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On the use of advanced scanning transmission electron 
microscopy and machine learning for studying multi-component 
materials. 

Alexander S. Eggeman*a, Christian Maddoxa, Mark A. Buckinghama,b,c, Zhiquan Khoa, Ran Eitan 

Abutbuld, Siguang Menga and David J. Lewisa

The nanoscale distribution of elements in two multi-component 

materials is assessed by unsupervised machine learning methods. 

These are compared to elemental maps to highlight the potential 

shortcomings of simplistic compositional analyses. Quantification 

of the resulting microstructure components provides insight into 

the evolution of the microstructure and the possible reasons for 

misinterpretation of the traditional element maps. 

There is a wide interest in the use of entropically stabilised 

materials, often referred to as high entropy (HE) materials [1-4]. 

These materials exploit increased configurational entropy 

(∆𝑆𝑐𝑜𝑛𝑓) available to incorporate multiple different atomic 

species into a single crystal lattice structure, even if they 

otherwise would not be stable in that structure by enthalpic 

driving forces alone. This provides a simple but effective 

method to create atomically engineered crystal structures 

containing elements that would ordinarily form a different 

crystal structure (subject solely to enthalpic driving forces). This 

ability to engineer new materials with novel properties is seen 

as an important step in the development of next generation 

structural [5], functional [6-8] and catalytic materials [9,10]. 

One of the key capabilities needed for the continued 

development of these materials is the ability to characterise the 

structure and composition of the material at the nanoscale. 

Many publications in the area use only scanning electron 

microscopy (SEM) and powder X-ray diffraction to provide 

evidence of chemical homogeneity [11]. However, the 

interaction volume of SEM can be tens of nanometres cubed at 

the typical voltages (5 - 30 keV) used, depending on the imaging 

conditions, material and the alignment of the microscope [12]. 

Powder X-ray diffraction is also a bulk-averaged technique 

which cannot distinguish nanoscale crystallites of materials, 

with the possibility of minority crystal phases being ‘swamped’ 

by large, crystalline materials. 

What is evident from recent studies [11] is that variations of 

structure and composition can occur at much finer (1 - 10 nm) 

length-scales. This makes the validity of SEM data questionable 

if we are to be confident of truly uniform mixing of elements at 

the atomic scale within the materials considered. This therefore 

requires the use of higher spatial resolution approaches, 

notably scanning transmission electron microscopy (STEM).  

This comes with its own limitations, notably the need for more 

advanced sample preparation [13], but also the interpretation 

of STEM data often requires more in-depth data analysis [14, 

15]. 

Many published works use visual comparison of measurements 

(often in the form of elemental maps) to imply correlations or 

not between elements, however this can introduce user bias in 

terms of the elements that are selected but the method of 

scaling data to form the map can also alter the relative 

contributions of the elements, making rigorous comparison 

difficult. The direction of travel in recent years in advanced 

electron microscopy has been to move towards machine 

learning methods [16, 17]. These utilise the complete spectral 

data recorded at each position in the scan, rather than simply 

considering the intensity of a single energy channel or single X-

ray emission peak. Consequently, these can provide a more 

complete comparison of the variation of all of the elements 

(peaks) in the spectrum and so provide not only clearer 

indication of relative chemical variations, but by analysing the 

ensemble data also provide the opportunity to do more 

quantitative comparison.    

One development in recent months has been the application of 

the ‘hierarchical density-based spatial clustering of applications 

with noise’ (HDBSCAN) algorithm [18, 19]. Clustering looks to 

group measurements by some pre-defined metric of similarity. 

Usually this is done on a manifold (or low dimensional) 
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reprojection of the original data. HDBSCAN in particular helps 

to address one of the long-standing issues in machine learning 

segmentation, namely, how many components (or clusters) to 

decompose the data into. By using a physical parameter (the 

number of measurements [or scan pixels] expected for a 

cluster) the algorithm determines the number of components 

internally, removing the need to define this as a user and in the 

process the number of outputs is therefore determined by the 

structure of the data, rather than the bias of the user. 

