

## Industrial Chemistry & Materials

#### **Accepted Manuscript**

This article can be cited before page numbers have been issued, to do this please use: B. Yu, M. Yang, Y. Qiao, Y. Wang, Y. Xu, X. Bie, Q. Li, Y. Zhang, S. Sun and H. Zhou, *Ind. Chem. Mater.*, 2025, DOI: 10.1039/D5IM00087D.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the <u>Information for Authors</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.







Open Access Article. Published on 04 July 2025. Downloaded on 8/7/2025 11:25:21 AM

View Article Online DOI: 10.1039/D5IM00087D

#### **ARTICLE**

# Integrated SO<sub>2</sub>/NO<sub>2</sub>-containing CO<sub>2</sub> capture and methane dry reforming over Ni-Ca dual functional material: A mechanistic study

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Bocheng Yu,<sup>a</sup> Muqing Yang,<sup>a</sup> Yijian Qiao,<sup>a</sup> Yaozu Wang,<sup>a</sup> Yongqing Xu,<sup>a</sup> Xuan Bie,<sup>a</sup> Qinghai Li,<sup>a</sup> Yanguo Zhang,<sup>a</sup> Shuzhuang Sun<sup>\*b</sup> and Hui Zhou\*<sup>ac</sup>

Integrated carbon capture and utilization (ICCU) has emerged as a promising strategy toward carbon neutrality. However, most existing studies rely on simulated flue gas compositions, neglecting the impact of common impurities such as sulfur oxides (SOx) and nitrogen oxides (NOx), thereby limiting the practical industrial applicability of ICCU technologies. Herein, we systematically investigate the effects of SO<sub>2</sub> and NO<sub>2</sub> at various concentrations on the adsorption-catalysis performance based on a representative Ni-Ca dual functional material (DFM) in ICCU-dry reforming of methane (ICCU-DRM) process. Exposure to 100 ppm SO<sub>2</sub> showed negligible influence on catalytic activity but markedly inhibited carbon deposition. Further increasing the SO<sub>2</sub> concentration to 500 ppm led to complete deactivation of the DFM. NO<sub>2</sub> exhibited a similar concentration-dependent trend to SO<sub>2</sub>, albeit with a comparatively lower impact. Mechanistic analysis revealed that both SO<sub>2</sub> and NO<sub>2</sub> promote the formation of a coating layer of calcium-containing compounds on the surface of Ni nanoparticles, accounting for the part or total deactivation. These findings offer critical insights into the industrial applications of ICCU systems under realistic flue gas conditions.

Keywords: Integrated carbon capture and utilization; SOx and NOx; Deactivation; Phase transition; DRM.

#### 1. Introduction

Excessive anthropogenic  $CO_2$  emissions are causing severe global warming, leading to the frequent occurrence of extreme weather.<sup>1,2</sup> Carbon capture, utilization and storage (CCUS) are believed as one of the most promising ways to achieve net zero by this mid-century as an industrial-level technology.<sup>3–5</sup> Compared to carbon capture and storage (CCS), carbon capture and utilization (CCU) can convert the captured  $CO_2$  into high-value chemical products (CO, CH<sub>4</sub>, CH<sub>3</sub>OH, etc.), which shows a better economy with the avoidance of carbon leaks. Among most of the C1 production reactions (reverse water gas shift, methanation, etc.), dry reforming of methane (DRM, Eq. 1) can simultaneously convert two main greenhouse gases  $CH_4$  and  $CO_2$  into syngas, which serves as a feedstock for other important chemical reactions like methanol production and Fischer-Tropsch synthesis.<sup>6,7</sup> However, high  $CO_2$  storage and transportation costs and massive energy consumption on temperature and pressure swing operations severely restrain the wide deployment of CCU technologies.<sup>8,9</sup>

$$CO_2 + CH_4 \rightarrow 2CO + 2H_2 \Delta H = +274 \text{ kJ mol}^{-1}$$
 (Eq. 1)

Recently, by combining the CO<sub>2</sub> capture and chemical utilization into one reactor, integrated carbon capture and utilization (ICCU) has gained increasing interest from researchers and engineers.<sup>10–14</sup> To achieve these two processes in one reactor, dual function materials (DFMs), consisting of adsorptive component for carbon capture and catalytic component for carbon

<sup>&</sup>lt;sup>a</sup> Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P.R. China.

b School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China

c 3Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan, Shanxi 030000, P.R. China

d. \* Correspondina authors. Emails: ssun@zzu.edu.cn: huizhou@tsinahua.edu.cn.

Open Access Article. Published on 04 July 2025. Downloaded on 87/2025 11:25:21 AM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

ARTICLE Journal Name

conversion, are crucial to achieve high performance ICCU process.  $^{15-18}$  Since DRM is a strongly endothermic reaction and needs high temperature condition (600–900°C), Ca-based sorbents are the most promising candidates for carbon edge. However, Ca-based sorbents severely suffer from sintering, leading to a sharp decreased CO<sub>2</sub> capacity after cycles.  $^{21,22}$  Thus, promoters including MgO, Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub> are commonly introduced into the DFMs to enhance the CaO stability by acting as the physical barrier.  $^{23-25}$  Ni as an earth-abundant metal, showing excellent catalytic activity to methane activation, has become one of the most impressive choices for the catalytic components.  $^{26-28}$ 

Previous studies focused on the outperformed DFM design and adsorptive-catalytic mechanism investigation via ideal flue gas (a mixture of  $CO_2$  and  $N_2$ ), while few studies investigate the influence of impurity components in the realistic flue gas.  $SO_x$  and  $NO_x$ , as two of the most important pollutions in flue gas, have been proven to significantly influence the capture and conversion performance.<sup>29–31</sup> Previous studies reported that  $SO_2$  and  $NO_2$  could poison the  $CO_2$  hydrogenation catalysts, primarily attributed to the strong chemisorption of intermediate species on active metal sites or generation of stable metal sulfides which irreversibly block active sites.<sup>32,33</sup> Also, as an alkaline sorbent,  $CO_2$  can adsorb acidic  $CO_2$  and  $CO_2$  and  $CO_2$  and  $CO_3$  and reductive atmosphere ( $CO_4/N_2$ ), which brings new understandings compared to independent capture or conversion scenarios.

Herein, we investigated the influence of  $SO_2$  and  $NO_2$  on typical Ni-Ca DFMs. Ni5Al15Ca DFM as a representative DFM for ICCU-DRM was synthesized by the sol-gel methods, in which Ni provides high catalytic activity, CaO captures  $CO_2$  in flue gas and  $Al_2O_3$  acts as stabilizer. Series tests under different  $SO_2$  and  $NO_2$  concentrations were performed to uncover the influence of the pollution in flue gas. Low concentration of  $SO_2$  (100 ppm) containing in flue gas showed negligible influence on catalytic activity but markedly reduced  $H_2$ :CO ratio. Further increasing the  $SO_2$  concentration to 500 ppm resulted in complete deactivation of the DFM.  $NO_2$  showed a similar phenomenon to  $SO_2$  with a comparatively lower impact. Systematic characteristics were performed and revealed that the formation of a coating layer on the surface of Ni nanoparticles induced by  $SO_2$  and  $NO_2$ , accounting for the part or total deactivation. This study aims to offer critical insights into the industrial applications of ICCU systems under realistic flue gas conditions.

