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Abstract
Simulation of particle induced X-ray emission (PIXE) spectra is not
a recent subject. Still, when samples are not homogeneous prob-
lems emerge even in the most simple case of layered samples. If
it is necessary to consider the presence of the same chemical el-
ement in more than one physically distinct layer the number of
available simulation codes is very small. In addition, although X-
ray emission spectra from PIXE experiments are much less prone
to significant secondary fluorescence issues than their X-ray Flu-
orescence Spectrometry (XRF) counterpart, cases emerge where
secondary fluorescence calculations are necessary to assure good
PIXE spectra simulations, even if corrections are small. The case
of secondary fluorescence induced by primary X-rays in thick ho-
mogeneous samples was solved long ago by various authors. In
the case of non-homogenous targets, the problem becomes much
more complex and, although also addressed long ago, a general
solution is not possible to find in standard access literature for the
PIXE technique case. In the present work we revise a secondary
fluorescence correction method presented in 1996 to handle ho-
mogeneous targets and extend it to be applicable to multilayered
targets. Its implementation in the DT2 code allows to simulate
PIXE spectra taking into account these type of matrix effects correc-
tion in complex multilayer targets. Fluorescence between different
physical layers, the possibility of the presence of one chemical el-
ement in more than one layers, and the potential "illusional" pres-
ence of a chemical element in a given layer due to the secondary
fluorescence effects, when its real concentration in that layer is
null, are dealt with. This is the first of what aims to be a series
of three papers. In this part I work, the model is presented for
the case of secondary X-rays induced by primary X-rays produced
by particle collisions. Applications and potentially demanding ex-
perimental conditions will be dealt with in part II, and the case
of secondary X-rays induced by non-radiative transitions primary
radiation of fast electrons will be addressed in part III.

*Corresponding author. Tel.: +351 219946107; Email address:
mareis@ctn.tecnico.ulisboa.pt
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1 Introduction
Quantitative work on particle induced X-ray emission (PIXE) ? can be made in a

very simple approximation if the targets are thin enough so that the ion beam particles
impacting in the target do not loose any significant amount of energy while crossing
it and the sample elements characteristic X-rays are well separated in the spectra. In
this case, if standard samples have been previously analysed in the same conditions,
integrating the characteristic X-ray peaks, or even just using its height, will provide
quantitative data without any need for much complex processing ? .

Still, in many cases the situation is not so simple. If the target is not thin enough,
the target X-ray yield must be determined by integration of the yield function along
the ion beam particles path in the target, and it can even happen that enhancement of
X-ray emission relative to the yield expected from particle induced ionizations takes
place. In "standard" cases, as mentioned by Folkmann in 1974 ? , it is important to
consider the fluorescence processes that result from the absortion of primary X-rays
(the X-rays induced directly by particle colisions), in particular those cases that result
from the absorption of the primary characteristic X-rays in the sample material. This
absoprtion is named self-absorption, and the fluorescence procresses are usually ref-
ered to as secondary fluorescence, and are probably the most important phenomena
leading to this enhancement.

Being quite significant when studying some types (eg: metal alloys) of thick targets
(targets that are thick enough to completely stop the incident ion beam), the X-ray
yield enhancement effect due to secondary fluorescence was addressed long ago by
several authors and solved for the case of homogeneous thick samples. In the case
of PIXE work, Reuter et al. in 1975 ? , Ahlberg in 1977 ? and Richter and Wätjen in
1981 ? presented analytical solutions to the problem, Van Oystaeyen and Demortier
in 1983 ? developed a Monte Carlo method, Campbell et al. in 1989 ? calculated
the need for terciary corrections and Ryan et al., in the beginning of the 1990s ? ? ,
implemented in GeoPIXE calculation processes to deal with thin layers and inclusions
in complex geological samples.

The secondary fluorescence effect in PIXE is similar to what is observed in X-ray
Fluorescence Spectrometry (XRF), and therefore some of these methods resemble
and reflect the 1960s work of Shiraiwa and Fujino ? , even though the primary yield
determination in the case of PIXE cannot be handle simply as an exponential term and
must be found by numerical calculation, which complicates all further calculations.

In the beginning of the 1990s decade the issue was revisited by my self while de-
veloping the first version of the DATTPIXE package ? . After a first approach based
on the work of Ahlberg ? , a variant was developed taking the model of Richter and
Wätjen ? as a working base to define a function of depth term for the secondary fluo-
rescence correction, which can be added to the primary X-ray yield prior to integration
along the particles penetration path. This model then named "penetration function
model", as presented in 1996 ? , was applicable for thick and half-thick targets and
was implemented as such in the DATTPIXE package 1996 version ? .

As mentioned above, PIXE samples are considered thin if it is possible to assume
that the energy loss of incoming particles after crossing the target is negligible. In
practice, in many cases, this energy loss is not negligible and the samples must be
considered either half-thick, if the beam particles emerge from the target, or thick if
they are completely stopped inside it.

If the samples are not homogeneous in depth the simplest case that can be consid-
ered is that of layered targets. These being targets that can be modeled as a set of
physically distinct layers, each of them being a thin or half-thick target that is crossed
by the particles of the beam, which may in the end be stopped in a thick substrate on
top of which the layers are successsively present. In this case, a situation more com-
plex is faced both for yield calculation and even more for cases where the secondary
fluorescence effect must be accounted for.

In the case of XRF, the handling of secondary fluorescence effects in layered tar-
gets has been described in detail by De Boer ? . In this case, since the primary and
secondary excitation processes are identical, major correction terms may be expected
in several cases since the ionization cross-section of the radiation inducing secondary
fluorescence is higher than the corresponding ionization cross-section of the ioniza-
tion X-ray beam.

This is not the case in PIXE, since the particle collisions ionization cross-sections of
matrix atoms are, in most (if not all) of the cases, higher or even much higher than
the ionization cross-sections of matrix atoms by the primary X-rays produced after the
particle collisions.

In many cases, in PIXE experiments, secondary fluorescence enhancement effects
in layered targets can, therefore, be negleted since it is reasonably possible to assume
that any possiblle correction is very small. Nevertheless, since the PIXE technique is
becoming more and more used to study layered targets, frequently using a Total-IBA ?

approach, complex problems start to emerge and secondary fluorescence calculations
in layered targets can no longer be disregarded, even if just to assure that they are
small.

Although, also for PIXE, the problem of secondary fluorescence effects in non-
homogeneous samples has been addressed since the beginning of the 1990s ? ? , still, a
systematic and detailed description of the general PIXE case of layered targets, similar
to De Boer’s work for XRF, could not be found in standard accessible literature, even
though it is mentioned in Ryan et al. 1990s papers as "in preparation".

Besides this difficulty in finding calculation details on the 1990s work in the sub-
ject, the present paper focus on PIXE spectra simulation, while previous work has so
far focused on calculating changes that must be taken into account to fit spectra de-
tails. In fact, although the two goals share a significant fraction of problems, not all
of them are exactly the same and the best solutions for one and other issues are also
not fully coincident.

In this work, we revisit the secondary fluorescence correction penetration function
model published in 1996 ? for homogeneous thick and half-thick targets and extend

it to include layered targets.
No limitation is set on the presence of elements in layers, meaning that elements

may be repeated in different physical layers and/or generate secondary X-ray due
to primary radiation originated in layers where they are not physically present, in
which cases the "illusion" of an element being present where the primary radiation is
originated may emerge.

Finally, to assure that details on changes in relative intensities of various transitions
to the same sub-shell are properly dealt with, calculations and integration over the
multilayers structure are carried out for each transition individually.