This article will highlight this machine learning capability 

compared to more simplistic elemental analysis approaches and 

will apply them to two different multi-component materials to 

highlight how this can lead to clearer understanding of the 

nature of the phases present in the system. 

 

Results and discussion. 
 
For this study, two high entropy metal sulfides were synthesised 

and studied. These were a 6-metal containing material 

((MnFeCuAgZnCd)S), and a 7-metal containing material 

((MnCoCuAgZnCdGa)S). The more traditional bulk analysis 

techniques were used on the 6-metal materials, namely pXRD 

and SEM coupled to EDX. These are shown in Figures 1a) and b) 

respectively.  

The pXRD analysis of the material indicates it is primarily formed 

of wurtzite, as expected, but with a reasonable set of impurity 

peaks (particularly at 2θ of 25o and in the range 30-40o) that can 

be attributed to jalpaite (Ag3CuS2). In the SEM-EDX, the 

elemental distribution appears broadly uniform except for a 

reasonable amount of localisation of silver (in agreement with 

the formation of a silver-rich jalpaite phase). Analysis of the 

overall spectral data gave between 8 and 10 atomic % for each 

of the metallic elements.  However, the appearance of the EDX 

maps bears only a weak relation to the actual sample image 

(formed from secondary electrons).  

The materials were further studied at the nanoscale via STEM-

EDX. The elemental maps for the 6-cation sample are shown in 

Figure 2. These have been arranged in such a way that it 

becomes clear that there are three very strong correlations 

between elemental species in the system. These are iron and 

copper shown in Figures 2a) and b) respectively, silver and 

cadmium shown in Figures 2c) and d) and manganese and zinc 

shown in Figures 2e) and f). This further supports the 

observation of silver-rich jalpaite forming in this system. The 

localisation of iron-copper sulfide regions also suggests the 

presence of chalcopyrite ((Fe/Cu)S) in the material, which 

agrees with other studies of this system by the authors [11]. 

However, unambiguous determination of this structure was not 

possible from the PXRD data, the remaining manganese-zinc 

sulfide regions appear to represent the expected wurtzite (ZnS) 

phase. It is also possible that these materials are present in an 

amorphous form that could not be detected by the XRD 

analysis. The structure and chemistry outlined here suggests 

that multiple phases have arisen because the enthalpic driving 

force for the formation of favourable structures has over-ridden 

the desired entropic stabilisation of the wurtzite phase. 

However, this is mostly determined by visual correlation of the 

elemental maps,  the use of ML approaches can provide a 

deeper insight into the actual trends within the data, i.e. it can 

group the individual measurements that have a consistent EDX 

profile, allowing clearer spatial correlations to be identified, 

furthermore, by averaging the signals across those groupings, a 

more complete picture of the actual composition is possible. 

Both ML workflows applied to the data returned four major 

components within the region of microstructure analysed. 

These are shown in Figures 3a) and b) respectively with clusters 

labelled (i-iv). In each case there seems to be strong agreements 

with the three main phases, chalcopyrite (i), jalpaite (ii) and 

wurtzite (iii). The presence of the fourth component suggests 

the need for a deeper analysis.  

Figure 1. a) pXRD of the 6-metal containing material (the locations of reflections 

expected for wurtzite are indicated) and b) SEM-EDX elemental maps, scale bar 

indicates 2m. 

Figure 2. STEM element maps for the 6-cation sample for a) Cu, b) Fe, c) Ag, d) Cd, e) 

Mn and f) Zn. The scale bar indicates 3 μm. 
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A major advantage of the ML approach is that each cluster can 

be used as a mask for smart segmentation of the EDX data, the 

association of each measurement with that cluster can be used 

as a weighting to calculate a representative ‘average’ spectrum 

for the cluster. This has the advantage of having significantly 

higher signal-to-noise ration than any individual measurement, 

allowing meaningful quantitative analysis of the data. The 

representative compositions for the different clusters are 

shown in Table 1.  

