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Garćıa, f Felix Strieth-Kalthoff g and Alán Aspuru-Guzik *abcfhij
Received 4th September 2024, Accepted 6th September 2024

DOI: 10.1039/d4fd00153b

Machine learning has been pervasively touching many fields of science. Chemistry and

materials science are no exception. While machine learning has been making a great

impact, it is still not reaching its full potential or maturity. In this perspective, we first

outline current applications across a diversity of problems in chemistry. Then, we

discuss how machine learning researchers view and approach problems in the field.

Finally, we provide our considerations for maximizing impact when researching

machine learning for chemistry.
1 Introduction

Machine learning (ML) has been applied in many facets of chemistry, and its use is
rapidly growing. We argue in this perspective that despite this dramatic growth and
impact, ML could be employed better andmore extensively. Current work is still far
from exhausting the potential ofML to advance theory and application in chemistry
in terms of breadth, depth, and scale. In addition, the actual types of problems that
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ML could tackle, such as hypothesis generation or enabling internalized scientic
understanding, are still areas of active research or open problems.

To color a picture of the eld, we begin by outlining a taxonomy of the chemical
problems to which ML has been applied, ranging from prediction, generation,
synthesis, force elds, spectroscopy, reaction optimization, and foundation
models. Shiing gears, we then introduce types of problems in ML and show how
chemical problems can be reformulated as instances of ML problems. These
standard problems help organize the toolbox of algorithms and theory provided by
ML. Digging further into this perspective, we examine differences in practices and
values between the ML and chemistry communities and highlight where collabo-
ration and cross-pollinating perspectives can advance both elds. Armed with the
above, we can then discuss how to select impactful applications of ML in chemistry
and recommend our suggested good practices for research in this area.

2 Chemistry meets data: a taxonomy of
problems

Chemistry, and science in general, involves data in one form or another. Not
surprisingly, then, data science is integral to chemistry. Machine learning,
a subeld of data science, has become an integral tool in our domain science's
arsenal. Therefore, it is crucial to begin cataloguing and organizing critical efforts
to date.

We suggest a taxonomy of the chemical problems to which machine learning
has been applied. As shown in Fig. 1, ML has been applied to solve various chemical
problems by encoding and decoding to and from chemical structure, properties, 3D
structure and dynamics, and experimental data. For reasons of space, time, and
focus, this is not a comprehensive review but rather an opportunity to highlight
Fig. 1 A taxonomy of chemical problems related to machine learning. Each arrow indi-
cates an application of ML and signifies how all these relate to each other. Foundation
models and self-driving labs touch all these areas.
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diverse applications of ML in chemistry. We will not introduce ML algorithms in
detail. For exhaustive reviews, please see other works.1–6
2.1 Structure to property: property prediction

2.1.1 Cheminformatics and quantitative structure–activity relationships.
Chemistry has leveraged data to predict properties from a chemical structure long
before the everyday use of the term “machine learning”. This eld has been
originally identied initially as cheminformatics. These tools sought to store,
retrieve, and model chemical structures. Early examples began in 1957 with
substructure searches in a database,7 followed by simple multivariate regression
for learning quantitative structure–activity relationships8 (QSAR) between
molecular descriptors like Hammett constants and partition coefficients, and
biological activity.9,10 These were mostly property–activity relationships – the rst
structure–activity relationships involved local explanations analyzing how
substituents on a ring affected activity,11 which could be generalized to many
scaffolds via substructural analysis.12 Eventually, computers automatically enco-
ded molecular structures as ngerprints – bit-vectors that store the presence or
absence of many substructures found in the molecule.13 These ngerprints were
useful in encoding molecular structures to predict molecular activity in simple
models such as support vector machines.14

2.1.2 Representing molecules with expert descriptors. While chemists have
a conceptual understanding of the effects of functional groups on the properties
of a molecule, communicating this information to a model is critical to ensure
that the model is predictive. Expert descriptors infuse chemical knowledge
derived from experiments or conceptual knowledge into the features provided to
a model and have achieved good predictive performance, especially in low-data
regimes. These expert descriptors also generalize well outside the model's
training set, as chemical knowledge is baked into these features. As early as 1937,
Hammett tted sigma parameters for predicting the inuence of chemical
substituents on reactivity.15 Additionally, group contribution methods, which
assume that structural components or functionalizations behave the same way
across many different molecules, parameterize these components into numerical
features that can be used to predict molecular properties.16–18 The discipline has
since grown to involve molecular ngerprinting techniques and the incorporation
of 2D and even 3D information for use in prediction. In more recent times, as the
properties of a homogeneous transition metal catalyst are strongly inuenced by
the ligands attached to it, parameterizing the structural and electronic features of
these phosphine ligands has also been successful in predicting the properties of
a catalyst.19–21 Looping back to historical models, recent work has also been able
to leverage density functional theory (DFT) and machine learning to successfully
machine learn Hammett parameters.22

2.1.3 Learned chemical representations. Models have become more complex
with advances in computational hardware, moving from simple linear regression
models to complex architectures like auto-encoders, generative adversarial
networks, graph neural networks or transformers. Instead of relying on chemists to
intuit the best way to represent a molecule, we can now harness the ability of
models to automatically learn and exploit complex patterns within large amounts of
data for property prediction. To a certain level of abstraction, which tends to ignore
12 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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3D information or wave function properties, molecules can be naturally repre-
sented as graphs where atoms are nodes and bonds are edges. By relaxing the
notion of ngerprints from discrete bit-vectors to continuous feature vectors, we
proposed graph neural networks to automatically learn continuous representations
of important substructures, achieving state-of-the-art performance on molecular
property prediction tasks.23,24 These representations have been deployed widely
across multiple avenues like machine learning for olfactory properties of a mole-
cule,25 and in catalysis where adsorption properties of adsorbates were predicted.26

While simple atomic and bond features required for the constructed graphs
can be generated quickly,27 the properties that one wants to target for prediction
are much harder to obtain – especially in higher qualities and delities. As
learned representations typically require large amounts of data, complicated
architectures do not function as well with low amounts of data gathered from
typical experimental settings. To bridge this gap, molecular benchmarks were
created to assess the quality of such learned representations properly. These
benchmarks contain tasks gathered from literature data related to predicting
biological behaviours and physicochemical or quantum chemical properties and
provide a common ground on which different machine-learning architectures can
harness and exploit the same data in various ways for property prediction.28

To improve the performance of such graph embeddings, they can be further
tuned if there are some intuitions about how the embedding spaces should be
reshaped to reect the distances between inputs properly. These can involve
strategies like making the embeddings aware of how chemical reactions should
transform these embeddings29 or through strategies like contrastive learning.30

Finally, for tasks sensitive to the molecule's conformation in three dimensions,
incorporating three-dimensional representations that exceed the capability of the
innately decient two-dimensional graphs has proven successful in predicting
molecular properties.31

2.1.4 Limits and open problems. Despite the great strides made in molecular
machine learning, the ability of machine learning models to extrapolate beyond
the data it is trained on is still limited, posing barriers for application to novel
chemistries. Several approaches can potentially bridge these gaps. For example,
by using physics-informed models that can contain fundamental representations
that help in generalizing the representation itself to satisfy some symmetries or
properties related to the physical laws of nature. Active learning is also a powerful
tool for expanding datasets on the y by capturing computational or experimental
data for extrapolation. Additionally, while models have progressively performed
better on property prediction benchmark tasks, these benchmarks represent only
a tiny subset of chemical tasks, making their performance on various other tasks
unknown.32 While we have attempted to create benchmarks more representative
of typical tasks,33 this is still not a central focus of the community.

Structure-to-property models have been widely employed in screening projects,
leading to experimentally veried predictions. We will discuss a few selected case
studies in Section 2.2.1.
2.2 Property to structure: designing molecules in chemical space

While the rational design paradigm analyzes the relationship between structure
and properties to design promising molecules, another paradigm asks: what are
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 13
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all the possible molecules that satisfy a given property? Solving this question is
known as the inverse design problem.

Chemical space is the set of all synthesizable molecules and is oen cited as
having an astronomical size of at least 1033 to 1060 molecules.34,35 Within this vast
space are potential drugs that could cure current diseases and putative materials
that could enable a sustainable future.

2.2.1 Virtual screening. A simple approach to navigating chemical space is to
enumerate a feasible set of possible options and then narrow them down to the
best solution. This shi in perspective has its experimental implementation
employing strategies such as high-throughput screening of chemical libraries and
combinatorial chemistry to synthesize these libraries.36 Given the astronomical
size of chemical space, it became clear that arbitrarily searching through
compounds would produce few promising hits, making this approach inefficient
as the cost of extensive chemical synthesis campaigns is oen taxing or prohib-
itive.37 This motivated virtual screening and computational search funnels as
a way to lter out unpromising compounds, leaving only the best candidates for
synthesis and testing. In drug discovery, molecules are ltered out with compu-
tationally lean checks such as high molecular weight or problematic functional
groups, followed by more computationally intensive docking for estimating
binding affinity, ultimately narrowing down to a handful of lead compounds.38

Scaling the size of virtual libraries increases the likelihood of promising hits,
which has motivated ever-larger screening campaigns requiring increasing
computational resources. One example was the Harvard Clean Energy Project,39 in
which we searched through 107 candidates with quantum chemistry calculations
on distributed volunteer computing to search for efficient organic photovoltaics.

Similarly, VirtualFlow40 docked over 109 molecules by efficiently using thou-
sands of CPU cores. As the size of chemical libraries grows, with the required
computational resources scaling linearly, hierarchical approaches to evaluate the
tness of individual synthetic building blocks offer a way past linear scaling.41

2.2.2 Generative models for inverse design. As the size of chemical libraries
surpasses 1015 molecules42 and becomes computationally prohibitive to screen,
ML offers ways to consider large search spaces without simulating all molecules.
For example, in a chemical library, many molecules should have similar struc-
tures and properties, so running simulations on every molecule is redundant. A
formal way to handle this is to simulate a portion of the library and then train
property prediction models on this subset, which should be generalized across
the library. Since these property prediction models are computationally cheaper
than simulations, they can be evaluated for the entire library and used to prior-
itize candidates for simulation. We leveraged this approach to design organic
light-emitting diodes that were veried experimentally.43

However, another arm of ML offers a way to consider all (or a vast subset) of the
chemical space. Given a dataset of molecules in a representation such as SMILES
strings, generative models learn to generate strings which resemble the dataset.
Because generative models can consider arbitrary strings, they could potentially
generate any molecule in chemical space. They can also be conditioned to
generate molecules with desired properties – essentially reversing the property
prediction process.44,45 Molecular generative models have been applied with many
model classes. We pioneered the use of variational autoencoders (VAEs)46 for this
purpose. Other examples include autoregressive models,47 generative-adversarial
14 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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networks (GANs),48 and reinforcement learning,49,50 amongst many other
sampling strategies. Generative models have also been extended and shown to
work well with various representations like SMILES, SELFIES,51 and Group
SELFIES52 strings, as well as molecular graphs and fragments. Molecular opti-
mization methods such as genetic algorithms53 and Bayesian optimization54 also
have been sometimes called generative models despite not learning a molecular
distribution per se. A recent review of different generative model classes and
representations can be found in Gao et al.,55 although this is a rapidly moving
eld.