Taking into account the complexity of the problem, in this work the presenta-
tion is limited to the description of the model in the case where secondary X-rays
are induced by primary characteristic X-rays, and to its implementation in the DT2
package ? ? ? ? . In related works, to be published in a near future (parts II and III), ap-
plications and the problem of secondary X-rays induced by electrons provenent from
the non-radiative transitions following the initial collision of beam particles, will be
addressed.

2 PIXE target X-ray yield

2.1 Thin targets
When considering thin targets under particles irradiation, the number of X-rays,

N j,Zi , detected from rearrangement transitions j (Kα , Lα , ...) of element Zi can be
written as:

N j,Zi =
Ω

4π
εdet, j Tsis, j Np Cpp(Ep)bcs Y tot

j,Zi
(1)

being

Y tot
j,Zi
(Ep) =

Cpart

Mat,Zi
σ

X
j,Zi

(Ep)
ξ

cos(ψinc)
fZi (2)

where

Cpart =
NAv · (barn/cm2)

particle charge in µC · (g/µg)
, being for protons Cpart = 3.75872462×106

Ω

4π
is the detector solid angle fraction, εdet, j and Tsis, j are the energy dependent de-

tector efficiency and the transmission coefficient of the absorbers placed between the
sample and the detector, respectively, for the X-rays emitted by transitions j of ele-
ment Zi. Np is the number of particles used in the irradiation, Cpp is the charge per
particle in µC, bcs is the particles beam cross-section and ψinc is the incidence angle
defined between the beam direction and the normal to the target surface.

Y tot
j,Zi
(Ep) is the target total X-ray yield, for transition j of element Zi, per µC for a

target irradiated by Ep energy particles, which includes the mass fraction of element
Zi in the target, fZi . Finaly, NAv is the Avogadro’s number, Mat,Zi the molar mass
of element Zi, σ X

j,Zi
(Ep) the X-ray production cross-section in barn for particles of

energy Ep and ξ is the sample areal mass in µg/cm2 , frequently refered as thickness
even though it does not have dimensions of a distance. The value of Cpart has been
calculated from the revised SI standard based on the 2017 CODATA revision ? .

It is important to emphasize here that the mass fraction, fZi , of element Zi is not
included in ξ , but kept separate in purpose both for the possibility of being assumed
as an unknown in analytical processes, as well as a parameter for system calibration
operations.

2.2 The equivalent thickness concept
When dealing with thick or half-thick targets, the calculation of the total X-ray

terget yield is not so straight forward. In these cases, as the ion beam particles pene-
trate the target, they loose energy, which changes their X-ray production cross-section,
σ X

j,Zi
(Ep), since Ep is reduced, and the induced X-rays are absorbed before exiting the

sample. The target total X-ray yield for any transition j originating from any element
Zi must now be determined by integrating the differential effective yield density. Still,
introducing the concept of equivalent thickness ? , ξeq, j,Zi(Ep) ,

ξeq, j,Zi(Ep) =
∫ Eout

Ep

σ X
j,Zi

(E)

σ X
j,Zi

(Ep)

Tj,Zi(x(E))
S(x)

dE =
∫ x(Eout )

0

σ X
j,Zi

(E(x))

σ X
j,Zi

(Ep)
Tj,Zi (x) dx (3)

eq(??) still allows to calculate the target total X-ray yield, Y tot
j,Zi
(Ep), for thick and half-

thick targets as:

Y tot
j,Zi

(Ep) =
Cpart

Mat,Zi
σ

X
j,Zi

(Ep)ξeq, j,Zi(Ep) (4)

In eq(??) x(E) is the penetration depth variable defined as the distance of a given
point along the particles penetration path and the sample surface, measured along
the ion beam path.

Tj,Zi (x(E)) ≡ Tj,Zi (x) is the absorption of X-rays j of element Zi while travelling

from penetration depth x ≡ x(E) to the surface of the sample, and S (x(E)) = dEp
dx is

the ion beam particles energy loss derivative.
Normalizing to the incident energy X-ray production cross-section allows to for-

mally write the total thick target yield in the same way as for thin targets by replacing
the target thickness by the equivalent thickness. The main difference being that, while
the thin target surface area is independent of the X-ray being measured, the equivalent
thickness is different for every different X-ray.
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2.3 Non-homogeneous targets
The use of the equivalent thickness concept allows to extend the expression of the

target total X-ray yield, even for the general multilayer case. Still, it is important to
realize that now the elements mass fraction in each layer must be also included in the
definition because it changes from layer to layer.

Making T n
j,Zi

the transmission of element Zi j transition X-rays from layer n to the
surface the result is:

Y tot,ml
j,Zi

(Ep) =
Cpart

Mat,Zi
σ

X
j,Zi

(Ep)ξ
ml
eq, j,Zi

(Ep) (5)

ξ
ml
eq, j,Zi

(Ep) =
All layers

∑
m=1

(m−1

∏
n=1

T n
j,Zi

)
σ X

j,Zi

(
Em

p
)

σ X
j,Zi

(Ep)
fZi ,m

∫ xm
(Eout )

xm
0

σ X
j,Zi

(E(x))

σ X
j,Zi

(
Em

p
) Tj,Zi (x) dx (6)

Last but not necessarily least, even if the sample is not laterally homogeneous
and/or if the detector size or detector sample distance leads to transmission terms
or layer structure description that depends on an y,z positioning of the beam on the
sample, the concept although becomming a bit abstract, can still be used to establish
the following general expression for PIXE target yield of general targets irradiated by
particles of Ep energy, if a set of homogeneous (ya,zb) regions can be established to
describe the sample:

N j,Zi (Ep) =
All (ya ,zb) pairs

∑
(ya ,zb)=1

Ω(ya ,zb)

4π
ε
(ya ,zb)
det, j T

(ya ,zb)
sis, j N

(ya ,zb)
p Cpp(Ep)bcs Y

ml,(ya ,zb)
j,Zi

(7)

being

Y
ml,(ya ,zb)

j,Zi
(Ep) =

Cpart

Mat,Zi
σ

X
j,Zi

(Ep)ξ
ml,(ya ,zb)
eq, j,Zi

(Ep) (8)

and

ξ
ml,(ya ,zb)
eq, j,Zi

(Ep) =
All layers

∑
m(ya ,zb)

=1

(m(ya ,zb)
−1

∏
n(ya ,zb)

=1
T

n(ya ,zb)
j,Zi

)
σ X

j,Zi

(
E

m(ya ,zb)
p

)
σ X

j,Zi
(Ep)

f
m(ya ,zb)
Zi

·

·
∫ x

m(ya ,zb)
(Eout )

x
m(ya ,zb)
0

σ X
j,Zi

(E(x))

σ X
j,Zi

(
E

m(ya ,zb)
p

) T
m(ya ,zb)
j,Zi

(x) dx (9)

3 Secondary fluorescence penetration function
model

3.1 Primary point emission and cylindrical symmetry
Consider fig.?? representing an homogenous target. As the ion beam particles pen-

etrate the target, at any given penetration depth x1, X-rays are induced and emitted
in all directions. A fraction of these, say Bprim

β
, follows in the direction of the detector,

while others, say Aα , are emitted in another direction and may be absorbed in the
target material, say in volume dV at a distance r from the x1 position, and also induce
the emission of Bβ X-rays, which may well be emitted in the direction of the detector
and contribute, with say Bsec

β
X-rays to the Bβ peak in the measured spectrum. In this

case, the Aα and Bβ X-rays produced at x1 position are named primary X-rays. The Bβ

X-rays produced in volume dV at position −→x1 +
−→r , are named secondary fluorescence X-

rays, and some of these may add to the primary Bβ X-rays reaching the X-ray detector,
enhancing the target total X-ray yield for Bβ X-rays.