An immediate point is that all of the phases are considerably 

less phase-pure than the STEM element maps (Figure 2) would 

suggest but are considerably less uniform than the SEM 

elements maps (Figure 1a) suggest. Even for the jalpaite and 

chalcopyrite that would at first glance seem to be the 

enthalpically stable structures, there is considerable mixing of 

the metals. For the GMM approach (workflow 1) these phases 

contain between 5-7% of the ‘other’ elements not expected 

from the maps, while for the HDBSCAN (workflow 2) approach 

this increases to 10-12%. The majority wurtzite phase (cluster 

iii) analysis in both cases shows a much higher sulfur:metal ratio 

than expected, for stoichiometric wurtzite this should be 1:1 but 

in both clustering cases the ratio is increased to nearly 3:2. The 

fourth minority cluster coincides with the wurtzite locations but 

is the only feature of the microstructure that shows a 

reasonably uniform composition in terms of the 6 metals. 

The suggestion here is that the original 6-component wurtzite 

has formed with the desired broad mixture of the different 

cations in it. However, it has then undergone some later 

transformation to form a multi-phase mixture of 

jalpaite/chalcopyrite in equilibrium with a defective wurtzite 

structure. The formation of jalpaite in the system means that an 

excess of sulfur or a deficiency of metals must exist in another 

part of the microstructure, leading to a higher metal:sulfur 

ratio, this is evident from the quantification, but the likely 

explanation is that a reasonable population of vacancies now 

exists on the cation sublattice in the majority wurtzite cluster. 

Chalcopyrite, by contrast is similar to wurtzite but with a slightly 

different stack order so would not cause a change in local 

chemistry. 

 
Table 1. Compositions of the unsupervised clustering outputs from the two workflows. 

i) is chalcopyrite, ii) jalpaite iii) the majority wurtzite and iv) the minority wurtzite. 

These are identical to the labels in Figure 2. 

 Workflow 1 

 i ii iii iv 

Ag 1.39 ± 0.17 39.0 ± 4.0 2.78 ± 0.18 10.8 ± 0.62 

Cd 0.67 ± 0.10 15.8 ± 1.7 7.70 ± 0.35 7.00 ± 0.39 

Cu 17.6 ± 0.96 5.06 ± 0.63 1.03 ± 0.10 8.59 ± 0.53 

Fe 25.4 ± 1.3 0.71 ± 0.13 5.5 6± 0.32 10.5 ± 0.63 

Mn 2.51 ± 0.26 0.81 ± 0.14 17.3 ± 0.76 9.45 ± 0.57 

S 52.1 ± 2.4 38.5 ± 4.1 60.2 ± 2.4 51.1 ± 2.4 

Zn 0.35 ± 0.08 0.11 ± 0.03 5.45 ± 0.30 2.45 ± 0.22 

 Workflow 2 

 i ii iii iv 

Ag 1.96 ± 0.14 16.6 ± 1.2 0.83 ± 0.06 6.86 ± 0.45 

Cd 4.48 ± 0.32 28.5 ± 2.1 13.1 ± 0.61 15.3 ± 1.0 

Cu 15.3 ± 0.79 9.50 ± 0.86 1.83 ± 0.17 8.46 ± 0.76 

Fe 24.6 ± 1.29 1.83 ± 0.21 5.85 ± 0.33 10.4 ± 0.78 

Mn 2.78 ± 0.22 1.83 ± 0.20 15.2 ± 0.67 8.18 ± 0.62 

S 50.0 ± 2.2 41.1 ± 3.02 57.5 ± 2.3 48.4 ± 2.9 

Zn 0.80 ± 0.11 0.45 ± 0.08 5.57 ± 0.31 2.32 ± 0.26 

 

The interesting feature of the quantification is that  the remnant 

of the original wurtzite has a configurational entropy close to 

the theoretical limit for the system (approximately 0.85R 

compared to a maximum for 0.9R) however even this does not 

seem to be sufficient to prevent the decomposition of the 

system to produce multiple phases with higher order 

(configurational entropies of 0.5 – 0.6R), in particular the 

enthalpic driving force for silver (potentially acting in concert 

with cadmium) to form jalpaite compared to remaining in the 

wurtzite structure seems to be too great even for entropic 

stabilisation and is worthy of further study. 