As more generative models were proposed, benchmarks such as GuacaMol56

and MOSES57 began evaluating and comparing different generative models based
on validity, novelty, uniqueness, and goal-directed optimization. Optimization
has been such a primary focus that molecular design can be regarded as
a combinatorial optimization of molecular properties over the space of molecular
graphs. In this way, a new benchmark emphasizes sample efficiency, which is the
number of property evaluations needed to reach optimal molecules.55 In addition,
more realistic benchmark tasks relying on simulation have been recently
proposed by us in the Tartarus benchmark set.33 Tartarus more closely resembles
real-world scenarios where computational and experimental resources are
constrained.

However, by departing from chemical libraries for the entire chemical space,
generative models relaxed the crucial constraint of synthesizability. Generative
models can suggest molecules which are difficult to synthesize and evaluate.58 To
overcome this, synthesizable generative models consider chemical synthesis
pathways when generating molecules, ensuring that the generated molecules are
not only theoretically valid but also practicably synthesizable.59–61 Other
approaches combine virtual libraries with generative approaches to ensure that
proposed molecules are always from the library.62 These methods have particular
relevance for high-throughput arrays and self-driving laboratories, as predicted
molecules that are not synthetically feasible with readily available platforms could
slow down closed-loop approaches.

For a comprehensive overview of these advancements and the state of the art in
molecule design, Du et al. provide an excellent review, summarizing the latest
developments and methodologies in the eld.63

Generative models have proven worthy in the recent years. Quite notably the
company InSilico Medicine has employed them to generate several drugs that are
undergoing clinical trials currently. In 2019, together with InSilico and Wuxi
Apptec researchers, we showed the ability of generative models to develop a lead
drug candidate in approximately 45 days.64 Many researchers since then have
continued to show other examples of generative models in drug discovery. For
example, Barzilay and co-workers have developed antibiotics using similar
approaches.65

2.2.3 Limits and open problems. While candidates can be generated easily
with such models, the quality of the candidates depends on the ability to develop
a properly performing and scalable cost function for conditioning the generative
models. Additionally, these models are trained on approximate metrics, which
means that their real-life performance still has to be evaluated. Thus, evaluating
the synthesizability of a candidate or providing steps to make candidates is of
paramount importance (see next section).
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 15
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Most generative models have been developed with simple benchmarks in
mind, such as predicting simple properties like log P. However, developing using
proper benchmarks (such as Tartarus) or restricting them to feasible sets of
molecules, such as those synthesizable with self-driving labs (see Section 2.7),
remains a challenge.
2.3 Structure to structure: synthesis planning and reaction condition
prediction

Synthesis planning – i.e. nding synthetic pathways that give rise to a desirable
target molecule – is an open challenge that chemists have faced for over a century,
particularly in the “molecular world” of drug discovery, agricultural chemistry or
molecular materials chemistry. This problem is complex in two respects: rst,
predicting the outcome of a specic unseen reaction, given all reactants, reagents,
and reaction conditions, is effectively an unsolved problem to date. Second, even
with such a “reaction prediction” tool at hand, nding feasible multi-step
sequences of reactions that eventually enable the synthesis of the target mole-
cule from cheap and commercially available precursors requires searching
a massive network of possible pathways. Additional challenges arise from prac-
tical demands to the synthesis planning problem: efficiency, cost, waste
production, sustainability, safety, or toxicity are practical concerns, especially in
an industrial setting.

2.3.1 Synthesis planning. Synthesis planning is classically addressed
through the formalism of retrosynthesis, as pioneered by Nobel Prize winner E. J.
Corey:66 using knowledge of chemical reactivity, the target molecule is gradually
disconnected into progressively simpler precursors, which eventually yields
commercially available starting materials. Formally, this corresponds to a tree
search problem. As early as in the 1960s, Corey realized that this approach is
ideally suited to be tackled in a computational manner.67 Since then, a number of
expert systems have been developed to guide this tree search.68

The past decade has seen signicant progress in addressing this challenge
using the toolbox of ML. In this context, the key “decision policy” has oen been
treated as a multi-task regression problem: given the structure of a target mole-
cule, a ML model is trained to predict an applicable reaction out of a catalog of
reactions.69–71 This symbolic approach, however, requires a pre-dened catalogue
of all reaction types, oen referred to as reaction “rules” or “templates”, which
itself presents new obstacles. There is neither a generally accepted denition of
the term “reaction rule” nor an unambiguous procedure to perform reaction rule
extraction from data. Alternatively, “template-free” approaches to the one-step
reaction prediction problem, predict reactions as graph edits in the starting
material graph,72 or solve a sequence-to-sequence “product-to-starting-material”
translation task.73,74 Notably, these models (template and template-free) can be
similarly trained in the forward direction, predicting reaction products from
starting materials.

These single-step prediction models have been used to build tree search
models, which aim to solve the full synthesis planning problem. In this context,
a Monte-Carlo tree search is usually the method of choice. Following the pio-
neering works from Segler et al.75 and Coley et al.,76 a number of mostly open-
source systems have been released.77,78
16 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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2.3.2 Prediction and optimization of reaction conditions. What is oen
overlooked in synthesis planning is that knowing a possibly suitable reaction type
alone does not guarantee that the envisioned intermediate or target product can
be prepared from the proposed startingmaterials. The question if the product can
be obtained (ideally in high yield), crucially depends on what is oen referred to
as the reaction conditions: the choice of reagent(s), catalyst(s), additive(s) and
solvent, the values of continuous parameters such as stoichiometries, tempera-
ture and reaction time, as well as the practical details of running the reaction in
the laboratory. In an ideal scenario, an AI-assisted tool would take in a new
“starting-material-to-product” transformation, and spit out the required reaction
conditions for this transformation. However, this is yet to be achieved, particu-
larly because reaction conditions cover a vast combinatorial parameter space and
are frequently governed by underlying physical principles that are difficult to
simulate. In practice, reaction conditions are oen selected by employing
“nearest-neighbor” reasoning based on literature precedents, either automati-
cally or through human expertise.

Machine learning approaches to reaction condition optimization have thus
mainly focused on regression modelling of reaction yields as a function of reac-
tion conditions. In this context, data-driven approaches have intersected with
regression techniques from physical organic chemistry, which attempt to model
reaction outcomes based on mechanistic considerations. In highly constrained
condition spaces, purely data-driven, supervised learning of product yields on
systematically generated data from high-throughput experimentation has shown
promising results.79–83 For example, our work on optimizing the E/Z ratio of
a reaction relevant to pharmaceutical process chemistry showed that only with
z100 experiments we were able to outperform what had been the state-of-the-art
for this process by human-only reaction optimization.84 Meanwhile, the use of
literature data for the same purpose is highly awed,85,86 usually necessitating
individual, case-by-case reaction optimization (see below for a more detailed
discussion). Black-box optimization algorithms, particularly Bayesian Optimiza-
tion (BO), have become increasingly prominent over the past decade.6,87 In BO,
probabilistic models for predicting reaction yields are built through Bayesian
inference with existing data. These models then iteratively guide decision-making
throughout the optimization process. The idea of iterative, closed-loop optimi-
zation with ML-based surrogate models is discussed further in Section 2.7. For
condition optimization, these iterative approaches have demonstrated remark-
able success in increasingly complex synthetic reaction scenarios.87 At the same
time, chemistry-specic challenges, such as the identication of conditions
which are “generally applicable” to a wide variety of substrates, as opposed to just
one or a fewmodel substrates, have inspired algorithmic advances in the eld.88,89

Notably, our work on the Suzuki reaction88 led to generally applicable conditions
with double the yield of the previous state-of-the-art in the eld.

2.3.3 Limits and open problems. While the eld of ML-based synthesis
planning has seen signicant algorithmic advances during the past ten years, its
practical utility has remained limited to the development of relatively simple
target molecules and short synthetic routes. In fact, as of today, expert systems,
which involve manually coding reaction types and applicability rules, represent
the state of the art in computer-aided synthesis planning. In particular,
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 17
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Grzybowski's Chematica system (now commercialized as Synthia)90 has had
impressive experimental applications,91 even in complex natural product
synthesis,92,93 or supply-chain-aware synthesis planning.94,95 In principle, while
ML-based algorithms should be capable of providing similar or superior synthetic
routes compared to these expert systems, the current shortcomings can mainly be
attributed to deciencies in the quality and quantity of available synthesis data
and algorithmic limitations in extracting structured knowledge from the data. We
and others have extensively discussed these factors recently.96

Similar data limitations have also been discussed in the context of reaction
outcome and reaction condition prediction. Patent data97 and even commercial
databases are highly problematic not only because of erroneous, inconsistent or
unstructured data reporting: human biases in the reported experiments, partic-
ularly the accumulation of prominent conditions and the lack of low-yielding
records, have prevented predictive modelling of reaction yields from literature
data.85,86 Community-driven, open source data repositories such as the Open
Reaction Database98 represent an essential step towards less biased and more
holistic data collection – but such initiatives require a more digitized mindset in
the way data is generated, collected and reported in synthetic organic chemistry
laboratories.

A further consequence of this data deciency is the lack of representative
benchmark problem sets. This applies to multi-step synthesis planning, where
benchmarks are urgently needed for a more quantitative evaluation of synthesis
planning performance. Similarly, optimization algorithms for chemical reactivity
would benet from representative benchmarks to evaluate how standard BO
algorithms translate to the intricacies of chemical reactivity. Most importantly,
such benchmarks must reect real-life problems, as identied by expert chemists,
in order to inspire and motivate algorithmic ML advances to tackle the challenges
in computer-aided organic synthesis.
2.4 Structure to physics: simulation and 3D structure

Machine learning has enabled data-driven solutions to both experimental prob-
lems and computational problems. Whereas organic chemistry emphasizes
molecules' 2D molecular graph structure, molecules are also grounded in 3D
physical reality by the Schrödinger equation, providing a rich theory of quantum
mechanics and statistical mechanics for predicting molecular properties and
interactions. Simulation methods such as density functional theory (DFT) and
molecular dynamics (MD) then use this theory to computationally predict
molecular properties and interactions. However, despite continual increases in
computing power, these simulations remain computationally costly, which has
restricted simulation to small systems at short timescales. By learning from the
results of many simulations, ML offers a unique opportunity to accelerate
molecular simulation.