#### 2. Results and discussion

#### 2.1 Performance evaluation of SO<sub>2</sub> and NO<sub>2</sub> influence

The impact of  $SO_2$  and  $NO_2$  in flue gas on the performance of ICCU-DRM was evaluated through a series of tests under varying  $SO_2$  and  $NO_2$  concentrations (100, 200, and 500 ppm). Without  $SO_2$  or  $NO_2$  in flue gas, the performance of the Ni5Al15Ca DFM was first assessed in the absence of  $SO_2$  and  $NO_2$ . The real-time concentrations of  $CO_2$ , CO, CO, CO, CO, CO, and CO, and CO during the first and second cycles are shown in Fig. 1. During the  $CO_2$  capture stage,  $CO_2$  was adsorbed by CO, accompanied by CO formation attributed to the reverse Boudouard reaction ( $CO_2+C \rightarrow 2CO$ ) from the second cycle. The elevated CO amount indicate the severe carbon deposition during the previous dry reforming stage. In the subsequent dry reforming stage, CO are a common side reaction. Notably, although CO was no longer detected at the final of dry reforming stage, CO remained generated, highlighting the strong CO decomposition activity of CO is sites.

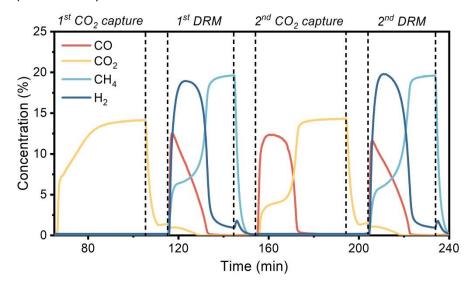



Fig. 1 Real-time gas concentrations of ICCU-DRM for the first and second cycle.

The cyclic performance of the Ni5Al15Ca DFM was systematically evaluated, as illustrated in Fig. 2.  $CO_2$  conversion as a primary indicator of catalytic efficiency reached 81.3% in the first cycle and exhibited only a slight decline 16.78.3% after 10 cycles (Fig. 2a). Result confirms the high activity and stability of the Ni active sites to dry reforming process. Despite the  $CO_2$  conversion, the  $H_2$ :CO ratio was notably higher than the ideal stoichiometric value of 1, reaching 2.39 in the first cycle (Fig. 2b). This deviation suggests the occurrence of  $CH_4$  decomposition as a side reaction, which contributes to excess hydrogen production and promotes carbon deposition on the catalyst surface. The elevated carbon accumulation was further evidenced by the CO yield during the carbonation stage (Fig. 2d). Notably, the  $CO_2$  capacity of Ni5Al15Ca remained relatively stable over the 10 cycles, only decreasing from 10.9 to 9.5 mmol  $g^{-1}$  (Fig. 2c). Such stability is attributed to the presence of  $Al_2O_3$ , which can act as a physical barrier during cycles.

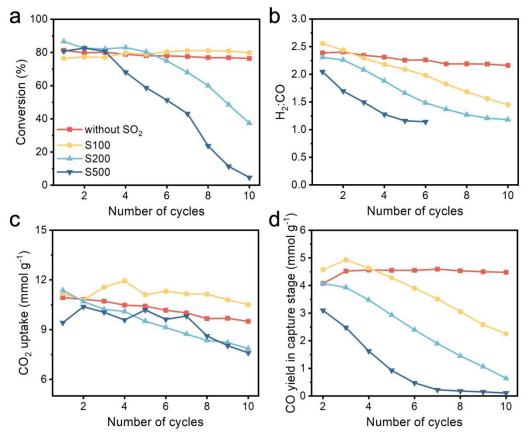



Fig. 2 Cyclic performance of ICCU-DRM under SO<sub>2</sub>-containing flue gas.
(a) CO<sub>2</sub> conversion, (b) H<sub>2</sub>:CO ratio, (c) CO<sub>2</sub> uptake and (d) CO yield in capture stage. S100 refers to the cycled DFM with 100 ppm SO<sub>2</sub> in flue gas.

The influence of varying  $SO_2$  concentrations (100, 200, and 500 ppm) on the performance of the Ni5Al15Ca DFM was investigated. As shown in Fig. 2a, under 100 ppm  $SO_2$  condition, the DFM reached  $CO_2$  conversion of 79.4% in the  $10^{th}$  cycles, even slightly higher than the  $SO_2$ -free DFM. However, as for 200 ppm  $SO_2$ , a significant decline in  $CO_2$  conversion was observed over cycles, with  $CO_2$  conversion dropping to just 37.4% for the  $10^{th}$  cycle. Further increasing the  $SO_2$  concentration to 500 ppm resulted in severe deactivation, with CO and  $CO_2$  conversion performance, while higher concentrations lead to significant DFM deactivation for ICCU-DRM.

The H<sub>2</sub>:CO ratio as another key performance indicator was also examined, as presented in Fig. 2b. Interestingly, under 100 ppm SO<sub>2</sub>, the H<sub>2</sub>:CO ratio gradually decreased over cycles and approached the ideal stoichiometric value of 1, and a similar but more significant trend can be observed at 200 ppm SO<sub>2</sub>. Results suggest that SO<sub>2</sub> in flue gas can suppress the CH<sub>4</sub> decomposition side reaction, thereby mitigating carbon deposition. Decreasing carbon deposit could further be supported by the decreased CO yield during the subsequent carbonation stage (Fig. 2d). Since both CO and H<sub>2</sub> production diminished to near-zero levels after the 6<sup>th</sup> cycle under 500 ppm SO<sub>2</sub>, the H<sub>2</sub>:CO ratio was irrelevant in the final 4 cycles. Notably, the absence of CO during the carbonation stage under 500 ppm SO<sub>2</sub> condition also suggested that no carbon deposition occurred.

Open Access Article. Published on 04 July 2025. Downloaded on 8/7/2025 11:25:21 AM

**ARTICIF** Journal Name

Collectively, these findings indicate that SO<sub>2</sub> can reduce carbon deposition and improve product selectivity for dry, reforming

The observed differences in CO<sub>2</sub> conversion and H<sub>2</sub>:CO ratio between SO<sub>2</sub>-containing and SO<sub>2</sub>-free conditions can be attributed to different reaction kinetics. Thus, the real-time gas concentrations for the 1st and 10th cycles are presented in Fig. 3. For the Ni5Al15Ca DFM under SO₂-free condition, negligible differences were observed between the 1st and 10th cycles, suggesting that the Ni active sites remained catalytically stable for both methane dry reforming and methane decomposition. However, after introducing low concentrations of SO<sub>2</sub> to DFM, a rapid catalytic activity loss was observed, evidenced by the slower formation of both CO and H2. SO2 exhibited a more pronounced inhibitory effect on CH4 decomposition than on the dry reforming reaction, resulting in relatively unchanged CO<sub>2</sub> conversion but a significantly decreased H<sub>2</sub>:CO ratio. This shift indicates a suppression of the side reaction responsible for excess methane consumption and carbon deposition. At higher SO<sub>2</sub> concentrations, however, the CO<sub>2</sub> conversion itself became adversely affected, resulting in nearly complete deactivation.

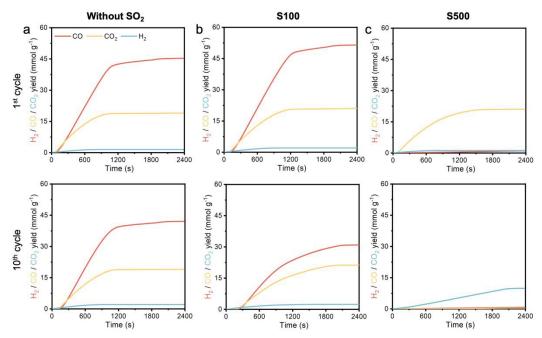



Fig. 3 Real-time gas concentration with SO<sub>2</sub>-containing flue gas of ICCU-DRM for the 1st and 10th cycles. (a) without SO₂ or NO₂ in flue gas, (b) 100 ppm SO₂-containing flue gas, and (c) 500 ppm SO₂-containing flue gas.