Fig.??(a), represents the ion beam incident in a direction that may be not con-
tained in the detection plane defined by the normal to the sample surface (shown
in yelow in both fig.??(a) and (b)) and the line connecting point x1 and the detec-
tor. Assuming that any relevant distance r is small relative to the distance between
x1 and the detector, so that ψdet can be assumed as constant and independent of r,
the circular symmetry around the sample normal can be assumed for all the detection
processes, even if the irradiation beam is not in the detection plane. This is so because
the point x1 is the single common point to both irradiation and detection processes.
Furthermore, if the target can be considered lateral homogeneous (meaning that lay-
ers are infinite and homogeneous in the planes parallel to the sample surface), all
points xn (along the beam path) outside of the detection plane may be assumed, for
all calculation purposes, as equivalente to its projection (x′n) on the sample normal.

In the case of complex wide angle detector geometries the whole approach still
applies, although numerical integration over the various ψdet values will now be re-
quired.

The need for numerical integration in these cases, is not a restriction of the sec-
ondary fluorescence correction process, but is also required to properly determine
matrix corrections processes affecting the primary X-ray yield, as mentioned in the
previous section.

3.2 Secondary X-ray fluorescence cross-section
In order to determine the total amount of secondary Bsec

β
X-rays, it is necessary to

start by writing the differential density function, dXB
β

Aα(x1), describing the conversion
of X-rays Aα produced at a penetration depth x1 in secondary X-rays Bβ (the "sec"

Figure 1 Primary X-rays Aα produced at a penetration depth x1 lead to the emission
of secondary X-rays Bβ in volume dV that add to primary Bβ X-rays, enhancing their
target yield. The X-ray emission process is assumed to have cylindrical symmetry and
therefore be possible to describe using a simple 2D image (right). This is so, even if
the ion beam direction is outside the detection plane defined by the sample normal
(in yelow in the images) and the direction defined by x1 and the detector. Angle α

between the incidence plane defined by the beam and the sample normal (left image)
and the detection plane can take any value (check main text for details). Still, for
the calculations presented to be valid, it must be possible to assume the samples
as infinite and homogeneous in the plane perpendicular to the sample normal (eg:
planes e and f in the left image).

uperscript will be omitted for simplicity of writing) that reach the target surface after
being induced in the volume element dV . The following expression may be used as
starting point:

dXB
β
(Aα ;x1) = PX

Aα
(E (x1)) TB

β
(x1,r,θ) Rη

B
β
(Aα ) QAα (x1,r) dV (10)

where:

• PX
Aα

(E (x1)) = σ X
Aα ,Zi

(E(x1)) fA is the primary Aα X-rays production density
function at penetration depth x1;

• TB
β
(x1,r,θ) is the transmission factor of Bβ X-rays from the volume dV up to

the target surface, calculated for the detectors direction.

• Rη

B
β
(Aα ) is the conversion probability that Aα X-rays absorbed in element B in

sub-shell η are converted in Bβ secondary X-rays;

and

• QAα (x1,r) is the cross-section for Aα X-ray to be absorbed at a distance r away
from the emission point x1.

The primary X-ray production term corresponds to the differential terms in the
expressions presented in the previous sections, which was also partially addressed in
the previous subsection.

It remains therefore to discuss the other terms, which product may be refered to
as the secondary fluorescence cross-section for the conversion of Aα primary X-rays in
Bβ secondary X-rays.

Still, before any other discussion it is necessary to deal with is the lack of an explicit
term on element B mass fraction, fB, in eq(??), which is needed to be possible to add
to eq(??), the term resulting from this exercise, to obtain a proper expression for an
equivalent thickness secondary fluorescence correction, since ξeq, j,Zi (Ep) has no mass
term.

3.2.1 Rη

ρBβ
(Aα ) and µ

η

ρBβ
(Aα ) specific conversion probability

Obtaining this explicit mass term can be made by factoring out the Rη

B
β
(Aα ) con-

version probability component. Only the cases where the absorbing and emitting shell
of B are the same will be considered, because the number of secondary Bβ X-rays emit-
ted from transitions to a shell different from the shell absorbing the primary Aα X-rays
is, in most cases, not relevant when compared to the primary Bβ X-rays produced in
that shell. The cases where this is not valid are just the situations where the ion beam
particles either do not reach the fluorescence layer containing the emitter of the Bβ

X-rays, or reach it having already lost most of its energy, while the Bβ X-rays can
still significantly emerge from the sample towards the detector. A condition which is
probably extremely rare in practice.

This being set, the factoring out of the Rη

B
β
(Aα ) term in the simplest case, an

absorbing K-shell, can be obtained based in the following result:

RK
B

β
(Aα )= lim

△r→0

(
1− e

−σ
photo
B (Aα ) fB

β
△r
)

(
1− e−µAα

△r
) ωK,B kβ ,B ⇒RK

B
β
(Aα )=

σ
photo
K,B (Aα ) ωK,B kβ ,B

µAα

fB

(11)
where σ

photo
K,B (Aα ) is the K-shell photoelectric ionization cross-section of B for Aα X-

rays, ωK,B is the K-shell fluorescence coefficient of B and kβ ,B is the branch ratio of
transition β out of all radiative transitions to the K-shell of the B element.
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The mass fraction term, fB, can now be factored out in order to establish a specific
probability, µK

ρB
β
(Aα ), independent of both the mass fraction and the mass absorption

coefficient of the Aα X-rays, namely:

µ
K
ρB

β
(Aα ) = µAα

RK
B

β
(Aα )

fB
β

= σ
photo
K,B (Aα ) ωK,B kβ ,B ⇒ Rη

B
β
(Aα ) =

µ
η

ρB
β
(Aα )

µAα

fB
β

(12)

Eq(??) can now be written having fB
β

factored out, namely as:

dXB
β
(Aα ;x1) = PX

Aα
(E (x1)) fB

β
TB

β
(x1,r,θ)

µ
η

ρB
β
(Aα )

µAα

QAα (x1,r) dV (13)

In the case of L and M sub-shells the situation is a bit more complex, nevertheless,
the same reasoning as used for the K-shell applies since changes are only present in
the photoelectric cross-section term. The generalization of eq(??), defining µ

η

ρB
β
(Aα ),

can therefore be made.
K, L and M sub-shells photoelectric ionization cross section are normally approx-

imated ? ? based on the total absortion cross section of the X-ray energy, σT,B(Aα ) ≡
µAα , and the jump ratios, Sη , for the sub-shell. Taking Ei to be the X-ray or the sub-
shell ionization energy, as applicable, the following results apply to the K, L and M
sub-shells fluorescence (omitting the Aα term for simplicity):

if EK < EAα σ
photo
K =

SK −1
SK

σT,B ; µ
K
ρB

β
= σ

photo
K,B ωK,B kβ ,B (14)

if EL1 < EAα < EK

σ
photo
L3,B =

SL3 −1
SL3SL2SL1

σT,B ; σ
photo
L2,B =

SL2 −1
SL2SL1

σT,B ; σ
photo
L1,B =

SL1 −1
SL1

σT,B (15)

µ
L3
ρB

β
=
[
( fL12 fL23 + fL13)σ

photo
L1,B + fL23σ

photo
L2,B +σ

photo
L3,B

]
ωL3,B kβ ,B (16)

µ
L2
ρB

β
=
(

fL12σ
photo
L1,B +σ

photo
L2,B

)
ωL2,B kβ ,B ; µ

L1
ρB

β
= σ

photo
L1,B ωL1,B kβ ,B (17)

if EL2 < EAα < EL1

σ
photo
L3,B =

SL3 −1
SL3SL2

σT,B ; σ
photo
L2,B =

SL2 −1
SL2

σT,B (18)