2.4.1 Neural network potentials. A fundamental problem in quantum
chemistry is: given a molecule represented as a collection of nuclear points in 3D
space, solve the Schrödinger equation and predict the total energy and the forces
on each atom. Forces then enable simulation of dynamics forward in time using
Newton's equations. However, solving the Schrödinger equation is complex and
computationally costly for molecular systems, and simulating Newton's equations
18 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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requires forces at every frame of simulation. For this reason, forces were
approximated by simple functions tted to experimental data, giving rise to the
rst parameterized force elds such as the Lennard-Jones potential.99 Semi-
empirical models incorporated many more experimentally tted parameters for
predicting energy and forces.100 These empirical force elds enabled classical
molecular dynamics simulations, allowing study of simple proteins.101 However,
capturing behavior like chemical reactivity requires incorporating quantum
effects. Advances in computer power and faster simulation methods such as
density functional theory (DFT) eventually made it possible to solve the Schrö-
dinger equation at every timestep with ab initio molecular dynamics, but at large
computational cost.102

A signicant shi came with the introduction of neural force elds. By training
neural networks on DFT data to predict energy and forces directly from 3D
nuclear coordinates, molecular dynamics could now be propagated at ab initio
accuracy at a much lower computational cost.103 Since forces must be equivariant
to the molecule's rotation – i.e. if the molecule is rotated, the molecular forces
must “rotate along with it” – this motivated the development of equivariant neural
architectures to respect this symmetry.104–106 Neural force elds have been
competitively benchmarked in ML, continually comparing different architectures
and methods on several benchmarks. A detailed timeline of development of these
equivariant architectures is given in Duval et al.107 As datasets of energy and forces
have grown, such as the Open Catalyst Benchmark,108 neural force elds have
started striving for universal applicability.109

2.4.2 Predicting wavefunctions and electron densities. An alternative to
predicting energies with force elds is to predict the wavefunction or electron
density itself. The advantage is that these objects contain energy and the rest of
the system's physical observables. For example, neural networks can be trained to
predict the Hamiltonian matrix directly from the nuclear coordinates.110,111

Diagonalizing the Hamiltonian matrix gives the molecular orbitals, which
comprise the wavefunction. Furthermore, self-consistent eld iteration can be
initialized using the predicted wavefunction, allowing faster convergence of the
quantum chemistry. Recently, it was shown that neural networks can be trained
so that their output satises the self-consistency equation, bypassing the need for
labels of Hamiltonian matrices.112

Furthermore, neural networks can be used as ansätze to represent the wave-
function itself directly. In this case, the network takes as input electron coordi-
nates, and outputs wavefunction amplitude. Using the same stochastic
optimization algorithms, neural wavefunctions can be trained to minimize the
variational energy and satisfy the Schrödinger equation.113–117 This approach has
recently been extended to excited states.118

Alternatively, for density functional theory, neural networks can be trained to
directly predict charge density given the nuclear coordinates.119–121 ML has also
been applied to learn density functionals.122

2.4.3 Predicting and generating 3D structure. Even if fast and accurate force
elds were available, many problems rely on nding energetically preferred
conformations of molecules. However, conformational space remains huge and
cannot be practically enumerated, especially for large systems like proteins.
Similarly, when modelling chemical reactions, the sizeable conformational
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 19
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search space makes it challenging to identify transition states. To solve these
problems, ML approaches can predict and generate 3D structure directly.

The large conformational search space motivates generative models to navi-
gate this space. Unconditional generative models such as equivariant diffusion
models can generate 3D atomic positions and atom types simultaneously.123 For
the problem of conformer search, which seeks stable 3D congurations for
a given molecule, atom types can be held constant while generation is condi-
tioned on the 2D molecular graph. Some approaches generate atom positions
freely,124 while other approaches generate torsion angles of rotatable bonds.125,126

Recent work has shown that forgoing both torsional and rotational symmetry
constraints can yield better results, but at a higher cost.127 A related task known as
docking performs conformer search of a ligand inside a protein pocket, as an
estimate of binding affinity. This has also been approached with diffusion
models.128

In the problem of crystal structure prediction, the goal is to nd the most stable
periodic arrangement of atoms for a given composition. While traditional
approaches search through all stable congurations of coordinates and lattice vectors
to nd the lowest energy structure,129 equivariant diffusion models have found
a natural t for this problem, diffusing both coordinates and lattice parameters
simultaneously,130,131 while also enforcing space group constraints132 to enhance
performance further. Indeed, scaling this diffusion approach to large datasets
enabled inverse design to satisfy multiple desired properties simultaneously.133

In the elds related to the simulation of biomolecules, 3D structure prediction
problems are abundant. The longstanding problem of predicting folded 3D
protein structure from protein sequence has, to a certain extent, been solved by
AlphaFold2134 and related models. Building on this approach, diffusion models
have generated protein backbones represented as sequences of rigid bodies of
residues.135,136 These models have been so successful that they have been used to
design proteins satisfying structural constraints, which have been experimentally
validated.137,138 The scope of these diffusion models has expanded to all biomol-
ecules, with methods predicting how proteins, RNA, DNA, and ligands assemble
in 3D atomistic detail,139,140 subsuming the task of docking, and hence, promising
to become a de facto conditioning function for drug discovery in the future.

2.4.4 Enhanced sampling and coarse-grained simulation. While nding the
most stable geometry is useful, truly modelling the thermodynamic interactions
between molecules requires sampling the equilibrium distribution of 3D struc-
tures. Equilibrium states follow a Boltzmann distribution with respect to the
energy, and generative models which learn this equilibrium distribution are
known as Boltzmann generators.141 Deep generative models are beginning to
solve this problem using ow matching,142 a variant of diffusion models, and
transferability has been demonstrated across many different peptides.143 Another
approach learns to sample equilibrium distributions by leveraging the Fokker–
Planck equation.144

In coarse-graining one typically groups atoms together into so-called beads,
which afford lower computational cost and the possibility to capture long time-
scale events. However, the forces on these coarse beads then need to be tted to
all-atom forces. To circumvent this, neural networks can be applied to learn
coarse-grained force elds by predicting the gradient of the free energy, rather
than the energy, and matching these predicted forces on coarse-grained beads to
20 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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the all-atom forces.145–147 Flow-matching148 removes the requirement for all-atom
forces, needing only equilibrium samples of coarse-grained beads. Furthermore,
diffusionmodels can simultaneously learn a generative model and coarse-grained
force eld.149

While coarse-grained force elds are signicantly faster to evaluate than
atomistic ones, MD simulations are still limited by having to use femtosecond-
level integration time steps. Alternative methods for equilibrium methods focus
on accelerating molecular dynamics to reach long timescales. This can be done
through “coarse-graining in time,” which trains generative models to predict the
outcome of taking large timesteps.150,151

Lastly, work has been carried out towards extending models to multiple ranges
of thermodynamic properties like temperature and pressure.152 This allows
simulation of different environments as well as training on previously unsuitable
data. Adding extra parameters like temperature to the model input, one can add
the corresponding derivatives of the coarse-grained free energy function to the
loss. Response properties which are higher order derivatives of the free energy can
be computed via multiple backward passes. Incorporating thermodynamic
parameters might be one of the key ingredients to simulate biological or indus-
trial settings in a holistic manner.

For rare-event sampling like chemical reactions and transition state search,
methods for sampling transition paths without reaction coordinates have been
emerging.153,154 Alternatively, when datasets of reactants, products, and transition
states are available, generative models can be directly trained to generate tran-
sition states conditioned on reactants and products.155,156

2.4.5 Limits and open problems. While neural force elds can achieve great
accuracy, they still require enough training data to cover the entire phase space.
Without complete coverage, neural force elds can stumble into unstable
dynamics. One benchmark emphasizes that force elds should be judged by their
dynamics, not their force errors.157

However, these issuesmay begin to go away as neural forces are trained on ever
larger datasets in the quest for universal force elds. Though ML models are
limited by the quality of their data, the fact that new data can be generated by
simulation paints a promising picture for data availability and large models.

At the same time, much work remains to reach simulation at large length and
time scales. The most signicant challenges of proper equilibrium sampling under
metastable conditions and the related problem of rare-event sampling also remain
areas in need of improvement and, therefore, the focus of many recent efforts.
2.5 Structure and analysis: spectroscopy and elucidation

One natural yet underexplored area of ML application in chemistry is structure
elucidation, which aims to predict 2D or 3D molecular structures from spectro-
scopic or other analytical data. Just as computer vision enables computers to
perceive the natural world, computational spectroscopy could allow machines to
perceive the molecular world through analytical instruments. The anticipated
increase in the synthesis of de novo and unknown compounds through advances
in experimentation automation drives the need for faster yet accurate structure
elucidation to fully support these autonomous molecular and reaction discovery
platforms.
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 21
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2.5.1 Forward spectral prediction. The most straightforward approach to
data-driven structure elucidation is to store a library of spectra, search for a match
in the library for a given spectrum, and then retrieve the corresponding structure.
To increase the coverage of the library, forward spectral prediction can be used to
predict spectra for a given chemical structure. While physical simulation offers
a grounded way to predict spectra, it can be difficult and computationally
expensive. An alternative approach leverages machine learning to predict spectra
from structure, for a variety of types of spectra, including mass spectrometry
(MS),158,159 nuclear magnetic resonance (NMR),160,161 and ultraviolet-visible spec-
troscopy (UV-vis).162 Some frame the forward prediction problem as formula
prediction, employing either autoregressive models or a xed vocabulary of
formulae;163,164 while others focus on subgraph prediction, utilizing recursive
fragmentation, autoregressive generation, and deep probabilistic models,159,165,166

or incorporate 3D structural information.167,168 In the context of mass spectra,
some methods approximate the spectrum as a sequence of discrete bins with
corresponding peak intensities, reducing the problem to a task of regressing the
mass spectrum directly from structure.158,167 In addition to structure-to-spectrum
prediction, another approach involves predicting structure–property relation-
ships by estimating various molecular descriptors – ranging from scalars (e.g.,
energy, partial charges) to vectors (e.g., electric dipoles, atomic forces), and
higher-order tensors (e.g., Hessian matrix, polarizability, octupole moment) – and
then using these descriptors to predict different spectra, including IR, Raman,
UV-Vis, and NMR.169

2.5.2 Structure elucidation. On the other side is the inverse problem of
directly predicting chemical structure from a given spectrum. DENDRAL was the
rst expert system for inferring chemical structure from mass spectra in
1969.170,171 Chemists also used ML to analyze infrared (IR), nuclear magnetic
resonance (NMR), and mass spectra for identifying limited sets of functional
groups.172–174 While these methods provide helpful structural insights, they are
insufficient for fully elucidating molecular structures.