Furthermore, the effect of SO<sub>2</sub> on the cyclic stability of CO<sub>2</sub> capture by the Ni5Al15Ca DFM was assessed, as shown in Fig. 2c. Under 100 ppm SO<sub>2</sub>, the initial CO<sub>2</sub> uptake was comparable to the SO<sub>2</sub>-free conditon. Notably, Ni5Al15Ca even exhibited an improved capacity retention under such condition, with only 6.1% decrease after 10 cycles, compared to 13.6% decrease observed in the DFM without SO<sub>2</sub> or NO<sub>2</sub>. Enhanced stability could be attributed to the formation of thermally stable species such as CaS and CaSO₄ (vide infra), which could act as physical barriers to suppress the CaO sintering. However, increasing SO<sub>2</sub> concentrations led to declined CO<sub>2</sub> uptake with cycling. Such deactivation was likely due to the continuous formation of CaS and CaSO<sub>4</sub>, consuming active CaO components and thereby reducing the theoretical CO<sub>2</sub> capacity of the DFM. In short, while limited formation of these sulfur-containing phases may enhance stability by serving as physical barriers, excessive accumulation compromises the sorbent capacity until equilibrium is reached.

The influence of NO<sub>2</sub> in the flue gas was further investigated, as shown in Fig. 4. Similar to SO<sub>2</sub>, NO<sub>2</sub> induced a similar CO<sub>2</sub> conversion but a shift in the H<sub>2</sub>:CO ratio; however, its impact was significantly less severe. Notably, the Ni5Al15Ca DFM retained considerable catalytic activity even under 500 ppm NO<sub>2</sub>, whereas complete deactivation occurred under the same concentration of SO2. These differences can be attributed to the relatively milder deactivation of Ni active sites by NO2, as compared to SO<sub>2</sub>, for both dry reforming and methane decomposition reactions (Fig. 5). In addition, NO<sub>2</sub> had minimal effect on CO<sub>2</sub> uptake capacity, likely because nitrogen species do not accumulate within the DFM (vide supra). Overall, while NO<sub>2</sub> exhibits a similar mode of influence to SO2, its detrimental effects are significantly less pronounced.

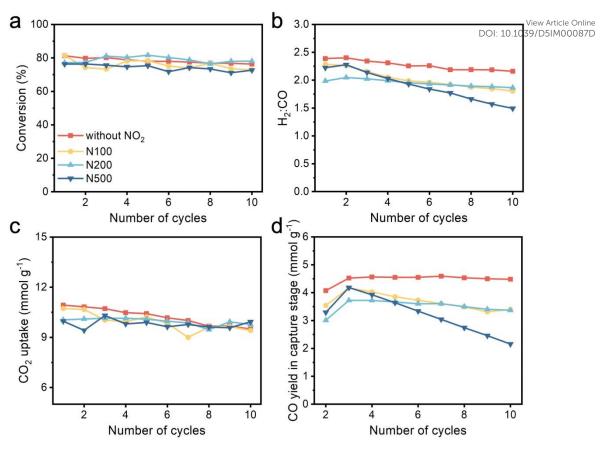



Fig. 4 Cyclic performance of ICCU-DRM under NO<sub>2</sub>-containing flue gas.

(a) CO<sub>2</sub> conversion, (b) H<sub>2</sub>:CO ratio, (c) CO<sub>2</sub> uptake and (d) CO yield in capture stage. N100 refers to the cycled DFM with 100 ppm NO<sub>2</sub> in flue gas.

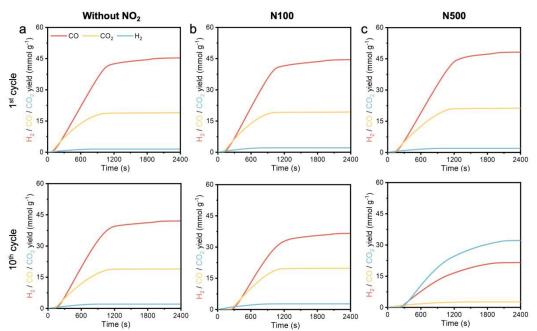



Fig. 5 Real-time gas concentration with NO<sub>2</sub>-containing flue gas of ICCU-DRM for the 1st and 10th cycles.

(a) without SO<sub>2</sub> or NO<sub>2</sub> in flue gas, (b) 100 ppm NO<sub>2</sub>-containing flue gas, and (c) 500 ppm NO<sub>2</sub>-containing flue gas.

ARTICLE Journal Name

#### 2.2 Mechanism study of the SO<sub>2</sub> and NO<sub>2</sub> influences

View Article Online

To elucidate the performance impacts of SO<sub>2</sub> and NO<sub>2</sub>, a series of systematic characterizations were conducted to reveal the underlying mechanisms. The elemental composition of the as-synthesized Ni5Al15Ca material, determined by inductively coupled plasma optical emission spectroscopy (ICP-OES), is summarized in Table 1. X-ray diffraction (XRD) (Fig. 6a) indicated that the pre-reduced Ni5Al15Ca was primarily composed of CaO (PDF# 96-900-8606) and metallic Ni (PDF# 96-151-2527), while Al existed in an amorphous phase. Scanning electron microscopy (SEM) revealed that the pre-reduced Ni5Al15Ca DFM possessed a porous morphology (Fig. 6b), and transmission electron microscope (TEM) further confirmed the dispersion of Ni nanoparticles on the blocky CaO support (Fig. 6c). N<sub>2</sub> physisorption measurements (Fig. 6d) showed a specific surface area of 13.4 m<sup>2</sup> g<sup>-1</sup> with an average pore diameter of 23.6 nm, indicative of a mesoporous structure of DFM. H<sub>2</sub> temperature-programmed reduction (H<sub>2</sub>-TPR) analysis (Fig. 6e) demonstrated the reducibility of NiO or Ni–Al spinel species to metallic Ni under H<sub>2</sub>, which was consistent with the XRD and TEM observations. The CO<sub>2</sub> uptake capacity of the pre-reduced DFM was measured to be 10.4 mmol g<sup>-1</sup> by thermal gravimetric analyzer (TGA), in good agreement with the results obtained from the fixed-bed reactor experiments (Fig. 6f).

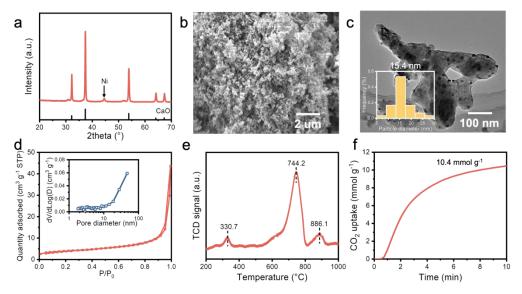



Fig. 6 Characteristics of pre-reduced Ni5Al15Ca dual functional material.

(a) XRD of pre-reduced DFM, (b) SEM of pre-reduced DFM, (c) TEM of pre-reduced DFM, (d) surface area and pore diameter distribution of the pre-reduced DFM, (e) H<sub>2</sub>-TPR of calcined DFM and (f) TGA of pre-reduced DFM.