µ
L3
ρB

β
=
(

fL23σ
photo
L2,B +σ

photo
L3,B

)
ωL3,B kβ ,B ; µ

L2
ρB

β
= σ

photo
L2,B ωL2,B kβ ,B (19)

if EL3 < EAα < EL2

σ
photo
L3,B =

SL3 −1
SL3

σT,B ; µ
L3
ρB

β
= σ

photo
L3,B ωL3,B kβ ,B (20)

if EM1 < EAα < EL3

σ
photo
M j,B =

SM j −1

Π
j
i=1 (SMi)

σT,B for j ∈ [2,5] ; σ
photo
M1,B =

SM1 −1
(SM1)

σT,B (21)

µ
M5
ρB

β
=

[
( fM13 fM34 fM45 + fM13 fM35 + fM14 fM45 + fM15)σ

photo
M1,B +

+( fM12 fM23 fM34 fM45 + fM12 fM23 fM35 + fM12 fM24 fM45)σ
photo
M1,B +

+( fM23 fM34 fM45 + fM23 fM35 + fM24 fM45 + fM25)σ
photo
M2,B +

+( fM34 fM45 + fM35)σ
photo
M3,B + fM45 σ

photo
M4,B +σ

photo
M5,B

]
ωM5,B kβ ,B (22)

µ
M4
ρB

β
=

[
( fM12 fM23 fM34 + fM12 fM24 + fM13 fM34 + fM14)σ

photo
M1,B +

+( fM23 fM34 + fM24)σ
photo
M2,B + fM34 σ

photo
M3,B +σ

photo
M4,B

]
ωM4,B kβ ,B (23)

µ
M3
ρB

β
=

[
( fM12 fM23 + fM13)σ

photo
M1,B + fM23 σ

photo
M2,B +σ

photo
M3,B

]
ωM3,B kβ ,B (24)

µ
M2
ρB

β
=

(
fM12σ

photo
M1,B +σ

photo
M2,B

)
ωM2,B kβ ,B ; µ

M1
ρB

β
= σ

photo
M1,B ωM1,B kβ ,B (25)

if EM2 < EAα < EM1

σ
photo
M j,B =

SM j −1

Π
j
i=1 (SMi)

σT,B for j ∈ [3,5] ; σ
photo
M2,B =

SM2 −1
(SM2)

σT,B (26)

µ
M5
ρB

β
=

[
( fM23 fM34 fM45 + fM23 fM35 + fM24 fM45 + fM25)σ

photo
M2,B +

+( fM34 fM45 + fM35)σ
photo
M3,B + fM45 σ

photo
M4,B +σ

photo
M5,B

]
ωM5,B kβ ,B (27)

µ
M4
ρB

β
=

[
( fM23 fM34 + fM24)σ

photo
M2,B + fM34 σ

photo
M3,B +σ

photo
M4,B

]
ωM4,B kβ ,B (28)

µ
M3
ρB

β
=

[
fM23 σ

photo
M2,B +σ

photo
M3,B

]
ωM3,B kβ ,B ; µ

M2
ρB

β
= σ

photo
M2,B ωM2,B kβ ,B (29)

if EM3 < EAα < EM2

σ
photo
M j,B =

SM j −1

Π
j
i=1 (SMi)

σT,B for j ∈ [4,5] ; σ
photo
M3,B =

SM3 −1
(SM3)

σT,B (30)

µ
M5
ρB

β
=

[
( fM34 fM45 + fM35)σ

photo
M3,B + fM45 σ

photo
M4,B +σ

photo
M5,B

]
ωM5,B kβ ,B (31)

µ
M4
ρB

β
=

[
fM34 σ

photo
M3,B +σ

photo
M4,B

]
ωM4,B kβ ,B ; µ

M3
ρB

β
= σ

photo
M3,B ωM3,B kβ ,B (32)

if EM4 < EAα < EM3

σ
photo
M5,B =

SM5 −1
(SM4SM5)

σT,B ; σ
photo
M4,B =

SM4 −1
SM4

σT,B (33)

µ
M4
ρB

β
= σ

photo
M4,B ωM4,B kβ ,B (34)

µ
M5
ρB

β
=

[
σ

photo
M3,B + fM45 σ

photo
M4,B +σ

photo
M5,B

]
ωM5,B kβ ,B (35)

if EM5 < EAα < EM4

σ
photo
M5,B =

SM5 −1
SM5

σT,B (36)

µ
M5
ρB

β
= σ

photo
M5,B ωM5,B kβ ,B (37)

3.2.2 Secondary fluorescence production and survival

Using the definitions of the primary Aα X-rays production density function
PX

Aα
(E (x1)) and the conversion probability Rη

B
β
(Aα ), the differential density func-

tion describing the conversion of primary Aα X-rays produced at a penetration depth
x1 into secondary fluorescence Bβ X-rays at volume element dV , which reach the tar-
get surface, dXB

β
Aα(x1), defined in eq(??), may be rewritten as:

dXB
β
(Aα ;x1) = σ

X
Aα ,Zi

(E(x1)) fA fB TB
β
(x1,r,θ)

[
µ

η

ρB
β
(Aα )

µAα

]
dV

QAα (x1,r) dV (38)

In order to obtain the density function for secondary Bβ X-rays emerging from
the target surface towards the detector, due to secondary emission induced by primary
Aα X-rays emitted at penetration depth x1 it is necessary to integrate eq(??) over the
whole target volume, and we can use this step to define the corresponding specific
density function, χB

β
Aα (x1) by dividing by fB, the result obtained is:

χB
β

Aα (x1) = σ
X
Aα ,Zi

(E(x1)) fA

(∫
Vtarget

TB
β
(x1,r,θ)

µ
η

ρB
β
(Aα )

µAα

QAα (x1,r) dV

)
(39)

The integral in eq(??) represents the fraction of primary Aα X-rays that may be
converted to secondary Bβ X-rays, and if that happens will survive up to the point of
reaching the target surface.

3.2.3 The QBβ Aα
(x1) function and SFC equivalent thickness

In order to analyse properly eq(??), it is important to focus into the differential
under the integral:

dQB
β

Aα (x1,r) = TB
β
(x1,r,θ)

µ
η

ρB
β
(Aα )

µAα

QAα (x1,r) dV (40)

This is the differential cross-section for a primary Aα X-ray produced at the
penetration depth x1 to be absorbed at a distance r from x1 and converted into a
secondary Bβ X-ray that reaches the target surface along a trajectory that leads to the
X-ray detector.

Although it looks simple, there are a few details, including theoretical ones, which
are worth taking into account carefully.

The most critical term, even if it may not seem so, is the detailed description of the
absortion of Aα X-rays in the differential volume. Using spherical coordinates, there
are two main components in this process. A geometrical one that relates to the angular
description, that leads to a term in the angular variables, namely r2sin(θ) dθ dφ , and
a second term related to the ionization process itself.

Since X-rays vanish when interacting with atoms to produce an ionization process,
as oposed to what is observed with ions, which just loose energy but do not vanish,
the number of matrix atoms ionized is proportional to the number of absorbed X-rays.

Considering a small slab of thickness ∆r → dr this results in the following expres-
sion for the number of absorbed Aα X-rays, Nabs

X(Aα ), using a first order Taylor series
approximation:

Nabs
X(Aα )(∆r) = NX(Aα )(0)

(
1− e−µAα

∆r
)
→

→ NX(Aα )(0)
∂

∂ r

(
1− e−µAα

r)∣∣∣∣
r=0
dr = µAα NX(Aα )(0) dr (41)

NX(Aα )(0) being the number of X-rays reaching the slab. The absortion in volume
dV therefore contributes with an overall term given by µAα r2sin(θ) dr dθ dφ .