Combining information of many inferred functional groups has enabled
structure elucidation. For NMR data, the molecular structure can be elucidated by
rst identifying molecular substructures and functional groups,175–177 which are
then optimally assembled via beam search over possible congurations or con-
structed atom-by-atom,177–179 similar to the approach chemists take when inter-
preting NMR spectra. Similar “reconstruction-by-substructure” strategies have
been employed to varying degrees of structural detail for IR180,181 and surface-
enhanced Raman spectroscopy (SERS).182 However, as the number of atoms
increases, this approach quickly encounters combinatorial scaling issues.

Molecular structure elucidation can also be tackled as an end-to-end problem
from a deep learning perspective. In this approach, the spectra are tokenized into
strings and SMILES strings are predicted; this can be viewed as a machine
translation task. This approach has been applied to NMR, IR and tandem MS/MS
data,183–187 showing more signicant promise for scaling to larger chemical
systems and de novo structure elucidation. The structure prediction problem can
also be formulated as an optimization task, e.g. by formulating it as a Markov
decision process.179 If we consider scenarios where we have some prior infor-
mation about the chemical system at hand, such as chemical formula, known
22 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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starting materials and reaction conditions, implementing this information as
constraints can help the model converge on a solution more efficiently.

Moving from molecules to crystals, solving the inverse problem for X-ray spec-
troscopic data such as powder X-ray diffraction (PXRD) and X-ray absorption near-
edge structure (XANES) spectra also poses interesting challenges for the machine
learning community, where there are unique and underdeveloped opportunities for
employing various deep learning models for generalizable crystal system and space
group identication.188,189 Diffusion models have shown particular promise, espe-
cially given their successful application to counterpart inverse problems in text-to-
image generation. In this context, we can draw parallels between text and spectra
and between image generation and crystal structure prediction.190,191

In the eld of rotational spectroscopy, the challenge of spectral assignment –
i.e. deduce the rotational constants from a densely packed rotational spectrum –

represents one of the earliest applications of ML in this domain.192 This problem
is particularly well suited for deep learning techniques due to the dense yet easy-
to-simulate nature of the spectra. However, the rotational constants alone do not
determine the 3D structure of the molecule. The approach that we recently
introduced solves this by inferring 3D structure given incomplete information as
molecular formula, rotational constants, and unsigned atomic Cartesian coor-
dinates known as substitution coordinates.193

In the realm of structural biology, advances in protein structure prediction
have accompanied advances in cryo-electron microscopy. Reconstruction of
protein structure from cryo-EM has been tackled using deep generative
models.194,195 These methods have progressed to the point of reconstructing
biomolecular dynamics from cryo-electron tomography (cryo-ET).196 Structure
elucidation using CryoEM continues to show day-to-day advances. Advances in
data processing have provided incredible gains in resolution197 that can only be
improved by the use of ML methodologies.

2.5.3 Limits and open problems. As with all data-hungry approaches, one key
issue remains universal: while simulated spectra can be obtained in large quan-
tities, it is crucial to consider if the model performs well on experimental spectra,
which oen exhibit more signicant variability and inconsistencies. A relevant
question to consider is:Would a more concerted effort by the scientic community to
push for the deposition of raw spectral les in open data repositories help advance
deep learning applications for automated spectra-to-structure elucidation?

For inverse spectrum-to-structure elucidation, while autonomous and de novo
molecular structure determination of pure samples is indubitably essential to
facilitate high-throughput reaction optimization and discovery campaigns, it is
also crucial to address structure annotation of spectra from complex mixtures,
which encompasses both the targeted identication of specic compounds of
interest and non-targeted metabolomics. Such mixtures are standard in real-life
sample matrices and are essential for various elds ranging from bio-
diagnostics to forensics. Success in these tasks is highly contingent on the
model's ability to disentangle and isolate individual molecular spectral signatures
from the highly convoluted data. Machine learning excels in handling complex,
high-dimensional data, making it well-suited for these challenging tasks.198,199

In addition, leveraging ML methods to integrate information from multiple
spectral inputs could further enhance structure elucidation's accuracy and
completeness.
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 23
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2.6 Leveraging scale with foundational models for chemistry

With increasing computational power, machine learning models have been
trained on progressively larger datasets. At scale, ML offers qualitatively different
capabilities. Foundation models are large-scale models that have been trained on
a broad spectrum of data and can be applied to a variety of downstream tasks.
Several general-purpose foundation models – such as ChatGPT, Gemini, and
Llama – are typically utilized for language and image generation; many of these
are language-only models or models trained on multiple modalities. However,
using these models in the chemical domain presents unique challenges, and so
many have trained their models from scratch on chemical data, but this is not
trivial either. In this section, we will describe the current state of foundation
models in chemistry and give our perspective on remaining open questions.

2.6.1 Transforming knowledge with large language models and agents. Some
of the earliest applications of generative models to chemistry have been via
language, which was enabled by the fact that molecules can be represented with
strings using SMILES notation.200 Preliminary chemistry language models were
trained in an unsupervised manner on SMILES representations,201,202 which
learned dependencies between molecular subfragments. More recently, models
have also been concurrently trained on other molecular modalities represented by
text tokens, such as textual descriptions, scientic papers, synthesis procedures,
commonly with autoregressive losses to be able to generate molecule descriptions
or structures at inference time.203–207 Ramos et al.208 wrote a comprehensive review
detailing 80 chemistry/biochemistry language models to date for further reading.
One motivation behind incorporating textual descriptions is that they contain
information about functional properties of molecules, which can be useful for
improving the embedding representations of molecules that are structurally
similar but functionally different, or vice versa. They also enable interaction with
models using natural language, which is a more intuitive interface for many users
than rigid queries.209,210 Additionally, LLMs have been utilized for scientic
bibliographic parsing,211–213 facilitating the extraction of chemical information
from existing literature and building knowledge databases. These databases can
be used for the ne-tuning of LLMs with the potential to improve the generation
and screening capabilities of self-driving labs (Section 2.7).209,214,215

However, there still exists a gap in using these models out-of-the-box for
discovery tasks or in domain-specic chemistry applications (at least to our
knowledge),206,216 one reason being that there is not enough data to train these
models in the same way that models like GPT-4 have been trained on web-scale
text and images.217 One way to use these chemistry-aware language models is to
netune them on downstream tasks,218 or plug them into optimization or search
frameworks as a way to provide good prior knowledge.219–222 Other works have also
begun to explore scaling of both models and data.223,224

One interesting application of chemistry-aware foundation models has been
the development of chemistry agents that can e.g. make use of tools225 necessary
for solving chemistry problems, and/or plan chemistry experiments. Some
notable examples include ChemCrow,226 Coscientist,227 our own ORGANA,228 or
ChemReasoner.229 These agents have access to various chemistry-related tools,
such as simulators or robots to execute chemistry experiments, and use an LLM
(such as GPT-4) as a central orchestrator to decide when and how to use these
24 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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tools to accomplish a user-specied goal. One longer-term goal of such agents is
to develop scientic assistants that can help beyond calculating and executing to
do more complex reasoning and planning by generating and rening hypotheses
on their own. This has been extended to other research domains by the AI
Scientist, which demonstrates autonomous machine learning research by
executing experiments and writing a research paper.230

These research areas are in their infancy, so several open questions remain,
including: (1) How do we effectively evaluate chemistry-aware LLMs/agents? (2)
What are the use cases for these models in practice for chemists? Effective model
evaluationmainly depends on developing meaningful tasks, which is currently an
open problem both in terms of dataset scale and breadth. There already do exist
several benchmarks in this space,28,231 which is a good start but there is room to
improve them in terms of data quality and task objectives.32 More recent
benchmarks have been released that are closer to real-world applications,33,232,233

and also platforms such as Polaris have made it easier for researchers to have
faster access to a wide array of datasets.234 The issue with using sub-optimal
benchmarks in this eld has been exacerbated by the current climate in
machine learning in that benchmarks are mainly used to show that a newmethod
achieved better performance than the current state-of-the-art, without human
understanding of why it improved. This is also an excellent opportunity for
collaboration between chemists and the ML domain expert communities.

Language-based foundation models have also been used in other applications,
including knowledge graph generation235 and knowledge extraction from chem-
ical literature,236–239 including our own work on reaction diagram parsing,240which
is a difficult task. These efforts are essential for creating structured databases of
experimental procedures, which can contribute to existing repositories such as
the previously-mentioned Open Reaction Database.98

2.6.2 Foundational physical models. While language-only foundation
models are receiving a lot of attention in chemistry, it has been shown that
language might not be the sufficient modality, especially in settings where 3D
geometry matters. For example, Alampara et al.241 showed that language models
are not enough to encode structural information needed to represent specic
material properties.