Table 1. Elementary analysis of pre-reduced and cycled DFM.

| DFM         | Ni <sup>a</sup> (%) | Al (%) | Ca (%) | S (%) |
|-------------|---------------------|--------|--------|-------|
| Pre-reduced | 5.1                 | 6.6    | 57.1   | -     |
| Cycled-S100 | 4.2                 | 6.0    | 45.6   | 1.6   |
| Cycled-S500 | 4.1                 | 5.8    | 44.5   | 5.9   |

<sup>&</sup>lt;sup>a</sup> Mass ratio of Ni, Al, Ca and S was tested by ICP-OES

The crystal structures of cycled Ni5Al15Ca DFMs were analyzed by XRD, as shown in Fig. 7. After 10 cycles under SO<sub>2</sub>- and NO<sub>2</sub>-free conditions, the characteristic phases of CaO and metallic Ni remained detectable, although the significant decrease in peak intensity was attributed to the formation of amorphous carbon deposits. When cycled in flue gas containing SO<sub>2</sub>, new diffraction peaks corresponding to CaS (PDF# 96-900-8607) appeared at both 100 ppm and 500 ppm SO<sub>2</sub> concentrations, whereas a minor CaSO<sub>4</sub> (PDF# 96-900-4097) phase was only observed at 500 ppm SO<sub>2</sub>. The accumulation of sulfur species after 10 cycles in SO<sub>2</sub>-containing atmospheres was further confirmed by ICP-OES. Given the relative stability of CaSO<sub>4</sub> and CaS under dry reforming conditions, the sulfur content reached approximately 1.6% and 5.9% for the 100 ppm and 500 ppm SO<sub>2</sub> cases, respectively (Table 1). However, for the samples exposed to NO<sub>2</sub>-containing flue gas, only CaO and Ni phases were detected by XRD. Notably, higher NO<sub>2</sub> concentrations corresponded to increased peak intensities, consistent with the suppression of carbon deposition (vide supra). Elemental analysis showed no detectable nitrogen in the cycled DFM, indicating that nitrogen species did not accumulate during methane dry reforming.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence

Open Access Article. Published on 04 July 2025. Downloaded on 8/7/2025 11:25:21 AM

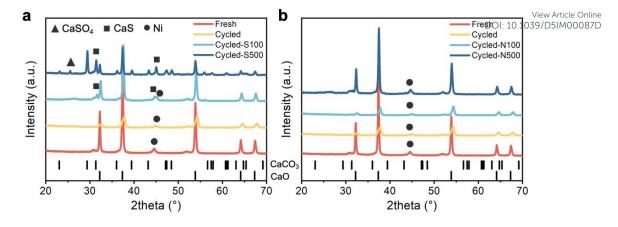



Fig. 7 XRD of pre-reduced and cycled DFMs.

(a) SO<sub>2</sub>-containing and (b) NO<sub>2</sub>-containing flue gas.

Given the significant impact of  $SO_2$  on the crystal phase changing of the DFM, in situ XRD was conducted to elucidate the dynamic phase transformations during the carbonation and dry reforming stages (Fig. 8). Upon introduction of  $SO_2$ -containing flue gas into the reactor, the characteristic CaO peaks gradually diminished concurrent with the emergence of  $CaCO_3$  peaks (PDF# 96-900-0967), confirming effective  $CO_2$  capture. Notably,  $CaSO_4$  was detected at the onset of the carbonation stage, reflecting the adsorption of  $SO_2$  by the CaO sorbent. As the reaction progressed, CaS formation could be observed, likely resulting from the disproportionation of  $SO_2$  (Eq. 2). During the conversion stage, in addition to the decomposition of  $CaCO_3$  regenerating CaO, an increase in CaS peak intensity accompanied by a decrease in  $CaSO_4$  peak intensity was detected. This trend is consistent with the reduction of  $CaSO_4$  by  $CH_4$  to form CaS (Eq. 3)  $^{36}$ .

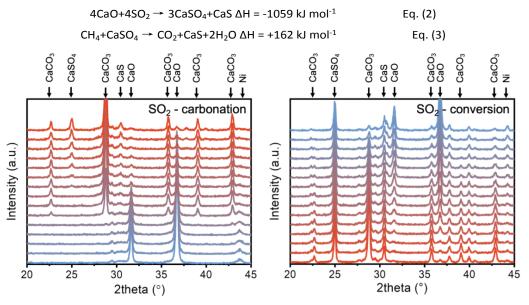



Fig. 8 In situ XRD of ICCU-DRM under SO<sub>2</sub>-containing flue gas.

Each scan continued for 2.5 min.

The surface morphologies of the cycled DFMs are shown in Fig. 9. Severe pore collapse was observed after cycling, suggesting that the Ni5Al15Ca DFM underwent significant sintering. Notably, no discernible morphological differences could be observed between DFMs cycled in  $SO_2$ - or  $NO_2$ -containing atmospheres to without  $SO_2$  or  $NO_2$  condition, indicating that  $SO_2$  and  $NO_2$  had minimal influence on surface morphology. However, both  $SO_2$  and  $NO_2$  exhibited clear effects on the pore structure, as evidenced by  $N_2$  physisorption analysis (Fig. 10 and Table 2). Compared with the pre-reduced DFM, most cycled samples, except for the DFM exposed to 500 ppm  $SO_2$ , exhibited an increase in surface area, primarily due to carbon deposition. Prior studies have shown that sintering of CaO-based DFMs typically results in a decreased pore diameter due to the collapse of macropores. In the presence of  $SO_2$ , the average pore diameter increased to 24.2 nm and 33.0 nm (at 100 ppm and 200 ppm, respectively), in contrast to the 16.8 nm observed in the  $SO_2$ -free cycled DFM. Increased pore diameter

Open Access Article. Published on 04 July 2025. Downloaded on 87/2025 11:25:21 AM

ARTICLE Journal Name

was likely due to the formation of CaS and CaSO<sub>4</sub>, as confirmed by XRD. Sulfur-containing species was ascribed to the increased Tammann temperatures, which function as physical barriers to effectively suppress CaO sintering. In the NO<sub>2</sub>-containing case, despite the absence of stable nitrogen-containing crystal phases. The increase in pore diameter for NO<sub>2</sub>-treated DMF was hypothesized to result from pore generation during the decomposition of transient calcium nitrite intermediates.

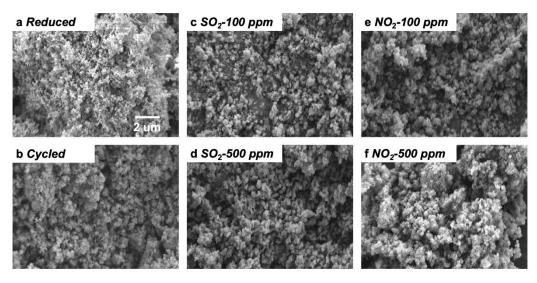



Fig. 9 SEM of pre-reduced and cycled Ni5Al15Ca DFM.

(a) Pre-reduced DFM, (b) cycled DFM without SO<sub>2</sub> or NO<sub>2</sub>, (c) cycled DFM with 100 ppm SO<sub>2</sub>-containing flue gas, (d) cycled DFM with 500 ppm SO<sub>2</sub>-containing flue gas, (e) cycled DFM with 100 ppm NO<sub>2</sub>-containing flue gas, and (f) cycled DFM with 500 ppm NO<sub>2</sub>-containing flue gas.

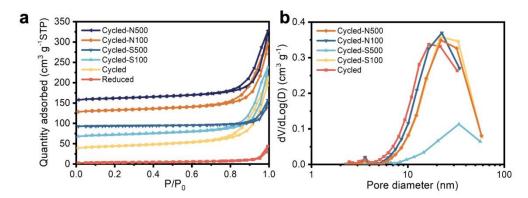



Fig. 10 N<sub>2</sub> physisorption of cycled DFM.

(a) BET surface and (b) pore diameter distribution.