Taking into account that this expression makes use of the number of X-rays reach-
ing the slab, a term describing the loss of intensity of Aα X-rays between the emission
point x1 and the absorbing volume dV , must be considered. Therefore, the differential
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cross-section for Aα X-ray to be absorbed in volume dV at a distance r away from the
emission point x1 is:

QAα (x1,r)dV =
µAα

4πr2 · e−µAα
rr2sin(θ) dr dθ dφ (42)

The remaining term to be mentioned is the probability that the Bβ X-rays emitted
in elemental volume dV in the direction of the detector reaches the target surface.
Being µB

β
the target mass absorption coefficient and x1 and r expressed in consistent

units, usualy areal mass units, the result is:

TB
β
(x1,r,θ) = e

−µB
β

x1cos(ψinc)+r·cosθ

cos(ψdet ) (43)

Finally, writing the whole term in spherical coordinates, for an homogeneous target
(see fig.(??)), the result is:

dQB
β

Aα (x1,r) =
µAα

4πr2 · e−µAα
r · e

−µB
β

x1cos(ψinc)+r·cosθ

cos(ψdet )
µ

η

ρB
β
(Aα )

µAα

r2 sin(θ) dr dθ dφ

(44)
The final expression being therefore:

dQB
β

Aα (x1,r) =
µ

η

ρB
β
(Aα )

4π
· e−µAα

r · e
−µB

β

x1cos(ψinc)+r·cos(θ)
cos(ψdet ) sin(θ) dr dθ dφ (45)

This dQB
β

Aα (x1,r) differential may be refered to as the secondary fluorescence
differential cross-section for the conversion of Aα X-rays in Bβ X-rays that emerge from
the target in the direction of the detector.

The QB
β

Aα (x1) function defined as the integral of dQB
β

Aα (x1,r) over the whole
target volume is the secondary fluorescence target yield, emitted in the direction of
the detector, originated in the conversion of Aα X-rays in Bβ X-rays, and corresponds
to the integral in eq(??).

Using the fact that dQB
β

Aα (x1,r) has cylindrical symmetry, the QB
β

Aα (x1) integral
can be imediately integrated in φ by taking the x axis as being along the normal to
target surface. Notice that the x axis for calculating the integral in eq(??) is indepen-
dent of the definition of x1 along the ion beam penetration path and therefore the x
axis for this calculation can be set freely. The result after integrating over φ is:

QB
β

Aα (x1) =
µ

η

ρB
β
(Aα )

2
· e

−µB
β

x1cos(ψinc)
cos(ψdet )

∫∫
V

e
−
(

µAα
+

cos(θ)
cos(ψdet )

µB
β

)
·r

sin(θ) drdθ (46)

Summing up for all primary Aα X-rays produced at penetration depth x1 and lead-
ing to Bβ secondary X-rays, the specific secondary fluorescence correction density
function, χB

β
(x1), can be written as:

χB
β
(x1) = ∑

allAα
inducing B

β

σ
X
Aα ,Zi

(E(x1)) fA QB
β

Aα (x1) (47)

and added to the equivalent thickness definition, leading to a secondary fluorescence
corrected equivalent thickness, ξ

s f c
eq,B

β
(Ep), which becomes now dependent not just on

the X-ray being detected, but also on the various other X-ray emitters in the target:

ξ
s f c
eq,B

β
(Ep) =

∫ x(Eout )

0

σ X
j(β ),Z(B) (E(x)) ·Tj(β ),Z(B)(x) + χB

β
(x)

σ X
j(β ),Z(B) (Ep)

dx (48)

4 The QBβ Aα
(x1) function analytical solution

4.1 First steps for solving the integral analyticaly
Considering that r is small relative to the distance to the detector, so that it is pos-

sible to assume that the detection angle ψdet is constant relative to r, eq(??) integral
can be solved analytically, as long as it can be assumed that the sample is infinite and
homogeneous in all planes normal to the surface normal, at least for the fluorescence
process. This meaning that the model, may be easily addapted to still be applied to
a small inclusion emitting primary X-rays if the particle beam is kept within it, but is
not applicable to a case of a small inclusion emitting secondary X-rays due to primary
X-rays originated in its surroundings.

In order to obtain the analytical solution, it is important to start by a change of
variable, namely by setting:

y = µAα +
cos(θ)

cos(ψdet )
µB

β
⇒ cos(θ) = (y−µAα ) ·

cos(ψdet )

µB
β

⇒

⇒ sin(θ)dθ =− cos(ψdet )

µB
β

dy (49)

The QB
β

Aα (x1) expression can then be simplified to:

QB
β

Aα (x1) = A (x1)
∫ rmax

rmin

∫ µAα
+

µB
β

cos(ψdet )
cos(θ f )

µAα
+

µB
β

cos(ψdet )
cos(θi)

− e−y·r dy dr (50)

being

A (x1) =
µ

η

ρB
β
(Aα ) · cos(ψdet )

2 ·µB
β

· e
−µB

β

x1cos(ψinc)
cos(ψdet ) (51)

Calculating the integral in eq(??) is better done by separating the full integral in
six different cases according to the relations between d and t described in Table ??
(see fig.(??) for variables references).

Equation eq(??) is thus better written as (i values according to Table ??):

QB
β

Aα (x1) = A (x1) ·∑
i

Ii (52)
being:

Ii =
∫ rmax,i

rmin,i

e−y·r

r

∣∣∣∣µAα
+

µB
β

cos(ψdet )
cos(θ f )

µAα
+

µB
β

cos(ψdet )
cos(θi)

dr (53)

Table 1 Integration limits for r and θ for the various integrals (I1 to I6).

i rmin,i rmax,i cosθi cosθ f

d <= t/2
1 0 d 1 -1
2 d t-d 1 -d/r
3 t-d ∞ (t-d)/r -d/r

d > t/2
4 0 t-d 1 -1
5 t-d d (t-d)/r -1
6 d ∞ (t-d)/r -d/r

Setting now:

g+ = µAα +
µB

β

cos(ψdet )
and g− = µAα −

µB
β

cos(ψdet )
(54)

the first three integrals mentioned above become:

I1 =
∫ d

0

e−y·r

r

∣∣∣∣g−
g+

dr (55)

I2 =
∫ t−d

d

e−y·r

r

∣∣∣∣µAα
−

µB
β
·d

cos(ψdet )·r

g+

dr (56)

I3 =
∫

∞

t−d

e−y·r

r

∣∣∣∣µAα
−

µB
β
·d

cos(ψdet )·r

µAα
+

µB
β
·(t−d)

cos(ψdet )·r

dr (57)

Expanding these expressions leads to:

I1 = 2
∫ d

0

e−µAα
·r

r

e

µB
β
·r

cos(ψdet ) − e
−

µB
β
·r

cos(ψdet )


2

dr

= 2
∫ d

0

e−µAα
·r

r
· sinh

(
µB

β
· r

cos(ψdet )

)
dr (58)

I2 =
∫ t−d

d

e−µAα
·r

r

e

µB
β
·d

cos(ψdet ) − e
−

µB
β
·r

cos(ψdet )

 dr

= e

µB
β
·d

cos(ψdet )
∫ t−d

d

e−µAα
·r

r
dr−

∫ t−d

d

e
−

(
µAα

+
µB

β

cos(ψdet )

)
·r

r
dr (59)

I3 =
∫

∞

t−d

e−µAα
·r

r

e

µB
β
·d

cos(ψdet ) − e
−

µB
β
·(t−d)

cos(ψdet )

 dr

= e

µB
β
·d

cos(ψdet )

1− e
−

µB
β
·t

cos(ψdet )

∫ ∞

t−d

e−µAα
·r

r
dr (60)

Now, Gradshteyn ? states:∫ 1
x

eax sinh(bx)dx =
1
2
{Ei[(a+b)x]−Ei[(a−b)x]} for a2 ̸= b2 (61)

Both Gradshteyn ? and Abramowicz ? define the exponential integral as:

Ei(x) =− lim
ε−→0+

[∫ −ε

−x

e−t

t
dt +

∫
∞

ε

e−t

t
dt
]

(x > 0) (62)

Gradshteyn further sets for negative values of x : Ei(x) = −
∫

∞

−x
e−t

t dt (x < 0) ,
while Abramowicz ? defines the exponential integral of order 1 for positive values of
the variable as:

E1(x) =
∫

∞

x

e−t

t
dt for (x > 0) (63)

Leading to the relation:

Ei(x) =
x<0

−
∫

∞

|x|

e−t

t
dt =−

∫
∞

y>0

e−t

t
dt =−E1(y) =−E1(−x) (64)

These Abramowicz definitions having x ∈ ]0,∞[ will be used for the remaining of
this work.