However, language models are not the only foundation models developed in
the biochemical sciences. Several models have been built to universally approx-
imate force elds and predict structures for any molecule, material, or
protein.109,242–245 Perhaps the most famous example is AlphaFold2 for protein
structure prediction134 and, more recently, AlphaFold3,140 which given any set of
2D biomolecules, predicts how they might assemble in 3D. To our knowledge,
these models still outperform any sequence-based protein prediction models for
many structural and functional tasks, especially in cases where input sequences
do not have homologues in the training data.246

Another impressive example is the recent foundation model MACE-MP-0, built
with the MACE equivariant architecture.109,247 MACE-MP-0 was trained on 150
thousand inorganic crystals. Aer a small number of task-specic examples for
ne-tuning, it can be used as a force eld in simulations on a wide variety of tasks,
even seemingly unrelated ones such as small protein simulations. Notably,
intermolecular interactions seem somewhat fuzzy in the MACE-MP-0. For
example, in the aforementioned protein simulation, the model was able to
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 25
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capture hydrogen transfer, which is a remarkable achievement. However, the
authors also opted to include D3 dispersion borrowed from classical computa-
tional chemistry, pointing to the fact that the model still needs some help to
predict long-range interactions. Foundational force elds have continued to scale,
with industry research labs training neural force elds on ever-larger data, such as
GNoME244 and MatterSim.245

One key takeaway from these types of models is that structural information
should not be ignored depending on what downstream tasks the model will be
applied to, and that training models on broad, large-scale datasets (i.e., going
beyond training a simple model on a single prediction task, which was the norm
even a couple years ago) can help generalize better to more downstream settings.
We suspect that scaling along multiple modalities concurrently is critical for
building the best foundation model in chemistry – namely, training models on as
many modalities as possible, such as 3D structure information, text, and spectral
information.31

2.6.3 Limits and open problems. In the case of the domain sciences, we are
not as privileged as in the domain of natural language or images, which already
has internet-scale data available. Scientic data is scarce; every data point must be
an experiment or a high-quality simulation. If simulations are employed, the
model must nd a way to translate their results to specic experimental condi-
tions. We suspect that universal models across chemistry are still a decade away
and will perhaps be a moving target as humans continue to demand more of
them. This is analogous to the problem of widening highways248 where many
analysts have shown that as soon as a road is widened, the additional created
demand due to its availability makes the highway full of traffic immediately.
2.7 Closed-loop optimization and self-driving labs

2.7.1 Self-driving laboratories. As ML applications continue to evolve, the
necessity and scarcity of high-quality data become increasingly apparent. The
advent of chemical digitization249,250 and advances in ML4,251 have laid the
groundwork for combining ML with automated data generation through robotic
experimentation. This synergy has given rise to the concept of the self-driving
laboratory (SDL).6 SDLs are primarily composed of two critical components:
automated laboratory equipment and experimental planners, both of which
leverage ML techniques to enhance their functionality.6 The ultimate goal is to
autonomously execute the scientic method, encompassing hypothesis genera-
tion (ML), hypothesis testing (experimentation), and hypothesis renement (ML),
potentially allowing for the exploration of vast design spaces in a data-efficient
manner.

Signicant advancements in automated laboratory equipment have been
achieved by integrating ML with computer vision,252 leading to the concept of
“general chemistry robots”.253 These ML-trained robots can make decisions based
on external feedback, enabling the dynamic automation of chemical operations
traditionally performed by human chemists.254–256 Given the inherent challenges
in training robotic equipment for active decision-making based on external
feedback, a notable innovation in this area is the use of digital twins—virtual
replicas of laboratory setups—that provide a robust framework for accelerating
the training of robotic ML models.257 These digital twins simulate chemical
26 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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scenarios with high delity,258 creating a realistic feedback loop that accelerates
the model's learning process.

On the experimental planning side, heuristic techniques259–261 are being
progressively replaced by ML optimization algorithms. When combined with
chemical digitization,262 these optimization techniques can identify target
chemicals and optimize reaction conditions while signicantly reducing the
number of experimental steps required.263 Among the various ML optimization
techniques,264,265 Bayesian optimization266–268 has gained particular prominence in
experimental chemistry due to its success in chemical applications.269 Machine-
learning-based surrogate models, which predict the properties of chemicals
and reactions,270–272 have been instrumental in this success, with documented
examples in both process optimization and materials discovery.273

Moreover, the rise of LLMs has further enhanced the auxiliary components of
SDLs. LLMs have been effectively used to create human–machine interfaces that
bypass traditional coding,228 enabling more natural communication between
chemists and laboratory systems—a signicant advantage for users who may not
be well versed in coding or data processing.274,275

2.7.2 Limits and open problems. As discussed by us recently,276 the chal-
lenges facing SDLs can be broadly categorized into two areas: motor (hardware-
related) and cognitive (AI-related).

Motor challenges. The primary hardware challenges stem from the human-
centric design of chemical instruments and the lack of seamless interconnec-
tion between existing automated modules. As a result, most SDLs operate semi-
automatically, requiring human intervention for tasks such as sample transfer,
maintenance, and troubleshooting. Various solutions have been proposed to
address these issues, including deploying mobile robots for sample transfer253

and adapting general-purpose robots to perform chemical tasks or operate
instruments originally designed for human use.277–279 However, many of these
methods rely on traditional algorithms that require static calibration, which is
not well suited to the dynamic nature of SDLs. While computer vision coupled
with AI has been proposed as a solution, laboratory equipment, particularly
glassware, continues to present signicant challenges that are continuously being
addressed.280

Cognitive challenges. Cognitive challenges primarily arise from the difficulty in
developing models that can accurately estimate the chemical output of the
system. This limitation restricts the use of more general generative models,
effectively reducing the amount of chemical space that experimental planners can
explore. When combined with the aforementioned motor challenges, another
issue becomes apparent: SDLs oen operate in low-data regimes. Predictive and
generative machine learning models typically require large datasets to make
meaningful predictions. While generative models can be trained on existing
data,219,281 deploying predictive algorithms in such low-data regimes remains
a signicant challenge.

Auxiliary component challenges. Regarding the auxiliary components of SDLs,
the incorporation of LLMs shows promise in automating workow creation274 and
improving human–machine interfaces. However, further research is needed to
ensure the safety and reliability of these processes. Additionally, while integrating
bibliographic extraction into SDLs can enhance model development, its effective
integration with predictive models remains an unresolved issue.
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 27
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A nal challenge to be addressed in the eld of SDLs is the economy of scale of
their development. The more SDLs the community builds, the easier it will be to
build the next ones. Hence, the democratization of low-cost SDLs is crucial for the
advancement of the eld.282
3 Problems meet methods: a machine learning
perspective on solving chemical problems

There is already a wealth of resources on how to apply the specics of machine
learning in several books, reviews, and internet resources.283–286 In this section, we
provide a high-level perspective of how ML researchers and communities view
and tackle problems. To start, we reclassify the diverse chemical problems
introduced above as instances of well-established ML problems. To elaborate the
ML perspective, we gather common themes and practices in the ML community
and examine them in light of application to chemistry, highlighting points to
consider related to benchmarking, the role of domain knowledge, and commu-
nity values.
3.1 The toolbox of machine learning

ML provides a toolbox of algorithms and theory for solving problems using data.
ML has formalized a set of well-dened problems to solve diverse tasks in
language, vision, audio, video, tabular data, scientic data, and other domains.
Each problem establishes a set of input requirements and a desired goal, which
has proved helpful for empirically benchmarking and theoretically analyzing
different algorithms under a common framework. In Table 1, we lay out signi-
cant ML problems with their expected inputs and goals and reclassify different
chemical problems as instances of these ML problems.

Regression and classication aim to predict labels y from inputs x, given
a dataset of paired data. Labels can be one-dimensional, such as in predicting
properties, energy, or yield, but also high-dimensional, such as the ML regression
problems related to force elds, spectra prediction, and segmentation. When data
is small and tabular, gradient boosting machines such as XGBoost287 oen
perform well. Gaussian processes also work with small data and provide good
uncertainties for use in Bayesian optimization.288 However, deep neural networks
are the algorithm of choice for high-dimensional, complex data like images, text,
and molecules. The choice of neural network architecture is informed by the
problem's constraints: graph neural networks for 2D graphs and equivariant
architectures for 3D data. Relatively recently, transformers289,290 have revolution-
ized modelling of language,289 images,291 graphs,292 and 3D molecules.134,243

Generative modelling aims to draw samples x from a distribution p(x) dened
by a dataset {x}. Unconditional generative modelling tries to match the data
distribution. Conditional generative modelling takes a label or prompt y and tries
to learn the conditional distribution p(xjy), blurring the line between unsuper-
vised and supervised learning. While unconditional generative modelling is rarely
valuable for chemistry, conditional generative modelling is ideally suited to
inverse problems or one-to-many problems. This is the case for conformer search
(one 2D structure for many 3D conformers), structure elucidation (one signal
could be consistent with multiple molecules), or forward synthesis prediction
28 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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Table 1 A toolbox of machine learning

ML
problem Input Goal

Chemical
problems Algorithms

Regression
and
classication

Paired data {(x,
y)}

Predict
ŷ = f(x)

� Property prediction � Classical machine
learning: linear
regression,
random forests,
support
vector machines,
gradient
boosting machines

� Neural network
potentials

� Gaussian
processes

� Yield prediction � Neural networks
� Proxies for fast
prediction

� Graph neural
networks

� Spectra prediction � Equivariant
neural
networks

� Figure segmentation � Transformers
� (3D structure
prediction)

Generative
modelling

Dataset {x},
optional
conditioning {y}

Draw samples
x ∼ p(x)
or x ∼ p(xjy)

� Conformer search � Variational
autoencoders

� Docking � Generative
adversarial
networks

� Crystal structure
prediction

� Normalizing ows

� Transition state
search

� Autoregressive
models

� Structure elucidation � Denoising
diffusion and
ow matching

� Forward synthesis
prediction
� (Molecular design)

Sampling Energy E(x) Draw samples
x ∼ p(x)f e−E(x)

� Equilibrium
sampling

� Markov chain
Monte Carlo

� Transition path
sampling

� Sequential Monte
Carlo

� Molecular design � GFlowNets

Gradient-
based
optimization

Loss L ðqÞ Optimal
parameters q*

� Neural
wavefunctions

� First-order:
(stochastic)
gradient descent,
Adam

� Physics-informed
neural
networks

� Second-order: K-
FAC

� Differentiable
simulation
� (Molecular design)

Black-box
optimization

Oracle f(x) Optimal x* � Reaction and process
optimization

� Bayesian
optimization
� Bandit
optimization

� (Molecular design) � Reinforcement
learning
� Genetic
algorithms

Agents Environment of
states {s},
actions {a},
transitions,
and reward R(s)

Draw actions
from optimal
policy
a ∼ p*(s)

� Extracting
literature data

� LLM prompting
frameworks

� Executing
simulations

� Reinforcement
learning

� Question answering
� Synthesis planning
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(given reactants, many products might be possible). Generative models are
a natural t for their ability to produce multiple quality answers to a question. On
the other hand, regression will average over all the possible answers, which may
not be a quality answer itself. Whereas AlphaFold2134 used regression to predict
one 3D structure given one sequence, AlphaFold3140 used diffusion models to
predict multiple biomolecular assemblies for the same input structures. While
many generative model classes exist, such as variational autoencoders,293 gener-
ative adversarial networks,294 and normalizing ows,295 the dominant ones today
are autoregressive models for language296 and diffusion/owmatching models for
perceptual data like images.297 In chemistry, this translates to chemical language
models of SMILES224 and diffusion models of 3D molecular structure.140 Both
approaches rely on gradual generation via iterative prediction by a neural
network, usually a transformer. Because an unconditional generative model
learns to reproduce a data distribution, which may be a large amount of plentiful
unlabeled data, training a generative model can also be thought of as com-
pressing all this data into the network's weights, imbuing a notion of under-
standing. Tasks such as sampling and agent behaviour can then build on this
understanding.