For the nanoscale 7-element system, the elemental maps are 

shown in Figure 4. In this instance there seems to be a generally 

even distribution of the silver, indium, copper and gallium 

(Figures 4c, 4d, 4f and 4g) in the system with local 

concentrations of cobalt, manganese and zinc (Figures 4a, 4b 

and 4e) in the centre of the nanoparticles, suggesting a core-

shell microstructure. As with the previous example, the ML 

workflows were applied to the system, in this instance there is 

a notable difference between the outputs as seen in Figure 5.  

Workflow 1 has segmented the data into two clusters (Figures 

5a and b), broadly representing the core and shell respectively.  

Workflow 2 did not differentiate the core and shell 

components, meaning that the nanoparticles were effectively 

Figure 3. Machine learning (clustering) outputs for the STEM-EDX data from 

the 6-cation system. a) shows the spatial clustering from workflow 1 (GMM) 

while b) shows the spatial clustering for workflow 2 (HBDSCAN). i) shows 

chalcopyrite, ii) jalpaite, iii) majority wurtzite and iv) minority wurtzite. Scale 

bar indicates 3 μm. 
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segmented as a single composition. Quantification of the 

clusters is shown in Table 2 

From this, the separation of the core and shell regions in ML 

workflow 1 (i and ii in both Table 2 and Figures 5a) and b)) 

appears to have little or no relation to the segregation of cobalt, 

manganese, and zinc. In both clusters from workflow 1 these 

elements are found in similar amounts.  

What is clear is that the three elements that produce maps 

appearing to show enhancement in the core (cobalt, 

manganese, and zinc) have all been weakly incorporated into 

the crystal structure, with ~3% or lower concentrations for all 

elements. It is therefore possible that the reduction in 

nanoparticle thickness at the edge of the particles could lead to 

a sufficient reduction in signal and that noise in the data could 

be misinterpreted. For cobalt, manganese, and zinc, the maps 

all have an average of 1-2 counts per pixel, meaning that the 

signal-to-noise ratio is likely to be high in these cases. Compare 

this to the silver map for example, with 15-20 counts per pixel, 

there are likely to be fewer noise related artefacts in these 

elemental signals. 

The clustering analysis of this data is by no means conclusive, 

but there is the suggestion that the core-shell morphology may 

be an ‘over-fitting’ of the data and so creating a microsctructure 

that may not be present. The answer to this problem is to 

perform additional higher resolution analysis of this system. 

Approaches such as atomic resolution STEM are time 

consuming and less readily available so should be reserved for 

those samples that require it to unambiguously characterise the 

system. 

 

 

Table 2. Experimental compositions of the unsupervised clustering outputs from the 

two workflows. For workflow 1 i) is the core and ii) the shell. These are equivalent to 

the labels in Figures 5a) and b) respectively. 

 
Workflow 1 Workflow 2 

i ii i 

Ag 20.90 ± 1.7 20.14 ± 1.7 19.19 ± 1.6 

Co 2.88 ± 0.44 3.17 ± 0.47 3.24 ± 0.48 

Cu 12.25 ± 1.1 10.36 ± 1.0 11.3 ± 1.1 

Ga 3.16 ± 0.42 2.63 ± 0.37 2.88 ± 0.37 

In 8.48 ± 0.77 7.98 ± 0.75 7.72 ± 0.71 

Mn 1.00 ± 0.21 0.72 ± 0.17 0.90 ± 0.19 

S 48.35 ± 3.9 52.50 ± 4.3 51.92 ± 4.2 

Zn 2.97 ± 0.43 2.48 ± 0.38 2.84 ± 0.41 

Conclusions 

The main takeaway from this study is that high-resolution 

compositional studies of multi-component materials can be 

considerably more complex than would be suggested by simple 

comparison of elemental maps. In the two cases presented in 

this work, the likely phase distribution suggested from the side-

by-side comparison on elemental maps is shown to miss out on 

key details of the true microstructure as determined through 

statistical analysis of the collective. 