Table 2. BET surface and averaged pore diameter of pre-reduced and cycled DFM.

| DFM         | BET surface (m <sup>2</sup> g <sup>-1</sup> ) | Averaged pore diameter <sup>a</sup> (nm) |
|-------------|-----------------------------------------------|------------------------------------------|
| Pre-reduced | 13.4                                          | 23.6                                     |
| Cycled      | 49.6                                          | 16.8                                     |
| Cycled-S100 | 42.0                                          | 24.2                                     |
| Cycled-S500 | 13.0                                          | 33.0                                     |
| Cycled-N100 | 44.5                                          | 18.9                                     |
| Cycled-N500 | 41.8                                          | 24.2                                     |

<sup>&</sup>lt;sup>a</sup>The pore diameter was calculated by BJH desorption branch (4V/A).

Open Access Article. Published on 04 July 2025. Downloaded on 8/7/2025 11:25:21 AM

Journal Name

View Article Online DOI: 10.1039/D5IM00087D

**ARTICLE** 

The Ni nanoparticles and elemental distribution were further examined by TEM equipped with energy-dispersive X-ray analysis (EDX), as shown in Fig. 11. Pre-reduced and cycled DFM exhibited similar Ni nanoparticle size, indicated that sintering played a minor role in deactivation of Ni active sites. After 10 cycles without SO<sub>2</sub> or NO<sub>2</sub>, carbon nanotubes (CNTs) were observed, originating from carbon deposition during CH<sub>4</sub> decomposition. Under 100 ppm SO<sub>2</sub>, the morphology of Ni nanoparticles remained unchanged, indicating that low-concentration SO<sub>2</sub> exhibited minimal influence on the nano structure. However, at elevated SO<sub>2</sub> concentrations (500 ppm), CNTs were no longer observed, which was consistent with the reduced carbon deposition observed in fixed-bed reactor tests. Line-scan EDX analysis revealed a strong spatial correlation between sulfur and nickel signals (Fig. 11c), even though no NiS phases were detected by XRD. Close-up lattice-resolved imaging further confirmed the presence of NiS by identifying lattice fringes with a spacing of 0.322 nm, corresponding to the (111) crystal plane of NiS. the. These results suggest that sulfur, likely in the form of CaS or NiS, coated the surface of Ni nanoparticles, leading to blockage of active sites and consequent catalytic deactivation. In the case of NO<sub>2</sub>-containing flue gas, similar nanoparticle morphology was observed, while N element was undetectable in the EDX, in agreement with bulk elemental analysis. Although NO<sub>2</sub> did not leave a residual nitrogen species on the DFM after cycling, TEM images (Fig. 11e) revealed a distinct coating layer of CaO. This could be attributed to the acidic nature of NO<sub>2</sub>, which likely promote surface restructuring of the alkaline CaO, resulting in the formation of a coating layer.

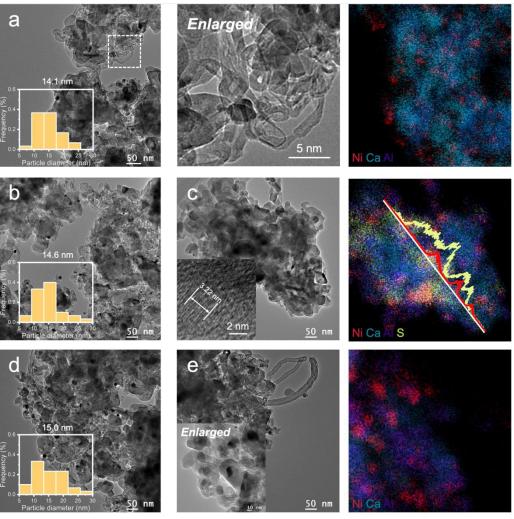



Fig. 11 TEM of cycled DFM.

(a) Cycled DFM with enlarged CNTs and EDX; (b) cycled DFM under 100 ppm SO<sub>2</sub>-containing flue gas; (c) cycled DFM under 500 ppm SO<sub>2</sub>-containing flue gas and EDX; (d) cycled DFM under 100 ppm NO<sub>2</sub>-containing flue gas; (e) cycled DFM under 500 ppm NO<sub>2</sub>-containing flue gas and EDX.

The nature and structure of carbon deposits on cycled Ni5Al15Ca DFMs were further examined by Raman spectroscopy, as shown in Fig. 12. The DFM cycled without  $SO_2$  or  $NO_2$  exhibited two prominent peaks centered at approximately 1857 cm<sup>-1</sup> (D band) and 1579 cm<sup>-1</sup> (G band), corresponding to amorphous carbon and graphitic  $sp^2$  carbon, respectively. The intensity ratio ( $I_D/I_G$ ) was used to evaluate the degree of graphitization. In the absence of  $SO_2$  and  $NO_2$ , the cycled DFM displayed an  $I_D/I_G$  value of 1.1, indicative of the formation of highly graphitic carbon structures such as carbon nanotubes, consistent with TEM observations. Upon exposure to 100 ppm  $SO_2$ , the  $I_D/I_G$  ratio increased to 1.6, likely due to partial deactivation of Ni active sites. For DFMs exposed to 500 ppm  $SO_2$ , neither D nor G bands were detectable, indicating an absence of detectable carbon deposition, which was consistent with the TEM and reactor data. Introduction of  $NO_2$  during the  $CO_2$  capture stage showed minimal effect on the type of carbon formed during the  $CH_4$  dry reforming step. However, carbon deposition was evidently suppressed, as corroborated by fixed-bed reactor results, even though the Raman spectra did not indicate significant changes in the graphitization degree.

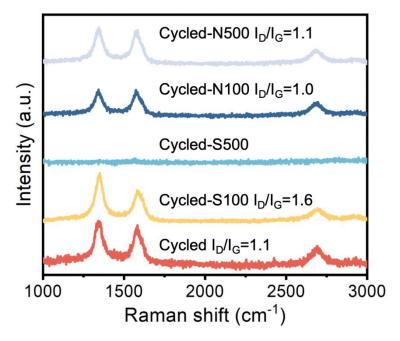



Fig. 12 Raman spectrum of cycled DFMs.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 04 July 2025. Downloaded on 8/7/2025 11:25:21 AM.

X-ray photoelectron spectroscopy (XPS) was conducted to gain insight into the surface elemental composition and chemical states of the cycled Ni5Al15Ca DFM, as shown in Fig. 13. Sulfur species were clearly detected on the surface after exposure to 100 ppm SO<sub>2</sub>, with significantly intensified peaks under 500 ppm SO<sub>2</sub> conditions. Two characteristic S 2p signals at 163.2 eV and 172.4 eV were assigned to sulfide and sulfate species, respectively. Although only CaS was identified in the bulk phase by XRD, XPS analysis revealed that both sulfide and sulfate species were present on the surface in comparable proportions at lower SO<sub>2</sub> concentrations. Under 500 ppm SO<sub>2</sub>, the surface was dominated by sulfide species, in agreement with the increased CaS content observed by XRD. In contrast, for the NO<sub>2</sub>-treated DFM, no nitrogen species were detected on the surface after 10 cycles, suggesting that nitrogen-containing intermediates were fully decomposed or desorbed during the dry reforming process. This observation is consistent with both the elemental analysis and the absence of stable nitrogen-containing phases in the XRD results.

Open Access Article. Published on 04 July 2025. Downloaded on 8/7/2025 11:25:21 AM

Journal Name ARTICLE

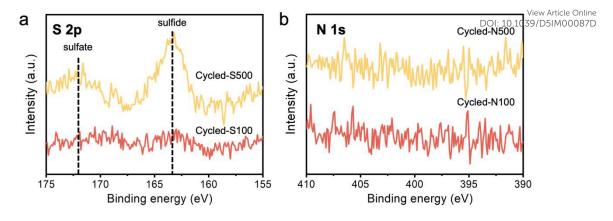



Fig. 13 XPS of cycled DFM.