Sampling also aims to draw samples from a distribution but is distinguished
from generative modelling because it only permits access to an energy function
E(x), which denes an unnormalized probability density p(x) f e−E(x). No dataset
is provided, so one cannot simply train a generative model. Furthermore,
generating a dataset in the rst place would require drawing samples. In addition,
the energy function is oen computationally costly to evaluate. For these reasons,
sampling problems are among the most difficult in ML and computational
chemistry. Numerous sampling algorithms exist in the literature, with many
originating from statistical mechanics, such as Markov chain Monte Carlo
(MCMC)298 and Langevin dynamics.299 These traditional methods are beginning to
incorporate ideas from modern machine learning, such as drawing inspiration
from diffusion models for MCMC,300 or incorporating learnable components into
sequential Monte Carlo.301 Some methods learn a bias potential to do transition
path sampling,154while othermethods turn diffusionmodels into samplers which
can solve combinatorial optimization problems.302 Sampling methods are key to
solving equilibrium sampling problems, which are necessary for predicting the
thermodynamics and kinetics of many chemical processes. Generative models
can be used as components of sampling algorithms,303 such as in Boltzmann
generators,141,144 which train both by energy and by example. Boltzmann genera-
tors have also begun to leverage generative models, transferring learning between
different examples.143 Generative Flow Networks304 (GFlowNets) solve this
sampling problem by learning to distribute ow in a generative graph, with
a unique strength for generating diverse, discrete data. Indeed, a growing body of
literature has applied GFlowNets to molecular and materials design
problems.61,305–307

Gradient-based optimization seeks to optimize a smooth loss function L with
respect to parameters q, which is used to train the neural networks used to solve
nearly all of the other ML problems. To do so, machine learning has developed
a suite of optimization algorithms such as (stochastic) gradient descent, Adam,308

and second-order methods such as K-FAC309 which use second-derivative infor-
mation. Machine learning frameworks such as PyTorch,310 JAX,311 and
30 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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Tensorow312 have implemented automatic differentiation with GPU acceleration,
making it easier to optimize neural networks. The fact that neural networks can
be optimized so well has motivated the use of neural networks as ansätze for
nding wavefunctions to satisfy the Schrödinger equation.113 This approach, in
turn, is an instance of a physics-informed neural network (PINN),313 which seeks
neural network solutions to PDEs by using the PDE itself as a loss function.
Automatic differentiation also enables propagating derivatives through simula-
tion, which can learn potentials for pairwise interaction,314 bias potentials for
transition path sampling,153 and perform inverse design.315

Black-box optimization methods try to optimize an oracle function f(x) in
a derivative-free manner with as few oracle calls as possible. This is the case in
many experimental problems such as optimizing reaction parameters for yield,269

device processing parameters for performance,316 or liquid handling parame-
ters.317 To solve these problems with high sample efficiency, algorithms like
Bayesian optimization and bandit optimization are applied. When sample effi-
ciency is not a concern, families of algorithms such as reinforcement learning and
metaheuristic optimization like genetic algorithms can also be applied.318 Black-
box optimization can also be treated as an instance of sampling, where the target
distribution is concentrated around the global optimum.

Agents solve complex multistep problems within an environment. An envi-
ronment denes possible states s, actions a, transitions between states, and
a reward function R(s). For example, retrosynthesis planning75 has molecules as
states, chemical reactions as actions, and yield and cost as reward functions.
Planning problems such as retrosynthesis planning or robotic motion planning319

are naturally solved by agent behaviour, and standard algorithms to learn optimal
agent behaviour are known as reinforcement learning. Because reinforcement
learning has poor sample efficiency, a common approach is to initialize agents
from generative models: helpful assistants such as ChatGPT were initialized as
large language models pretrained on internet-scale text, followed by netuning to
maximize a reward of satisfying human preferences.320 Prompting frameworks are
a rapidly emerging set of methods for augmenting these agents' capabilities,
allowing them to reason step-by-step,321 use tools,225 retrieve information,322 and
execute code,323 and to continually repeat these steps.324

3.1.1 The benets of a toolbox. A shared problem interface enables clear and
broad benchmarking of many different algorithms. One example can be seen in
Table 1 of Song et al.,325 who propose a new class of generative models and
extensively compares their method to 27 different generative models of different
classes on the same dataset and benchmark.

Each of these ML problems also has its own theoretical foundations. Mathe-
matical theory can analyze algorithms for proofs of convergence or properties
when converged, providing explanations of why certain methods work better than
others. The shared problem interface also allows analysis to determine when one
method is the same as another or which methods are more general than others,
which helps unify a diverse literature.

3.1.2 Tools can be stacked on top of each other. ML problems are also
intertwined with each other. Generative models, like diffusion models, use neural
networks trained to regress denoising steps. Agents are built on top of generative
text models, while the core of the generative model itself is a neural network
predicting the next token. All these networks are trained using stochastic
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 31
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optimization methods like Adam, while black-box optimization is used to choose
network hyperparameters. Sampling algorithms, black-box optimization, and
agents can also incorporate generative models trained on previous data,
improving the data generation quality.

The problems enumerated in Table 1 are not an exhaustive list. Other prob-
lems include uncertainty quantication, which is helpful in Bayesian optimiza-
tion326 and active learning,327 federated learning for combining industrial
pharmaceutical data while preserving privacy,328 representation learning for
generally applicable molecular descriptors,329 causal learning, retrieval, and
compression.

3.1.3 Picking the right tool for the job. While the tools of ML are powerful,
they provide the most mileage when used for the right job. For example, as
mentioned previously, generative modelling is more naturally suited for one-to-
many problems such as 3D structure prediction. Gradient-based optimization is
applicable when the loss function is differentiable and fast to evaluate, such as for
optimizing neural networks, but not necessarily for optimizing molecular struc-
ture. While molecular design is oen viewed as a black-box optimization
problem, it can be argued that sampling is the proper framework for molecular
design: discovery as a multiobjective problem seeks many diverse but quality hits,
whereas black-box optimization tends to locally focus on the best solution seen so
far.330 Molecular design cannot be solved by generative modelling alone because
generative models learn the distribution of a given dataset. In contrast, molecular
design seeks exceptional candidates outside the known data distribution.

In chemistry, there is a tendency to treat problems as a search, like nding
a needle in a haystack. Traditional docking approaches search for all feasible
ligand positions, while crystal structure prediction exhaustively searches for all
atom arrangements. Molecular design by virtual screening assumes there will be
sufficiently good needles in a haystack of large virtual libraries. A search-based
perspective is useful when available resources are sufficient to exhaustively
model a space, which may be necessary to show that no good solutions exist.
However, for many applications, an exhaustive search is overkill. Imagine trying
to write an essay by searching over the space of all possible English texts. A helpful
exercise is to ask whether a search problem has the data and algorithms available
to be reframed as a generative modelling or sampling problem.
3.2 Themes and practices in the ML community

Solving chemical problems can be aided by both high-level perspectives and
community practices. To contextualize ML perspectives on algorithm develop-
ment, we describe common themes and practices in the ML community, such as
benchmarking, extreme interdisciplinarity, and the bitter lesson of deep learning.
All of these are expanded below.

3.2.1 The role of benchmarking. Benchmarking plays a crucial role in the ML
development process, driving the continuous improvement of models and
methods. The ML community highly values methods that improve on the state of
the art. With at least three major computer science conferences annually (Neu-
rIPS, ICML, and ICLR), incremental advances are frequent. These minor, iterative
improvements on established benchmarks oen accumulate to gain signicant
performance gains over time. For researchers, benchmarks provide a clear metric
32 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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for assessing which components of a model most affect performance, enabling
more focused and impactful developments.

A prominent feature of ML research is the use of leaderboards, where proposed
methods are ranked based on their performance against established benchmarks.
Papers must either advance or be competitive with the state of the art to be
accepted at major conferences. This process has driven notable progress in
various domains, from image classication331 and machine translation332 to
image generation,333 and even solving Olympiad math problems.334 Leveraging
this mechanism, the Open Catalyst Project108,335,336 set a benchmark for neural
network potentials to relax organic adsorbates on metal surfaces. This project
provided a dataset much larger than encountered before, which motivated the
continual development of more powerful equivariant architectures. From 2020 to
2023, the success rate of predicting adsorption energy grew from 1% to 14%, with
current models now becoming useful in predicting adsorption.337,338 Another
benchmark called Matbench Discovery339 has initiated an arms race of neural
force elds on the industry level.

However, while benchmarking is a powerful tool, it is essential to be critical of
its applicability to chemistry. Domain experts are uniquely positioned to dene
practical benchmarks that can translate to real-world outcomes in the lab.33,55 Too
oen, ML literature presents problem settings that, while optimized for compu-
tational performance, may be unrealistic for experimental validation. This
misalignment can lead to a scenario where the focus shis from solving the actual
problem to merely advancing ML techniques. As methods mature and bench-
marks become saturated, new, more relevant benchmarks must arise.

Ultimately, dening and framing problems for ML researchers is a critical task.
It involves proposing important questions and calls to action in a way that is
accessible to the broader ML community. By doing so, chemists can guide the
development of ML tools more likely to have practical applications in experi-
mental research. While creating datasets and benchmarks can be seen as rote
work, it can spur progress on difficult problems by leveraging community efforts
of the ML community. Suppose a chemical problem can be crystallized and
packaged into a clearly and appropriately benchmarked ML problem. Chemists
can now wonder: what new problems now become possible to solve, if these old
tasks can be solved with signicantly greater speed or accuracy? There are many
more scientic questions in the vast set of exciting areas to work in chemistry and
materials.

3.2.2 Interdisciplinary: the effect of chemistry on ML. Whereas bench-
marking iterative improvements is a mainstay of methods-driven ML in the
computer science community, an alternative approach to innovation leverages
the extreme interdisciplinarity of the ML community. ML has been applied in
elds as diverse as health, agriculture, climate, conservation, physics, and
astronomy. We recently suggested application-driven ML340 as an emerging
paradigm that evaluates success based on real-world tasks in diverse areas, with
methods and evaluations informed and contextualized by domain knowledge.
Application-driven innovation acknowledges the impact of incorporating tasks
from these diverse areas on the development of machine learning. New tasks
motivate new algorithms.