In the case of the micro-scale 6-cation sulfide, the composition 

of the majority phases in the system is very hard to judge from 

the maps, with considerable mixing of elements in the different 

phases (e.g. copper in jalpaite, cadmium, in chalcopyrite) and a 

notable variation in the metal:sulfur ratio in the majority 

wurtzite structure. All of which can be traced back to the 

decomposition of a more highly mixed parent wurtzite 

structure. 

In the case of the nanoparticles of 7-cation sulfide, the 

elemental maps suggest the occurrence of a core-shell 

structure, with the core being enriched in colbalt and possibly 

managanese and zinc.  However, machine learning segregation 

and the resulting quantitative analysis raise the possibility that 

the core-shell structure may be an artefact that does not 

correlate with meaningful variations in composition.  Higher 

resolution techniques are necessary to address this issue but 

the motivation for applying these comes from the outputs of 

the clustering techniques rather than from the elemental maps 

themselves.  

 Elemental maps on their own may not be the best way to 

present the distribution of different species in such complex 

systems. This can act two ways, in the first it can be that uniform 

elemental maps might be incorrectly judged to show perfect 

mixing of elements, while in the second, it is possible that 

intensity variations in an elemental map might be judged to be 

evidence of imperfect mixing, when they might really be smaller 

than the noise present in the measurements. 

  Regarding the two clustering workflows, variations between 

the clustering outputs are a result of the different approaches 

used in the two-step clustering process. UMAP is part of a family 

of approaches that model the data using graph theory 

(projecting the original data as a high dimensional graph and 

Figure 4. STEM-EDX element maps for the 7-cation system showing a) Mn, b) Co, c) 

Cu, d) Ag, e) Zn, f) In and g) Ga. The scale bar indicates 50nm. 

Figure 5. Machine learning (clustering) results for the STEM-EDX data from the 7-cation 

system. a) and b) show the core and shell clusters determined by workflow 1 while c) 

shows the single nanoparticle region cluster determined by workflow 2. Scale bar 

indicates 50 nm. 
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seeking a low dimensional version that preserves most of the 

original structure) [21], while PCA is a matrix factorisation 

approach that looks for latent variables in the data that describe 

the largest amount of variance [20]. The low-dimensional 

projection of the original data will therefore differ subtly 

between approaches. Consequently, the grouping of 

measurements into clusters will differ between methods.  

The clustering algortihm used will also influence the outputs, 

GMM assumes that points are drawn from a fixed number of 

gaussian distributions, while HDBSCAN does not assume a prior 

statistical distribution, and instead assumes that clusters are 

dense regions of data separated by lower-density regions, 

allowing for arbitrarily shaped clusters. This leads to differences 

in the individual measurements incorporated into the outputs 

and hence the composition of the cluster. 

For the outputs for the 6-element system the differences in 

cluster composition reflect that, in workflow 1, the first three 

clusters contain many extra measurements that appear to be 

part of the ‘background’ of the sample. In workflow 2 most of 

these are grouped into the fourth cluster resulting in the first 

three cluster maps showing material that is more tightly 

grouped into particles. This suggests a lower tolerance to 

misidentification of individual points. However, in both cases 

the general segmentation of the data into chemically distinct 

and interpretable clusters is successful and the results are 

broadly comparable in terms of the phases present. 

A more nuanced approach is needed to interpret the 7-metal 

system, the major difference is that the UMAP-based 

(HDBSCAN) clustering method interpreted all the nanoparticle 

data as being similar, while the PCA-based (GMM) method 

separated the nanoparticle measurements into core and shell. 

Since the number of clusters was a user-defined parameter, 

there is the question whether the core-shell morphology is an 

artefact imposed from the initialisation. Trusting to the data 

itself to determine the number of clusters needed would seem 

to be prudent. From prior experience the more advanced 

processes in this workflow seem to be a more reliable approach, 

and there is strong motivation to continue developing this 

method. 