The exponential integral and the exponential integral of order 1 may still be pre-
sented as series of powers as:

Ei(y) = γ + ln(y)+
∞

∑
n=1

yn

n ·n!
; E1(y) =−γ − ln(y)−

∞

∑
n=1

(−1)n · yn

n ·n!
(65)
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where γ = 0.57721156649.... is Euler’s constant.
Now in eq(??) the signal of the constants in the exponential and sinh() function are

well defined since both the mass absoption coefficients and the distances are positive.
Before applying eq(??) to eq(??) it is still important to obtain a few additional

expressions.
Assuming a > 0, b > 0 and x > 0, from eq(??) using Abramowicz nomenclature, it

is important to note that:∫ 1
x

e−ax sinh(bx)dx =
1
2
{Ei[−(a−b)x]−Ei[−(a+b)x]}

=
1
2
{E1[(a+b)x]−E1[(a−b)x]} i f a > b (66)

=
1
2
{E1[(a+b)x]+Ei[|a−b|x]} i f a < b (67)

If a = b Gradshteyn in its equation 2.484.6 ? further states:∫ 1
x

e−ax sinh(bx)dx =
1
2
[ln(x)−Ei(−2ax)]

that converting to Abramowicz nomenclature becomes:∫ 1
x

e−ax sinh(bx)dx =
1
2
[ln(x)+E1(2ax)] i f a = b (68)

Before applying these expressions to eq(??) and other integrals, it is important to
check the case where x → 0, since in this condition, ln(x), Ei() and E1() are divergent.
The differences limits are:

lim
x−→0

(
E1[(a+b)x]−E1[(a−b)x]

)
= lim

x−→0

(
− γ − ln[(a+b)x]−

∞

∑
n=1

(−1)n · [(a+b)x]n

n ·n!
+

+ γ + ln[(a−b)x]+
∞

∑
n=1

(−1)n · [(a−b)x]n

n ·n!

)

= lim
x−→0

[
ln
(

a−b
a+b

)
+

∞

∑
n=1

(−1)n[(a−b)x]n

nn!
−

∞

∑
n=1

(−1)n[(a+b)x]n

nn!

]

=−ln
(

a+b
a−b

)
i f a > b (69)

lim
x−→0

(
E1[(a+b)x]+Ei[|a−b|x]

)
= lim

x−→0

(
− γ − ln[(a+b)x]−

∞

∑
n=1

(−1)n · [(a+b)x]n

n ·n!
+

+ γ + ln[|a−b|x]+
∞

∑
n=1

[|a−b|x]n

n ·n!

)

= lim
x−→0

[
ln
(
|a−b|
a+b

)
+

∞

∑
n=1

[|a−b|x]n

n ·n!
−

∞

∑
n=1

(−1)n[(a+b)x]n

n ·n!

]

=−ln
(

a+b
|a−b|

)
i f a < b (70)

lim
x−→0

(
E1(2ax)+ ln(x)

)
= lim

x−→0

(
− γ − ln(2ax)−

∞

∑
n=1

(−1)n · (2ax)n

n ·n!
+ ln(x)

)

= lim
x−→0

[
− γ − ln(2a)−

∞

∑
n=1

(−1)n · (2ax)n

n ·n!

]
=−[γ + ln(2a)] i f a = b (71)

Setting a = µAα and b =
µB

β

cos(ψdet )
, and applying these to the definitive integral I1

the result is:

∫ d

0

1
x

e−ax sinh(bx)dx =
1
2
{E1[(a+b)d]−E1[(a−b)d]+ ln

(
a+b
(a−b)

)
} i f a > b (72)

=
1
2
{E1[(a+b)d]+Ei[|a−b|d]+ ln

(
a+b
|a−b|

)
} i f a < b (73)

=
1
2
[E1(2ad)+ ln(2ad)+ γ] i f a = b (74)

It is important to realise that, from the equations above, it results for all these
cases:

lim
d→0

∫ d

0

1
x

e−ax sinh(bx)dx = 0 (75)

These results can be written in a more condensed and physically interesting form,
namelly:

I1 = E1(g+ ·d)−E1(g− ·d)+ ln
(

g+
g−

)
i f g− > 0 (76)

I1 = E1(g+ ·d)+Ei(|g−| ·d)+ ln
(

g+
|g−|

)
i f g− < 0 (77)

I1 = E1(2µAα ·d)+ ln(2µAα d)+ γ i f g− = 0 (78)

Addressing the calculation of the definitive integral I2, eqs(?? to ??) are not appli-
cable to eq(??) and the definition eqs(?? to ??) must be used directly. Setting ζ > 0
and η > 0 and y = at the result is:

∫
ζ

η

e−at

t
dt =

∫
∞

η

e−at

t
dt −

∫
∞

ζ

e−at

t
dt =

∫
∞

aη

e−y

y
dy−

∫
∞

aζ

e−y

y
dy =

= E1(aη)−E1(aζ ) for (a > 0) (79)

= Ei(|a|ζ )−Ei(|a|η) for (a < 0) (80)

Applying this to eq(??) the result is:

I2 = e

µB
β
·d

cos(ψdet )
∫ t−d

d

e−µAα
·r

r
dr−

∫ t−d

d

e
−

(
µAα

+
µB

β

cos(ψdet )

)
·r

r
dr

= e

µB
β
·d

cos(ψdet )
(

E1(µAα ·d)−E1[µAα · (t −d)]
)
−

−

(
E1

[(
µAα +

µB
β

cos(ψdet )

)
·d
]
−E1

[(
µAα +

µB
β

cos(ψdet )

)
· (t −d)

])

I2 = e

µB
β
·d

cos(ψdet )
[

E1(µAα ·d)−E1[µAα · (t −d)]
]
−
[

E1(g+ ·d)−E1[g+ · (t −d)]
]

(81)

4.2 Infinite thickness targets

In the case of thick targets, t = ∞ and only I1 and I2 apply. Adding eqs.(?? to ??)
and (??) provides:

I1 + I∞

2 = e

µB
β
·d

cos(ψdet ) E1(µAα ·d)−E1(g− ·d)+ ln
(

g+
g−

)
f or g− > 0 (82)

I1 + I∞

2 = e

µB
β
·d

cos(ψdet ) E1(µAα ·d)+Ei(|g−| ·d)+ ln
(

g+
|g−|

)
f or g− < 0 (83)

I1 + I∞

2 = E1(2µAα ·d)+ e

µB
β
·d

cos(ψdet ) E1(µAα ·d)−E1(g+ ·d)+ ln(2µAα d)+ γ

= e

µB
β
·d

cos(ψdet ) E1(µAα ·d)+ ln(2µAα d)+ γ f or g− = 0 ⇒ g+ = 2µAα (84)