For chemistry, the development of graph neural networks was driven by the
need to model molecular graphs.23,341 This led to practical advances in modelling
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 33
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other graph data like social networks, citation networks, computer programs, and
databases. Graph machine learning in turn made theoretical advances, particu-
larly in analyzing the expressivity of GNNs through the Weisfeiler–Lehman
test.342,343 In addition, the need for neural networks to respect rotational
symmetries of 3D space motivated the development of equivariant architec-
tures.344 All these methodological developments in respecting symmetries have
been unied with a theory of geometric deep learning,345 which shows how con-
volutional neural networks, graph neural networks, and transformers are actually
tightly related.

Beyond theory and methods, ML researchers are also excited for the potential
of ML to help tackle real-world problems like global health and climate change.
This has manifested as a great eagerness to learn, as evidenced by the prolifera-
tion of blog posts,346 teaching material,286 and online reading group communities
with recorded talks.347 Several workshops which focus on ML applications to
chemistry are offered at main ML conferences such as NeurIPS,348–350 ICML,351,352

and ICLR.353,354 This wide availability of resources also reects the value of
openness in the ML community. Conference papers are published freely,
preprints are emphasized, and sharing code is expected. Conferences even have
a track for accepting blog posts.355

When speaking to ML researchers, be patient with their initial assumptions.
Oen, several assumptions are made in the ML literature, which ultimately pan
out to lose applicability when applied to actual experiments. This occurs in
molecular design neglecting the synthesizability of molecules,58 or in reaction
prediction neglecting the reaction conditions.356 This reects the different values
and assumptions reviewers make in a distinct eld. It is easy to view this and
dismiss those approaches as näıve, and it is good to make these criticisms. But let
us not throw the baby out with the bathwater: we should ask, if these additional
assumptions were taken care of, could this approach help solve our problem? As
ML practitioners come from different backgrounds, they will not immediately
understand jargon assumptions and experimental setups in chemistry. But they
are eager to learn.

3.2.3 The bitter lesson: balancing scalability with domain knowledge. The
advent of AlexNet357 marked the beginning of the deep learning revolution,
showcasing how neural networks, when trained using the computational power of
GPUs, could classify images with much better accuracy than models based on
hand-designed features. The power of computational scale was made explicit with
the observation of neural scaling laws,358 which empirically but reliably predict
how model performance improves as compute, data, and parameter counts
increase. These scaling laws motivated the GPT series of language models,217,296,359

which ultimately led to advanced applications like ChatGPT.
In light of scaling laws, we should be careful when imposing our domain

knowledge when designing algorithms. The “bitter lesson” in ML cautions
against relying too heavily on domain knowledge when designing algorithms.360

While hand-craed, domain-specic design choices can offer short-term
improvements, approaches that better leverage computational scale oen
outperform them in the long run. Across domains like text, images, speech, chess,
and Go, approaches which rely on human intuition and inductive bias have been
replaced by “brute-force” approaches that can take advantage of exponential
increases in computing power provided by Moore's law.
34 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00153b


Paper Faraday Discussions
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 1
3 

Se
pt

em
be

r 
20

24
. D

ow
nl

oa
de

d 
on

 7
/1

9/
20

25
 1

1:
11

:2
6 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
As chemists, it is joyful to develop methods that are informed by our chemical
knowledge, such as by injecting quantum chemistry descriptors into regres-
sion,361 or by imposing physical constraints on the system. However, we should
remind ourselves that our human understanding of a problem does not directly
translate into being able to design algorithms that solve this problem. Despite
extensive knowledge of linguistics in ML research, models like ChatGPT were not
realized until researchers trained on massive datasets.

The power of scale can be fearful. Even beloved assumptions like enforcing
equivariance in neural networks have been challenged by recent work: methods
like probabilistic symmetrization362 and stochastic frame averaging363 have shown
that imposing architectural constraints is not strictly necessary, while models like
AlphaFold3140 and Molecular Conformer Fields127 have demonstrated that models
trained with randomly rotated training examples can automatically learn rotation
equivariance, but at the cost of higher computation and longer training time.

At the same time, the present-day has limited scale and data. For example, expert
systems with reaction rules are still the most effective approach for synthesis plan-
ning today,90 perhaps owing to the difficulty of gathering reaction data. In addition,
one can discard even more inductive bias and train language models to generate 3D
molecular structure directly as .xyz les, as we did recently,364 and it can compare
favourably withmore hand-tailoredmethods for crystal structure prediction.365 Yet, as
Alampara et al.241 showed, current language models cannot encode geometric infor-
mation needed to represent specic material properties.

Therefore, the bitter lesson does not mean that imposing inductive bias on
algorithms is never good. An optimal balance must be chosen between leveraging
computational power and domain expertise. This is especially critical in chem-
istry: unlike domains like language and images, which are available at internet-
scale, chemical data is scarce and costs real-world experiments to obtain. It is
crucial to design algorithms which use this limited data most efficiently. Hand-
designed algorithms can enable better predictions and faster simulations in
the near-term, which can bootstrap data generation towards ultimately reaching
the scale of data required for foundation models.

Another critical role of domain knowledge is determining the appropriate
concept of a problem. Should we model it from rst principles, like physics-based
simulations, or treat it as a cheminformatics problem? How does this problem t
into the broader context of the world? For example, predicting a drug's effect on
a patient could be approached by simulating the entire person, which is currently
impractical, or by modelling the effects statistically or causally. At some point,
these different levels of models need to align, and domain scientists are crucial in
mapping out this structured hierarchy of models. They help determine when
assumptions are reasonable and when they are not. While ML tools cannot solve
these problems independently, they can signicantly aid in integrating different
model components.

4 How to tackle scientific problems?

Armed with the above toolbox and perspectives, we then make recommendations
on how to choose impactful problems in ML for chemistry and introduce a high-
level structure of how ML problems are tackled. We nally outline three areas for
growth for research in ML for chemistry: breadth, depth, and scale.
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 35
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4.1 The Aspuru-Guzik/Whitesides rules for selecting important problems

When one of us (Aspuru-Guzik) started the Matter Lab then at Harvard University
(2006–2018) and now at the University of Toronto (2018–), a set of rules for
selecting signicant problems began to emerge from intuition. In a hallway
conversation with George Whitesides, who told Aspuru-Guzik he had similar
guidelines, the three questions to ask before starting any research crystallized. We
apply them at theMatter Lab daily to select problems. Here, we specialize in ML in
chemistry, but these are widely applicable. The three questions emphasize
novelty, importance, and feasibility in that order.

4.1.1 Question 1: Has this problem been solved before? Before starting
a scientic endeavour, ask yourself this question. Of course, if it has not been
solved before, your solution will be more impactful and lasting. Aim to be rst and
not best.

In the context of ML, improving on benchmarks, despite providing valuable
signals of progress, is not the end goal of research. This is particularly true in
academic work, where research is not directly linked to prots and should be as
novel as possible. Once new problems are established, the eld will be opened to
improve the results aerwards.

Will this work create a new connection between two areas? When a paper intro-
duces more questions than answers, the eld grows. Simply applying an ML
method to a new eld can be novel. But novelty can be maximized if the proposed
approach offers a new perspective, such as reframing a search problem as
a generative modelling problem.

For example, we introduced 3D generative modelling to the eld of rotational
spectroscopy,193 which has opened the question of 3D structure elucidation from
rotational spectroscopy alone. This is a clear example where rst beats any other
research. There were no previous ML baselines to compare or benchmark our
method to, because we introduced the rst approach in the eld!

4.1.2 Question 2: Is what you set out to solve relevant to society? Before
starting a scientic quest, consider whether it will help others widely. We, aer
all, operate in a domain of science that directly impacts human life. Humans and
the entire biome interact with human-made chemicals every day. Think of
problems that matter to the planet. Arguably, in the twenty-rst century, which is
riddled with environmental and political crises, this is quite relevant.366

Which audience will care? What new tasks become within reach if this task is
solved with signicantly greater accuracy or speed? For example, neural network
potentials are signicant because force elds are used in a large number of
computational chemistry methods, which in turn predict properties and spectra.
Solving this problem, therefore, touches a large audience.

Can the proposed method be tested experimentally if it solves a computational
problem? Approaches that can be experimentally validated have a much higher
impact ceiling.40,137 On the other hand, what is the worst-case scenario if the
proposed approach “doesn't work”? If novelty is chosen carefully, this risk is
mitigated because a method which solves an unbenchmarked problem is already
state-of-the-art.

4.1.3 Question 3: Is it remotely possible to attack this problem? Tackling
something that is powerful, yet within the reach of your resources is key to success.
The most effective and general publications will obviously have more impact.
36 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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Therefore, aim for difficult and not low-hanging fruit work if what you wish is for
your work to be remembered.

In the context of ML, it would be useful to consider the following questions:
What are the available resources? Is enough data available for the desired
generalization performance? Are there public code implementations? Have
similar problems been solved using the same framing? For example, the success
of 3D generative models in structure prediction on tasks such as conformer
search and docking indicated that they can likely be successful in crystal structure
prediction as well.

A crucial part of feasibility is controlling scope. What is the minimal imple-
mentation of an algorithm that can solve this problem, yet have a broad impact?
How can success be evaluated within this problem scope?
4.2 The structure of data science and ML problems

Machine learning and many data science problems have a general structure, as
seen in many papers. Once you begin on a chosen problem, the next consider-
ations follow this hierarchy: (1) data, (2) problem framing, (3) method, and (4)
evaluation. In our research group, we always think of these in order and in
ranking. For example, without data a scientist will not be able to make progress. A
publication that suggests a new method for old data will be less impactful than
the publication that provided the data (and its ML application) in the rst place.

4.2.1 What data are available? In machine learning, everything begins from
the available data. No method can be applied without it. What is the size of the
available data? How easy is it to simulate new data? What ground truth data are
available, and what methods are available for validating a model's predictions?
Anecdotally, when a dataset exceeds around 10 000 examples, generative models
are more likely to generalize effectively. Problems that are repeatedly solved in the
community should be considered. Can these data be routinely recorded? For
instance, tasks like computing forces and conformer searches are standard in
quantum chemistry, and the availability of this data has contributed to the
success of neural force elds and 3D structure prediction. Additionally, data
might not just be a static dataset but could include on-the-y data acquisition,
such as environments for agents or oracle functions for black-box optimization. It
is because data is the ultimate resource that our group embarked on the multi-year
goal of developing and employing self-driving labs. We can eat our own dog food.