The current state-of-the-art in compositional analysis in TEM 

utilises machine learning approaches that can explore the wider 

trends in data. This is particularly important in research into 

complex multi-component systems where we expect statistical 

distributions of elements rather than highly organised chemical 

variations in regular crystals. The successful application of 

advanced STEM with cutting-edge data science to multi-

element sulfides in this study suggests the opportunity exists to 

deepen understanding of the wide range of multi-element and 

high-entropy materials currently being developed. Given the 

huge parameter space available for synthesis of these materials, 

the reproducibility, speed, and potential for automated analysis 

for high-throughput experiments makes data-driven analysis an 

appealing approach to improve the productivity of this 

research. 
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Notes and references 

Methods and Materials 
 
STEM-EDX experiments were performed on a ThermoFisher 

Talos 200X (S)TEM operated at 200kV and utilising a Super-X 

SDD detector. STEM-EDX data were processed using two 

different unsupervised clustering workflows. Both workflows 

took the as recorded data and binned it by a factor of 2 (in order 

to reduce the size in computer memory), subsequently the data 

was normalised using the RobustScaler method provided by the 

scikit-learn package.  

Workflow 1 then used principle-component analysis (PCA) to 

reduce the dimensionality of the data; the final dimensionality 

was determined by studying the change point in the ‘Scree-plot’ 

of the decomposition. The reformed data was then clustered 

using the Gaussian mixture method (GMM) with the number of 

clusters manually determined. All algorithms were 

implemented from scikit learn [20] 

Workflow 2 used the unified manifold and projection (UMAP) 

algorithm [21] to reduce the data to four dimensions; the 

hierarchical density-based spatial clustering of applications with 

noise (HDBSCAN) algorithm [22] was then used to cluster the 

measurements by similarity (determined from the Euclidean 

distance metric). 
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Representative spectra for each cluster were analysed using the 

hyperspy [23] python libraries for quantitative EDX, with k-

factors for 200keV TEM [24] 

The first sample used in the study was a bulk powder of 6-

element sulfide (AgCdCuFeMnZnS) produced from equal 

amounts of metal dithiocarbamate precursors. These were 

synthesized according to a known procedure described in work 

Lewis and coworkers [11, 25, 26]. Briefly, a metal salt, usually a 

nitrate or chloride, was dissolved in water before being added 

slowly to a methanolic solution of sodium diethyldithio-

carbamate. The reaction mixture was stirred for 2 h before the 

solid product was removed by filtration and dried under 

vacuum. Equal molar amounts of the precursors were mixed 

and thermally decomposed to produce the samples. 

The material was prepared for STEM experiments by 

embedding the as-made powder in resin and using a 

ultramicrotome to prepare 50 nm sections before floating these 

onto 3mm gold TEM grids. 

The nanoparticle system [27] of 7-element sulfide (AgInCoCu 

GaMnZnS) was produced by solution phase thermal decom-

position of metal dithiocarbamate. Each desired 

diethyldithiocarbamate precursor was measured out (0.1 

mmol) and added to oleylamine (10 mL) and dissolved under 

inert atmosphere at 60 oC. Separately, a flask of oleylamine (20 

mL was heated to 200 oC under inert atmosphere. When the 

precursor mixture had fully dissolved, it was injected rapidly 

into the second flask of oleylamine. When the temperature had 

returned to 200 oC, the reaction was timed for 1 h before being 

cooled to room temperature rapidly with a water bath. Acetone 

was added to precipitate the solid product which was isolated 

by centrifugation at 5000G for 10 min, before being 

resuspended in toluene. 

Samples were produced by drop casting the as-synthesised 

nanoparticles onto a clean carbon film on a 3 mm gold TEM grid.  
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Data Availability Statement

The data and workflows used in this study can be accessed at:

https://figshare.manchester.ac.uk/articles/dataset/High-
entropy_sulfide_data_for_clustering_comparison/29327552/1
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