The computation implementation of these results must take into account that for
very small values of the argument, the exponential intergral diverges due to the term
in ln(x) in eqs.(??). Still, in the case of small values of d (x1 still close to target surface)
no problems are faced since the results are:

lim
d→0

(I1 + I∞

2 ) = lim
d→0

[
e

µB
β
·d

cos(ψdet )
(
− γ − ln(µAα ·d)

)
−
(
− γ − ln(g− ·d)

)
+ ln

(
g+
g−

)]

= lim
d→0

[(
1− e

µB
β
·d

cos(ψdet )
)

γ − e

µB
β
·d

cos(ψdet ) [ln(µAα )+ ln(d)]+ ln(g−)+ ln(d)+ ln
(

g+
g−

)]
= ln

(
g+

µAα

)
f or g− > 0 (85)

lim
d→0

(I1 + I∞

2 ) = lim
d→0

[
e

µB
β
·d

cos(ψdet )
(
− γ − ln(µAα ·d)

)
+

(
γ + ln(|g−| ·d)

)
+ ln

(
g+
|g−|

)]

= lim
d→0

[(
1− e

µB
β
·d

cos(ψdet )
)

γ − e

µB
β
·d

cos(ψdet ) [ln(µAα )+ ln(d)]+ ln(|g−|)+ ln(d)+ ln
(

g+
|g−|

)]
= ln

(
g+

µAα

)
f or g− < 0

lim
d→0

(I1 + I∞

2 ) = lim
d→0

[
e

µB
β
·d

cos(ψdet )
(
− γ − ln(µAα ·d)

)
+ ln(2µAα ·d)+ γ

]
(86)

= ln(2) f or g− = 0 (87)

Before proceeding to deal with half-thick targets, it is still important to check the
theoretical possibility that d is not too small but either |g−| is too small but not enough
to make the product |g−| ·d too small, or the mass absorption coefficient of the Aα X-
rays is so small that the product µAα ·d → 0. In all these cases numerical calculation
problems emerge linked to eqs(??) to (??). Besides, the problematic conditions in
|g−| may also combine with those on µAα and therefore all cases must be addressed
carefully.

Taking into account the power series expansions in eqs.(??) the results for |g−| → 0
while the product |g−| ·d is not, are:

lim
|g−|−→0+

(I1 + I∞

2 ) = lim
|g−|−→0−

(I1 + I∞

2 ) = e

µB
β
·d

cos(ψdet ) E1(µAα ·d)+ γ + log(g+ ·d) (88)

As could be expected this expression is identical to that of eq(??) since in the limit
g+ = 2µAα . In the case where µAα · d → 0 , two conditions can be found, namely,
|g−| → 0, or not so and g− < 0. In the first of these, eq(??) limit is ln(2). In the second
case, it is necessary to establish an ad-hoc cut-off, say Co f f corresponding to a 95%
intensity decrease of Aα X−rays, which results on eqs(??) and (??) to become:
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lim
µAα

−→0
I1 =

∫ d

0

1
r

e

µB
β
·r

cos(ψdet ) − e
−

µB
β
·r

cos(ψdet )

 dr

=
∫ d

0

ebr

r
dr −

∫ d

0

e−br

r
dr =−

(∫ 0

−d

e−bη

η
dη +

∫ d

0

e−br

r
dr
)

=− lim
ε−→0

(∫
∞

−d

e−bη

η
dη −

∫
∞

ε

e−bη

η
dη +

∫ d

ε

e−br

r
dr
)

=− lim
ε−→0

(
−Ei(bd)−Ei(bε)+E1(bε)−E1(bd)

)
= E1(bd)+Ei(bd) (89)

lim
µAα

−→0
I
Co f f
2 =

∫ Co f f

d

1
r

e

µB
β
·d

cos(ψdet ) − e
−

µB
β
·r

cos(ψdet )

 dr

= ebd
∫ Co f f

d

1
r

dr−
∫ Co f f

d

e−br

r
dr

= ebd · ln
(

Co f f

d

)
−E1(bd)+E1(b Co f f ) (90)

which summing up provides :

lim
µAα

−→0
I1 + I

Co f f
2 = Ei(b ·d)+ eb·d · ln

(
Co f f

d

)
+E1(b ·Co f f ) being b =

µB
β

cos(ψdet )

(91)

If in this case d → 0 this equation is also not valid. Using the power series expan-
sions leads to:

lim
µAα

−→0
I1 + I

Co f f
2 = γ +E1(b ·Co f f )+ ln(b ·Co f f ) (92)

4.3 Homogeneous half-thick targets

4.3.1 Primary X-rays emitted before half-layer depth

In the general case of half-thick targets, all the the six integrals must be calculated.
As can be seen from table ??, the six integrals are separated in two distinct cases.
Integrals I1 to I3 provide the results for the situation where the point x1 exist at a
distance to the target surface less than half of the target thickness, and integrals I4 to
I6 provide results for the situation where this is not so and therefore d > t/2.

In the case of I3, eq(??) should be applied directly to eq(??), the result being:

I3 = e

µB
β
·d

cos(ψdet )

1− e
−

µB
β
·t

cos(ψdet )

∫ ∞

t−d

e−µAα
·r

r
dr

= e

µB
β
·d

cos(ψdet )

1− e
−

µB
β
·t

cos(ψdet )

E1[µAα · (t −d)] (93)

therefore, setting b =
µB

β

cos(ψdet )
, the result for I2 + I3 is:

I2 + I3 = eb·d E1(µAα ·d)− e−b·(t−d)E1[µAα · (t −d)]−
[

E1(g+ ·d)−E1[g+ · (t −d)]
]

(94)

For the homogeneous half-thick target and d <= t/2 the sum of the I1, I2 and I3
results in:

I1 + I2 + I3 = E1[g+ · (t −d)]−E1(g− ·d)+ ln
(

g+
g−

)
+

+ eb·d E1(µAα ·d)− e−b·(t−d)E1[µAα · (t −d)] i f g− > 0 (95)

I1 + I2 + I3 = E1[g+ · (t −d)]+Ei(|g−| ·d)+ ln
(

g+
|g−|

)
+

+ eb·d E1(µAα ·d)− e−b·(t−d)E1[µAα · (t −d)] i f g− < 0 (96)

I1 + I2 + I3 = E1(2µAα ·d)+ eb·d E1(µAα ·d)+ ln(2µAα d)+ γ−

− e−b·(t−d)E1[µAα · (t −d)]−
[

E1(g+ ·d)−E1[g+ · (t −d)]
]

and since g− = 0 ⇒ g+ = 2µAα ,

I1 + I2 + I3 = E1[2µAα · (t −d)]+ ln(2µAα d)+

+ γ + eb·d E1(µAα ·d)− e−b·(t−d)E1[µAα · (t −d)] i f g− = 0 (97)

In this case, when d → 0 the result for all three possibilities is the same, namely:

I1 + I2 + I3 = E1(g+ · t)+ ln
(

g+
µAα

)
− e−b·t E1(µAα · t) (98)

In what concernes other extreme cases, as in the previous subsection, we may find
µAα → 0 while d is not too small. Once again we can have two different conditions
for this. In the case when |g−| → 0, the limit of the sums is 0 because if µAα → 0 and
|g−| → 0 then b → 0. If it is instead g− < 0, then b is no longer a vanishing value and
a cut-off must be used to calculate the I3 integral and (t −d) must replace the cut-off
in eq(??), leading to the result:

lim
µAα

−→0

g−<0,d>0

(I1 + I2 + I3) = Ei(b ·d)+E1[b · (t −d)]+

+ eb·d · ln
(

Co f f

d

)
− e−b·(t−d) ln

(
Co f f

t −d

)
(99)

If now both d → 0 and µAα → 0 eq(??) must be used to calculate the limit and the
result is:

lim
µAα

→0

d→0

(I1 + I2 + I3) = E1(b · t)+ γ + ln(b ·Co f f )− e−b·t ln
(

Co f f

t

)
(100)

4.3.2 Primary X-rays emitted after half-layer depth

Since the sum of I1 to I3 is only valid for d <= t/2, when the contrary is true,
meaning when d > t/2, the sum of integrals I4 to I6 applies.