(a) SO<sub>2</sub>-containing flue gas condition and (b) NO<sub>2</sub>-containing flue gas condition.

Based on the above experimental findings, a mechanism is proposed to elucidate the influence of  $SO_2$  and  $NO_2$  on the ICCU-DRM process. During the  $CO_2$  capture stage, both  $SO_2$  and  $NO_2$  can be co-adsorbed by CaO alongside  $CO_2$ . The generated CaS and CaSO<sub>4</sub> species are thermally stable and persist into the subsequent  $CH_4$  dry reforming stage, whereas calcium nitrates formed from  $NO_2$  adsorption are thermodynamically unstable and decompose upon gas switching. The formation of CaS and CaSO<sub>4</sub> can act as physical barriers that suppress CaO sintering and thereby enhance the cyclic stability of the DFM. However, progressive accumulation of these sulfur species leads to the irreversible consumption of active CaO, reducing the theoretical  $CO_2$  uptake capacity. In the case of  $NO_2$ , the decomposition of calcium nitrates during cycling may contribute to improved pore structure, offering potential benefits for gas diffusion. During the  $CH_4$  dry reforming stage, both  $SO_2$  and  $NO_2$  induce part or total deactivation of the Ni active sites through the formation of surface coating layers.  $NO_2$  and low concentrations of  $SO_2$  result in partial deactivation, leading to preserved  $CO_2$  conversion but a notably reduced  $H_2$ :CO ratio and suppressed carbon deposition. In contrast, high  $SO_2$  concentrations cause near-complete deactivation of Ni sites, eliminating both CO and CO and CO performance, providing important guidance for the development of sulfur- and nitrogen-tolerant DFM materials in realistic industrial applications.

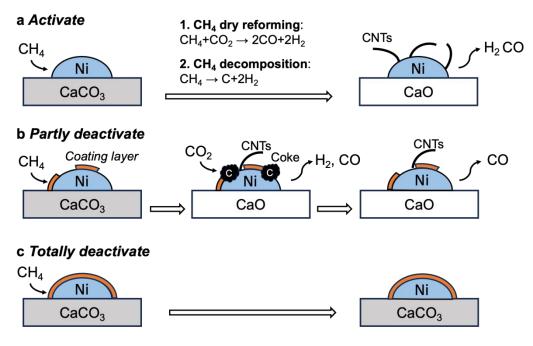



Fig. 14 Influence mechanism illustration of SO<sub>2</sub> or NO<sub>2</sub> pollutions in flue gas for ICCU-DRM.

#### 3. Conclusions

ARTICLE Journal Name

In this study, we systematically evaluated the influence of SO<sub>2</sub> and NO<sub>2</sub> in flue gas to the ICCU-DRM performance, and uncover relevant mechanism. Fixed-bed reactor results revealed that low concentration of SO<sub>2</sub> (100 ppm) in flue gas showed with or influence to the CO<sub>2</sub> conversion, but can effectively inhibit the methane decomposition side reactions, therefore significantly reduce the carbon deposition. Moreover, the low concentration of SO<sub>2</sub> in flue gas can effectively improve the stability of CO<sub>2</sub> capture. However, with the increase of SO<sub>2</sub> concentration to 500 ppm, the adsorption capacity and catalytic reforming capacity of the DFMs decreased significantly, and the materials were significantly deactivated after 10 cycles. NO<sub>2</sub> in flue gas exhibited similar trend with SO<sub>2</sub> but at lower impact level. Characteristics revealed that both SO<sub>2</sub> and NO<sub>2</sub> induced a coating layer on the surface of Ni catalytic site, which reduced the catalytic performance of the Ni active site, and then affect the performance of the DFM. This study provided a solid foundation for the design and application of DFMs under realistic flue gas conditions.

#### 4. Experimental section

#### 4.1 Material synthesis

The typical Ni5Al15Ca DFM was synthesized by a sol-gel method. Calculated amount of  $15.11 \ g \ Ca(NO_3)_2 \cdot 4H_2O$  (Aladdin, 99.9%), 4.50 g Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O (Aladdin, 99.9%), and 1.16 g Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (Aladdin, 99.9%) were dissolved in 60 mL deionized water and stirred for 1 h. 15.36 g citric acid (Aladdin, 99.5%) was then added to the solution with another 1 h. Then the mixture was heated to 90°C with oil bath. The mixture formed a wet-gel after ca. 5 h, which was subsequently aged overnight in an oven at 120°C to form the dry-gel. The dry-gel was then calcined in a muffle furnace at 850°C for 2 h with a ramp rate of 10 °C min<sup>-1</sup>. The as-synthesized powder was granulated to 40–60 mesh size. Finally, the Ni5Al15Ca DFM was pretreated in H<sub>2</sub> at 700°C for 3 h.

#### 4.2 Material characterization

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 04 July 2025. Downloaded on 8/7/2025 11:25:21 AM

The molar ratios of Ni, Al, Ca and S in DFM were calculated using ICP-OES (Agilent ICPOES730) after digestion in nitric acid. The N element was analyzed by elementary analyzer (EA, Thermo Scientific Flash Smart Analyzer). Crystal structure of DFM was measured by XRD (PANalytical Empyrean series) equipped with a Bragg-Brentano high-definition mirror. The data was collected within the 2theta range of 10–90° with a step size of 0.01303° and 50 s per step. SEM (JEOL JSM-9700F) was applied to characterize the morphology and element distribution of the materials. Morphologies of nanoparticles and element distributions were investigated by TEM (JEOL JEM-2100 Plus, operated at 200 kV) equipped with EDX. The surface area and pore volume of the materials were determined by N₂ physisorption (Micromeritics, ASAP 2460 analyzer), with the Brunauer-Emmet-Teller (BET) model (using the adsorption data) and Barrett-Joyner-Halenda (BJH) model (using the desorption data), respectively. XPS (SPECS) with Al Kα X-ray source and PHOIBOS 150 Analyzer was performed for surface element analysis. The C 1s peak of adventitious carbon was set at 284.8 eV to correct for any charge-induced shifts. H₂-TPR (Micromeritics, AutoChem II-2920 system) was performed to evaluate the reducibility of the DFM. Ca. 100 mg sample was pretreated at 800 °C under Ar atmosphere. After cooling to room temperature, the sample was reduced at a ramp rate of 10°C min<sup>-1</sup> under 10% H₂/Ar from room temperature to 1000°C. The carbon capture capacity of DFM was evaluated by TGA (NETZSCH STA2500). Ca. 5 mg sample was placed in an alumina pan in the analyzer chamber and the weight signal was collected at 650°C under 15% CO₂/N₂.

#### 4.3 Performance test of integrated carbon capture and methane dry reforming

The performance of integrated carbon capture and methane dry reforming (ICCU-DRM) was evaluated by a fixed-bed system. The gas analyzer (Cubic Ruiyi Instruments, Gasboard 3000) was used to analyzed the real-time concentration of gas.  $CO_2$ , CO and  $CH_4$  was detected by non-dispersive infrared (NDIR) detector, while  $H_2$  was detected by thermal conductivity detector (TCD). Briefly, ca. 200 mg DFM was placed in a quartz tube with an internal diameter of 8 mm. As for a typical ICCU-DRM test, the DFM was first pretreated under  $N_2$  (50 mL min<sup>-1</sup>) at 675°C to remove the adsorbed  $CO_2$ . Subsequently, the carbon capture stage was performed under  $15\%CO_2/N_2$  (50 mL min<sup>-1</sup>) at 650°C for 40 min. As for  $SO_2$  and  $SO_2$  containing flue gas, corresponding concentrations of  $SO_2$  and  $SO_2$  were mixed into the flue gas. The uncaptured  $SO_2$  was purged by  $SO_2$  (50 mL min<sup>-1</sup>) for 10 min. As for dry reforming stage, the DFM was exposed to  $SO_2$  of  $SO_2$  mL min<sup>-1</sup>) at 675°C for 30 min, followed by purging by  $SO_2$  (50 mL min<sup>-1</sup>) for 10 min. All working conditions repeated for 10 capture/conversion cycles to test the stability of the DFM. All experiments were operated at atmospheric pressure.