4.2.2 What is a useful framing of the problem? The next critical task is to
frame the problem usefully. Framing is important not only to ensure selection of
the right tools in Table 1, but also allows for benchmarking and theoretical analysis.
Problem framing should be informed by domain knowledge: what specic chal-
lenges must be addressed to enable downstream tasks, such as experimental vali-
dation? For example, performing materials design by generating crystal structures
as 3D unit cells may be difficult to translate into real materials, since experimen-
talists do not have atomistic control of structure. Framing by itself can oen
determine the novelty and signicance of the proposed research: creating a new
connection between a chemical problem and a ML problem generates novelty, and
the potential step-function improvement in performance can improve signicance.

Another way to approach problem framing is by asking how the data will be
represented. Choosing a compact, information-rich, efficient-to-compute
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 37
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representation is a simple way to incorporate inductive bias and accelerate
learning. However, as the bitter lesson shows, it is not essential to spend too
much time on designing the “perfect” representation. Deep learning can auto-
matically nd ideal representations if the input representation contains all the
necessary information and is available in large enough quantities.

4.2.3 What model solves this problem? Once the problem is framed, the
choice of model oen becomes apparent and justied. What ML methods perform
well for this task? Can simple methods solve this problem? Established methods,
such as Morgan ngerprints and XGBoost, remain strong baselines for property
prediction,288 while genetic algorithms are strong baselines for molecular genera-
tion.318 If simple methods fail, are there new classes of algorithms suited for this
problem? Is there existing code available online? It may be easier to rst run the
code before trying to understand the code. How can a code implementation for
solving another problem bemodied as minimally as possible to solve the problem
at hand? Choose algorithms commensurate with the size and availability of data.
With small datasets, classical machine learning still performs best.

This is perhaps the most critical paragraph of this publication: golden advice
to graduate students and postdocs, do not fall in love with the mermaids of new
methodology. If older but proven methodology does the job, just use it! Focus on
the scientic contributions of your work. New methods should be developed
when others truly have limitations. In other words, your new fancy super-duper
autoencoder will not be as impactful in the long term as if you solve an essen-
tial chemistry or materials science question with an answer that lasts for ages.

4.2.4 How will the proposed method be evaluated? Finally, the method must
be evaluated according to reasonable metrics as informed by domain knowledge.
Do the metrics reect the practical realities of downstream use cases of the
proposed method? For example, if you are generating and proposing new mole-
cules, is it feasible for a chemist to synthesize them and test their properties?
Deciding appropriate metrics is vital because future work will likely adopt the
same evaluation criteria.
4.3 New problems: demanding impact from ML for chemistry

Applying ML to chemistry can have a greater impact in terms of breadth of
application, depth of consideration, and scale of execution. In breadth, many
more chemical problems can be formulated as ML problems and introduced to
the ML community. In depth, proposed methods can make stronger theoretical
connections between both machine learning and computational chemistry,
motivating further method development in each eld. Finally, at scale, ML for
chemistry can aim at more signicant problems requiring more data. As concerns
mount about reaching the limits of internet-scale data in language and vision,
chemistry stands out as a situation where more data can be “purchased” through
computational simulation or high-throughput experimentation.

4.3.1 Solving problems in breadth. While in Section 2 we have witnessed the
diversity of chemical problems that ML has been applied to, many areas of
chemistry remain underexplored. In no particular order, we list a number of
chemistry elds in which ML is still emerging: photochemistry,367,368 chemical
education,369 nuclear chemistry,370 agrochemistry,371 analytical chemistry,372

electrochemistry,373 astrochemistry,374 amorphous materials,375 so materials,376
38 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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open quantum systems,377 environmental chemistry,378 and atmospheric chem-
istry,379 just to cite a few. Within each eld lie a number of tasks that could be
formulated as ML problems, depending on the data available. Tasks can also go
beyond the idealization of pure, small organic molecules. Heterogeneous mate-
rials, quantum materials, and complex mixtures present challenges that could
particularly benet from ML innovations. As mentioned in Section 2.5, most
substances in real-world situations are complex mixtures.

The key is not to “force” ML into these areas but to consider whether existing
or novel tasks could be framed as ML problems listed in Table 1, facilitating
iterative improvements and potentially leading to new algorithms. In some situ-
ations, there is just not enough data to apply ML, but it remains that a simple way
to guarantee novelty is to consider an underexplored eld.

Coming back to our previous example, we are pretty happy to have applied ML
to solve an essential structural determination in rotational spectroscopy: the rst
application of generative models to predict the 3D structure of molecules given
their substitution coordinates.193 This is an example of a typical in-breadth
approach seeking multidisciplinary approaches and leaving our own comfort
zone.

4.3.2 Solving problems in depth. As we saw when discussing application-
driven innovation in ML in Section 3.2.2, chemical problems have motivated
new algorithms and advanced ML theory. Deep engagement with ML theory or
theoretical chemistry generates novelty and signicance and oen leads to more
robust empirical results.

Many ML methods such as graph neural networks and equivariant architec-
tures were motivated or inspired by theoretical chemistry, and they are beginning
to return the favor. Diffusion models were proposed in 2015, inspired by methods
in statistical mechanics,380 and have since become state-of-the-art generative
models enabling high-resolution text-to-image generation.381–383 Nearly a decade
later, new works have connected diffusion models to traditional tools in
computational chemistry. Diffusion models can simultaneously learn both
coarse-grained force elds and a generative model,149 and can also be leveraged as
a means for sampling and computing free energies.384 These works would not
have been possible without deeper consideration of how diffusion models relate
to free energy, or of the connection between diffused distributions and the ideal
gas.

Furthermore, ow matching approaches derived from diffusion models relax
the constraint of noising a data distribution to a pure Gaussian distribution and
can instead connect two different distributions. This has enabled learning of
trajectories,117,385 which is beginning to be applied for transition path sampling of
reactions.386 These works create theoretical connections that may enable more
techniques to transfer from computational chemistry to machine learning and
vice versa.

In addition, whereas neural network potentials treat energy computation as
a black-box function to bememorized, Hamiltonian prediction111 opens the box of
Hartree–Fock theory, enabling access to the wavefunction, as well as a new
tradeoff between accuracy and speed. Self-consistency training112 engages with
this theory by removing the requirement of providing Hamiltonian matrices as
labels, which has improved the speed of DFT overall.
This journal is © The Royal Society of Chemistry 2025 Faraday Discuss., 2025, 256, 10–60 | 39
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Aiming for a concrete design goal in collaboration with experimentalists also
provides much-needed depth. Real-world problems oen require the integration
of ML with experimental data, and such collaborations can lead to breakthroughs
that would not be possible in isolation. Large-scale collaborations between
experts in quantum chemistry, machine learning, and organic materials chem-
istry enabled the discovery of new OLEDs.43 In that work, we were among the rst
to demonstrate that ngerprint-based ML methods, intelligent screening meth-
odologies, and experimental verication could lead to novel materials in a closed-
loop philosophy.

Our group, more recently, spent ve years in an international collaboration
involving six research groups, which led to a delocalized, asynchronous closed-
loop design that led to the best organic laser material to date (to our knowl-
edge).273 In parallel, another multidisciplinary collaboration on closed-loop
design387 demonstrated that ML can teach us new chemical principles from
these in-depth materials science explorations.

4.3.3 Solving problems at scale. The unreasonable effectiveness of scale, as
shown by the bitter lesson (Section 3.2.3), provides optimism for solving much
more difficult problems. Notorious problems like protein structure prediction
were nally cracked by leveraging the scale of the Protein Data Bank.134,388 Fast
and quantum mechanically accurate atomic dynamics are being enabled by
foundation force elds.109,244,245

For chemical problems which are already formalized in ML, progress can be
accelerated just by increasing the scale of data and compute of these approaches.
Projects like the Open Catalyst Project demonstrate the potential of ML to drive
large-scale advancements in chemistry. By purchasing new data through
computation and simulation and by designing better sampling algorithms, we
can improve the rate of data generation, and take aim at scale. LLM agents, for
example, could execute computational simulations to generate new training data,
further accelerating research.

While training foundation models is oen cited as a source of signicant
emissions, we should also be aware of the potential for compute to reduce
emissions.389 Better models could reduce the number of wet-lab experiments
needed, or help design greener alternatives to current and future chemical
processes, observing that the chemical industry makes up a large chunk of global
emissions.

Chemical space may be small. The oen-cited estimated size of chemical space
as 1060 fascinates us. But from a machine learning perspective, this space may be
considered small. If we only consider black-and-white 28 × 28 images, the
domain of the standard MNIST dataset of handwritten digits,390 this already has
a size of 228×28 z 10236. Of course, the space of images is far sparser, given that
the number of colour images in existence is 14.3 trillionz 1013 images.391 This is
what makes deep learning impressive – its ability to nd structure within enor-
mously high-dimensional spaces, just from showing a bunch of examples. In the
context of language, 1060 is just the number of 10-word sentences restricted to
a vocabulary of 60 words, or the number of 10-sentence paragraphs restricted to
60 possible sentences. Natural language is evidently much larger.

Could these powerful capabilities be enough to turn theoretical musings into
reality? Imagine being able to atomistically simulate a cell on a macroscopic
timescale, or to accurately model the effectiveness and stability of so organic
40 | Faraday Discuss., 2025, 256, 10–60 This journal is © The Royal Society of Chemistry 2025
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devices over years of use, or to discover new reactions ab initio. These are chal-
lenges that, until recently, seemed impossibly far beyond reach. We are impressed
that nanosecond simulation of an all-atom HIV capsid at DFT accuracy is possible
with neural force elds.392 If modern image generative models can generate high-
quality images at 1024 × 1024 resolution and higher,393 then what really stands in
the way of simulating an entire cell at biological timescales? If it is data, we are
fortunate to have access to more and more complex simulations and self-driving
labs which can generate high-quality data independently. If the barrier is
computing power, we are lucky enough to utilize the massive increases in
computing power driven by mainstream AI. If it is methods or experiments, then
here is the call for action to all of us, multidisciplinary theoretical chemists of the
twenty-rst century: let's transform our discipline together!
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R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu and X. Zheng,
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,
2015, soware available from https://www.tensorow.org/.

313 M. Raissi, P. Perdikaris and G. E. Karniadakis, J. Comput. Phys., 2019, 378,
686–707.

314 W. Wang, Z. Wu, J. C. Dietschreit and R. Gómez-Bombarelli, J. Chem. Phys.,
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