
on 10 compounds, measured in seven different laboratories, yielding 169 value
pairs that were used to estimate the standard deviation. The Wang dataset was
obtained via the Therapeutic Data Commons python package on March 20, 2024,
as described at https://tdcommons.ai/single_pred_tasks/adme/#caco-2-cell-
effective-permeability-wang-et-al.

The Rzepiela dataset21 (N = 3600) is a single source, single-assay dataset of
macrocycle PAMPA measurements (parallel articial membrane permeability
assay). Different to many other datasets encountered, the authors provide an
uncertainty estimate depending on the permeability value. Experimental error
was higher for low permeability values (0.6 log units for permeabilities of (−log
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 304–321 | 317
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Peff ∼ 7.6)). At higher permeability values (−log Peff ∼ 5.8), the standard error of
PAMPAmeasurement is only∼0.2 log units. To estimate performance bounds, we
applied noise levels sE,1= 0.6 log units for values > 6.7; and sE,2 = 0.2 log units for
values # 6.7. The Rzepiela dataset was obtained from the original publication
supplementary data.

The AqSolDB dataset26 (N= 9982) is an aggregate of a total of 9 different datasets
of experimental aqueous solubility measurements (log S). When merging the 9
datasets, the authors attempted to select the most reliable values if duplicates were
present. Some of the datapoints have an associated standard deviation if duplicates
were measured. We estimated the experimental error via pairwise computation of
the standard deviation based on duplicate values using themethod of Kramer24 and
as dened in Section 4.4. This yields an overall experimental standard deviation of
sE = 0.56 log units. The AqSolDB dataset was obtained via the Therapeutic Data
Commons python package, as described at https://tdcommons.ai/
single_pred_tasks/adme/#solubility-aqsoldb, on March 20, 2024.

The Buchwald–Hartwig HTE dataset25 (N = 3955) is a single source, high-
throughput experimentation-based dataset of reaction yield measurements of
a palladium-catalysed Buchwald–Hartwig cross-coupling reaction. To the best of
our knowledge, no experimental uncertainties were recorded as part of the dataset
directly. The high-throughput experimental protocol was developed in the Merck
Research Laboratories for nanomole-scale experimentation in 1536-well plates.31

In the original protocol publication, 64 reactions were run twice as part of an
experiment. We used these 64 reactions to estimate an experimental standard
deviation based on the pairwise method dened in Section 4.4. This yields an
experimental standard deviation of the high-throughput protocol of sE = 5.3%,
which we used as an approximate error for the Buchwald–Hartwig HTE dataset.
The Buchwald dataset was obtained from https://github.com/rxn4chemistry/
rxn_yields on March 21, 2024.

4.3.3 Materials science datasets. The Matbench_expt_gap dataset33 (N =

4604) as listed in the MatBench repository is a dataset linked to the materials
project, and lists experimentally determined band gaps in units of eV of inorganic
materials. Only non-zero values were measured experimentally. As part of the
MatBench curation process, duplicates were removed. Accessing the original data
source32 allowed us to use the duplicate values to estimate possible experimental
error via pairwise estimation of errors. We obtain an experimental standard
deviation of sE = 0.14 eV. The MatBench expt gap dataset was obtained via the
MatBench python package, as described at https://
matbench.materialsproject.org/How-To-Use/1install/ on March 21, 2024.
4.4 Noise estimation for experimental datasets

To obtain an estimate of experimental noise, we relied on the following order of
preference: (1) reported experimental standard deviations for datapoints, (2) the
reported standard deviation for the specic experimental assay (if a single well-
dened assay was performed for the entire dataset), (3) standard deviation esti-
mated from duplicate values via pairwise comparison, (4) inter-lab comparison
studies of the general method used.

None of the datasets considered here had individually reported standard
deviations for all datapoints (1). For datasets that originated from a single, well-
318 | Faraday Discuss., 2025, 256, 304–321 This journal is © The Royal Society of Chemistry 2025
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dened assay, we used the reported standard deviation of that assay as a noise
estimate.

For datasets that are aggregates of multiple studies or methods performed by
different labs, we went back to the raw data before de-duplication, if available,
and estimated the standard deviation based on pairwise deviations according to
the method described by Kramer et al.24 and briey summarised here: The esti-
mated experimental standard deviation sE is computed from all possible m pairs
of measured duplicate values (the pair i has the measured values ypub,i,1, ypub,i,2):

sE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ðn� 1Þ
Xm
i¼1

�
ypub;i;1 � ypub;i;2

�2s
:

If no duplicate raw data was available, we looked for quantitative inter-lab
comparison studies of the specic methods to obtain a noise estimate. For clas-
sication datasets, it is more difficult to nd reliable noise estimates. For the
BACE classication task, we went back to the original regression data, added
noise to the regression labels, while maintaining the same class boundary as used
for conversion to the classication task. We then derived noisy classication
labels, which we compared to the true classication labels as described in Section
4.1 to obtain estimates of the classication performance metrics.
Data availability

The Python package NoiseEstimator and all data and code to reproduce this study
are available at https://github.com/d-cru/NoiseEstimator and forked at https://
github.com/bigginlab/NoiseEstimator (release v0.0.2) We also provide a web-
based application hosted at https://noiseestimator.bioch.ox.ac.uk to aid
computation of maximum and realistic performance bounds for other
experimental ML datasets. The code and data are also archived on Zenodo and
can be accessed at https://doi.org/10.5281/zenodo.11397227.
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