The CO yield in carbon capture stage, CO<sub>2</sub> uptake, CO<sub>2</sub> conversion, and H<sub>2</sub>:CO ratio were calculated as below:

CO yield in carbon capture stage (mmol g<sup>-1</sup>) = 
$$\frac{\int F_{\text{Cap, CO}}^{\text{out}}(t) dt}{m_{\text{corr}}}$$

$$\mathsf{CO}_2 \text{ uptake (mmol g}^{-1}) = \frac{\int [F_{\mathsf{Cap},\mathsf{Co}_2}^{\mathsf{in}}(t) - F_{\mathsf{Cap},\mathsf{Co}_2}^{\mathsf{out}}(t) - F_{\mathsf{Cap},\mathsf{Co}_2}^{\mathsf{out}}(t) - F_{\mathsf{Cap},\mathsf{Co}}^{\mathsf{out}}(t)/2] \; \mathrm{d}t}{m_{\mathsf{DCM}}}$$

$$CO_2 \text{ conversion (\%)} = \frac{\int F_{\text{Con, CO}}^{\text{out}}(t)/2 dt}{\int [F_{\text{Con, CO}}^{\text{out}}(t)/2 + F_{\text{Con, CO_2}}^{\text{out}}](t) dt}$$

H<sub>2</sub>:CO ratio (1) = 
$$\frac{\int F_{\text{Con,H}_2}^{\text{out}}(t) dt}{\int F_{\text{con},CO}^{\text{out}}(t) dt}$$

View Article Online DOI: 10.1039/D5IM00087D

where, F denotes the molar flow rate of the gas, Cap and Con refers to carbon capture stage and conversion stage.  $M_{DFM}$  represents the mass of DFM.

#### 4.4 In situ XRD

In situ XRD experiments were conducted on the XRD (PANalytical, Empyrean Series) equipped with an XRK 900 reactor chamber from Anton Paar (Anton Paar, XRK-900). The DFMs were firstly in situ reduced at 700°C under a flow of 100 mL min<sup>-1</sup>  $^{1}$  H<sub>2</sub> for 1 h, followed by purging in N<sub>2</sub>. Subsequently, 100 mL min<sup>-1</sup> 2000 ppm  $^{1}$  SO<sub>2</sub>/15%  $^{1}$  CO<sub>2</sub>/N<sub>2</sub> was introduced into the chamber for 90 min. After another 100 mL min<sup>-1</sup> N<sub>2</sub> purge, 100 mL min<sup>-1</sup> 20%  $^{1}$  CH<sub>4</sub>/N<sub>2</sub> was introduced into chamber for 90 min. The XRD patterns were continuously recorded with 2theta of 20–45° with 2.5 min per scan.

#### **Author contributions**

H.Z., S.S. and B.Y. conceived the research project. B.Y. designed the experimental work. B.Y., M.Y. and Y.W. performed the experiments. B.Y. contributed to the in situ XRD experiments. Y.X. and X.B. assisted with the catalyst characterization. Data analysis and interpretation were discussed among all coauthors. B.Y., S.S. and H.Z. wrote the manuscript, with contributions from all authors.

#### **Conflicts of interest**

There are no conflicts to declare.

#### Acknowledgements

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence

Access Article. Published on 04 July 2025. Downloaded on 8/7/2025 11:25:21 AM

This work was supported by the Beijing Natural Science Foundation (JQ24053), National Natural Science Foundation of China (52276202), National Key R&D Program of China (2023YFB4104000), Special support program for young talent innovation teams from Zhengzhou University (32320673), Carbon Neutrality and Energy System Transformation (CNEST) project (2023YFE0204600), International Joint Mission On Climate Change and Carbon Neutrality, and Tsinghua University Initiative Scientific Research Program.

#### References

- 1 J. Rogelj, M. Den Elzen, N. Höhne, T. Fransen, H. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi and M. Meinshausen, Paris Agreement climate proposals need a boost to keep warming well below 2 °C, *Nature*, 2016, **534**, 631–639.
- 2 Z. Liu, Z. Deng, G. He, H. Wang, X. Zhang, J. Lin, Y. Qi and X. Liang, Challenges and opportunities for carbon neutrality in China, *Nat. Rev. Earth Environ.*, 2021, **3**, 141–155.
- 3 Z. Zhang, S.-Y. Pan, H. Li, J. Cai, A. G. Olabi, E. J. Anthony and V. Manovic, Recent advances in carbon dioxide utilization, *Renewable Sustainable Energy Rev.*, 2020, **125**, 109799.
- 4 D. U. Nielsen, X.-M. Hu, K. Daasbjerg and T. Skrydstrup, Chemically and electrochemically catalysed conversion of CO<sub>2</sub> to CO with follow-up utilization to value-added chemicals, *Nat. Catal.*, 2018, **1**, 244–254.
- 5 W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng, B. Xie, C. Y. Toe, X. Zhu, J. Wang, L. Huang, Y. Gao, Z. Wang, C. Jo, Q. Wang, L. Wang, Y. Liu, B. Louis, J. Scott, A.-C. Roger, R. Amal, H. He and S.-E. Park, Industrial carbon dioxide capture and utilization: State of the art and future challenges, *Chem. Soc. Rev.*, 2020, **49**, 8584–8686.
- 6 Y. Wang, R. Li, C. Zeng, W. Sun, H. Fan, Q. Ma and T.-S. Zhao, Recent research progress of methane dry reforming to syngas, *Fuel*, 2025, **398**, 135535.
- 7 A. H. K. Owgi, A. A. Jalil, I. Hussain, N. S. Hassan, H. U. Hambali, T. J. Siang and D. V. N. Vo, Catalytic systems for enhanced carbon dioxide reforming of methane: A review, *Environ. Chem. Lett.*, 2021, **19**, 2157–2183.
- 8 H. McLaughlin, A. A. Littlefield, M. Menefee, A. Kinzer, T. Hull, B. K. Sovacool, M. D. Bazilian, J. Kim and S. Griffiths, Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world, *Renew. Sust. Energ. Rev.*, 2023, **177**, 113215.

**Journal Name** 

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence

Access Article. Published on 04 July 2025. Downloaded on 8/7/2025 11:25:21 AM

9 T. M. Gür, Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies, Programmer Combust., 2022, 89, 100965.

- 10 J. Chen, Y. Xu, P. Liao, H. Wang and H. Zhou, Recent progress in integrated CO<sub>2</sub> capture and conversion process using dual function materials: A state-of-the-art review, *Carbon Capture Sci. Technol.*, 2022, **4**, 100052.
- 11 S. Sun, H. Sun, P. T. Williams and C. Wu, Recent advances in integrated CO<sub>2</sub> capture and utilization: A review, *Sustain. Energ. Fuels*, 2021, **5**, 4546–4559.
- 12 S. Sun, B. Yu, Y. Shen, Y. Liu, H. Sun, X. Bie, M. Wu, Y. Xu, C. Wu and H. Zhou, Promoting proximity to enhance Fe-Ca interaction for efficient integrated CO<sub>2</sub> capture and hydrogenation, *Sep. Purif. Technol.*, 2025, **357**, 130227.
- 13 E. García-Bordejé, J. M. Conesa, A. Guerrero-Ruiz and I. Rodríguez-Ramos, Bifunctional Na–Ru on gamma-alumina for CO<sub>2</sub> capture from air and conversion to CH<sub>4</sub>: Impact of the regeneration method and support on monolithic contactors, *Ind. Chem. Mater.*, 2025, 10.1039.D5IM00030K.
- 14 H. Liu, L. Cen, X. Xie, L. Liu, Z. Sun and Z. Sun, Engineering nanoparticle structure at synergistic Ru-Na interface for integrated CO₂ capture and hydrogenation, *J. Energy Chem.*, 2025, **100**, 779–791.
- 15 Y. Shen, S. Sun, H. Sun, Y. Xu, H. Zhou, C. Wu and H. Qiu, Dual functional materials for integrated CO<sub>2</sub> capture and utilization (ICCU): Design, fabrication, performances, and challenges, *Chem. Eng. J.*, 2025, **512**, 162440.
- 16 Z. Lv, C. Qin, S. Chen, D. P. Hanak and C. Wu, Efficient-and-stable CH<sub>4</sub> reforming with integrated CO<sub>2</sub> capture and utilization using Li<sub>4</sub>SiO<sub>4</sub> sorbent, *Sep. Purif. Technol.*, 2021, **277**, 119476.
- 17 B. Shao, G. Hu, K. A. M. Alkebsi, G. Ye, X. Lin, W. Du, J. Hu, M. Wang, H. Liu and F. Qian, Heterojunction-redox catalysts of Fe<sub>x</sub>Co<sub>y</sub>Mg<sub>10</sub>CaO for high-temperature CO<sub>2</sub> capture and in situ conversion in the context of green manufacturing, *Energy Environ. Sci.*, 2021, **14**, 2291–2301.
- 18 S. Bahrami Gharamaleki, S. Carrasco Ruiz, T. Ramirez Reina, M. Short and M. S. Duyar, Effect of adsorbent loading on NaNiRu-DFMs' CO<sub>2</sub> capture and methanation: Finding optimal Na-loading using Bayesian optimisation guided experiments, *Ind. Chem. Mater.*, 2025, 10.1039.D5IM00019J.
- 19 S. Sun, Y. Wang, Y. Xu, H. Sun, X. Zhao, Y. Zhang, X. Yang, X. Bie, M. Wu, C. Zhang, Y. Zhu, Y. Xu, H. Zhou and C. Wu, Ni-functionalized Ca@Si yolk-shell nanoreactors for enhanced integrated CO<sub>2</sub> capture and dry reforming of methane via confined catalysis, *Appl. Catal., B*, 2024, **348**, 123838.
- 20 J. Hu, P. Hongmanorom, V. V. Galvita, Z. Li and S. Kawi, Bifunctional Ni-Ca based material for integrated CO<sub>2</sub> capture and conversion via calcium-looping dry reforming, *Appl. Catal., B*, 2021, **284**, 119734.
- 21 Y. Hu, H. Lu, W. Liu, Y. Yang and H. Li, Incorporation of CaO into inert supports for enhanced CO<sub>2</sub> capture: A review, *Chem. Eng. J.*, 2020, **396**, 125253.
- 22 H. Sun, C. Wu, B. Shen, X. Zhang, Y. Zhang and J. Huang, Progress in the development and application of CaO-based adsorbents for CO<sub>2</sub> capture—A review, *Mater. Today Sustain.*, 2018, **1–2**, 1–27.
- 23 Y. Hu, Q. Xu, X. Zou, X. Wang, H. Cheng, X. Zou and X. Lu,  $M_xO_y$  (M = Mg, Zr, La, Ce) modified Ni/CaO dual functional materials for combined  $CO_2$  capture and hydrogenation, *Int. J. Hydrog. Energy*, 2023, **48**, 24871–24883.
- 24 Y. Guo, G. Wang, J. Yu, P. Huang, J. Sun, R. Wang, T. Wang and C. Zhao, Tailoring the performance of Ni-CaO dual function materials for integrated CO<sub>2</sub> capture and conversion by doping transition metal oxides, *Sep. Purif. Technol.*, 2023, **305**, 122455.
- 25 X. Xu, B. Yu, M. S. Hussain, Y. Wang, Q. Li, Y. Xu, Y. Zhang and H. Zhou, One-pot synthesis of cost-effective dual functional material from solid waste for integrated CO<sub>2</sub> capture and utilization, *Sep. Purif. Technol.*, 2025, **372**, 133309.
- 26 N. Pegios, G. Schroer, K. Rahimi, R. Palkovits and K. Simeonov, Design of modular Ni-foam based catalysts for dry reforming of methane, *Catal. Sci. Technol.*, 2016, **6**, 6372–6380.

Open Access Article. Published on 04 July 2025. Downloaded on 8/7/2025 11:25:21 AM

Journal Name ARTICLE

27 E. Wang, Z. Zhu, R. Li, J. Wu, K. Ma and J. Zhang, Ni/CaO-based dual-functional materials for calcium-looping CO<sub>2</sub> capture and dry reforming of methane: Progress and challenges, *Chem. Eng. J.*, 2024, 482, 148476.

- 28 S. Jo and K. L. Gilliard-AbdulAziz, Self-regenerative Ni-doped CaTiO<sub>3</sub> /CaO for integrated CO<sub>2</sub> capture and dry reforming of methane, *Small*, 2024, 2401156.
- 29 Y. Zhao, R. Hao, T. Wang and C. Yang, Follow-up research for integrative process of pre-oxidation and post-absorption cleaning flue gas: Absorption of NO<sub>2</sub>, NO and SO<sub>2</sub>, Chem. Eng. J., 2015, **273**, 55–65.
- 30 X. Zhou, H. Yi, X. Tang, H. Deng and H. Liu, Thermodynamics for the adsorption of SO<sub>2</sub>, NO and CO<sub>2</sub> from flue gas on activated carbon fiber, *Chem. Eng. J.*, 2012, **200–202**, 399–404.
- 31 R. Chen, T. Zhang, Y. Guo, J. Wang, J. Wei and Q. Yu, Recent advances in simultaneous removal of SO<sub>2</sub> and NO<sub>x</sub> from exhaust gases: Removal process, mechanism and kinetics, *Chem. Eng. J.*, 2021, **420**, 127588.
- 32 A. Bhaskaran and S. Roy, Exploring dry reforming of CH<sub>4</sub> to syngas using high entropy materials: A novel emerging approach, *ChemCatChem*, 2025, **17**, e202401297.
- 33 T. Y. Yeo, J. Ashok and S. Kawi, Recent developments in sulphur-resilient catalytic systems for syngas production, *Renew. Sust. Energ. Rev.*, 2019, **100**, 52–70.
- 34 H. Li, X. Peng, M. An, J. Zhang, Y. Cao and W. Liu, Negative effect of SO<sub>2</sub> on mercury removal over catalyst/sorbent from coal-fired flue gas and its coping strategies: A review, *Chem. Eng. J.*, 2023, **455**, 140751.
- 35 H. Yu, C. Shan, J. Li, X. Hou and L. Yang, Alkaline absorbents for SO₂ and SO₃ removal: A comprehensive review, *J. Environ. Manage.*, 2024, **366**, 121532.
- 36 N. Ding, Y. Zheng, C. Luo, Q. Wu, P. Fu and C. Zheng, Development and performance of binder-supported CaSO<sub>4</sub> oxygen carriers for chemical looping combustion, *Chem. Eng. J.*, 2011, **171**, 1018–1026.

View Article Online DOI: 10.1039/D5IM00087D

### Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.