Based on table ?? these are:

I4 =
∫ t−d

0

e−y·r

r

∣∣∣∣g−
g+

dr ; I5 =
∫ d

t−d

e−y·r

r

∣∣∣∣g−
µAα

+
µB

β
·(t−d)

cos(ψdet )·r

dr and

I6 =
∫

∞

d

e−y·r

r

∣∣∣∣µAα
−

µB
β
·d

cos(ψdet )·r

µAα
+

µB
β
·(t−d)

cos(ψdet )·r

dr (101)

In the case of I4 given the formal identity to I1 once d is replaced by (t − d), the
result is:

I4 = E1[g+ · (t −d)]−E1[g− · (t −d)]+ ln
(

g+
g−

)
i f g− > 0 (102)

I4 = E1[g+ · (t −d)]+Ei[|g−| · (t −d)]+ ln
(

g+
|g−|

)
i f g− < 0 (103)

I4 = E1[2µAα · (t −d)]+ ln[2µAα (t −d)]+ γ i f g− = 0 (104)
In the case of I5, expanding the expression in eq(??) provides:

I5 =
∫ d

t−d

e−µAα
·r

r

e

µB
β
·r

cos(ψdet ) − e
−

µB
β
·(t−d)

cos(ψdet )

 dr

=
∫ d

t−d

e−g−·r

r
dr− e

−
µB

β
·(t−d)

cos(ψdet )
∫ d

t−d

e−µAα
·r

r
dr (105)

Taking into account eqs.(??) and (??) three results are possible for I5, namely:

I5 = E1[g− · (t −d)]−E1(g− ·d)−

− e
−

µB
β
·(t−d)

cos(ψdet )
(

E1[µAα · (t −d)]−E1(µAα ·d)
)

i f g− > 0 (106)

I5 = Ei(|g−| ·d)−Ei[|g−| · (t −d)]−

− e
−

µB
β
·(t−d)

cos(ψdet )
(

E1[µAα · (t −d)]−E1(µAα ·d)
)

i f g− < 0 (107)

I5 = ln
(

d
t −d

)
−

− e
−

µB
β
·(t−d)

cos(ψdet )
(

E1[µAα · (t −d)]−E1(µAα ·d)
)

i f g− = 0 (108)

In the case of I6 the result is:

I6 =
∫

∞

d

e−µAα
·r

r

e

µB
β
·d

cos(ψdet ) − e
−

µB
β
·(t−d)

cos(ψdet )

 dr

= e

µB
β
·d

cos(ψdet )

1− e
−

µB
β
·t

cos(ψdet )

∫ ∞

d

e−µAα
·r

r
dr

= e

µB
β
·d

cos(ψdet )

1− e
−

µB
β
·t

cos(ψdet )

E1(µAα ·d) (109)

Adding I4, I5 and I6 the results are now:

I4 + I5 + I6 = E1[g+ · (t −d)]−E1(g− ·d)+ ln
(

g+
g−

)
+

+ e

µB
β
·d

cos(ψdet ) E1(µAα ·d)− e
−

µB
β
·(t−d)

cos(ψdet ) E1[µAα · (t −d)] i f g− > 0 (110)

I4 + I5 + I6 = E1[g+ · (t −d)]+Ei(|g−| ·d)+ ln
(

g+
|g−|

)
+

+ e

µB
β
·d

cos(ψdet ) E1(µAα ·d)− e
−

µB
β
·(t−d)

cos(ψdet ) E1[µAα · (t −d)] i f g− < 0 (111)

I4 + I5 + I6 = E1[2µAα · (t −d)]+ ln(2µAα d)+ γ+

+ e

µB
β
·d

cos(ψdet ) E1(µAα ·d)− e
−

µB
β
·(t−d)

cos(ψdet ) E1[µAα · (t −d)] i f g− = 0 (112)
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In this case, when (t −d)→ 0 the results for the three possibilities are:

I4 + I5 + I6 = ln
(

µAα

g−

)
−E1(g−d)+ e

µB
β
·d

cos(ψdet ) E1(µAα ·d) i f g− > 0 (113)

I4 + I5 + I6 = ln
(

µAα

|g−|

)
+Ei(|g−|d)+ e

µB
β
·d

cos(ψdet ) E1(µAα ·d) i f g− < 0 (114)

I4 + I5 + I6 = ln(µAα d)+ γ + e

µB
β
·d

cos(ψdet ) E1(µAα ·d) i f g− = 0 (115)

As in the previous case, it is also important to address the potential extreme condi-
tions having µAα → 0 while (t −d) is not too small. As before the two situations that
may be addressed are |g−| → 0 and g− < 0. In the first case, the result of the sum of
integrals is 0 as was also for the condition d <= t/2. In the case of g− < 0 the result
is:

lim
µAα

−→0
(I4 + I5 + I6) = E1[b · (t −d)]+Ei(b ·d)+eb·d ln(

Co f f

d
)−e−b·(t−d)ln(

Co f f

t −d
) (116)

If now also (t − d) → 0 applies, the limit of this eq(??) must be used, the result
being:

lim
µAα

−→0

(t−d)−→0

(I4 + I5 + I6) =

(
eb·d −1

)
· ln(

Co f f

d
) (117)

4.4 The general layered target case
If the target is more complex than a single homogeneous layer and made up of sev-

eral physically distinct layers as drawn schematicaly in fig.(??), calculating secondary
fluorescence processes for PIXE experiments becomes a bit more complex and, as far
as the author knows, this work is the first time a systematic, general global solution is
presented in standard literature.

Figure 2 Primary X-rays Aα produced at a penetration depth x1 in layer te originate
the emission of secondary X-rays Bβ in volume dV in layer t f . These will look as if
produced at depth x1, and will either enhance Bβ X-rays target yield from layer te
or create a "phantom" presence of element B in layer te. (b) Case 8, the secondary
fluorescence is produced in a physical layer present deeper into the target than the
layer emitting the primary X-rays. (c) Case 9, the secondary fluorescence is produced
in a physical layer present less deep in the target than the layer emitting the primary X-
rays. In both cases it is once again assumed that the sample layers are homogeneous
and infinite in the plane perpendicularly to the sample normal (shown in yellow).

In this case, three different situations can be faced in respect to secondary fluores-
cence: (a) the primary X-rays layer is the same as the layer emitting secondary X-rays,
(b) the layer emitting secondary X-rays is deeper into the target than the primary
X-rays layer or (c) the layer emitting secondary X-rays is closer to the target surface
than the primary X-rays layer.

In case (a, or 7 since it follows integral I6) eqs(??) and (??) nead just a slight
change to cope with the extra layers that may be present between the emitting layer
and the target surface, the result being:

Case a (or 7) : making Q
7,n f
B

β
,Aα

(x1) = QB
β
,Aα

(
x1 −

tbeg
f

cos(ψinc)

)
based on eq(??)

χ
7,n f
B

β
(x1) =

( n f −1

∏
i=1

e
−

µi
B

β
ti

cos(ψdet)

)
∑

allAα
inducing B

β

σ
X
Aα ,Zi

(E(x1)) fA Q
7,n f
Aα ,B

β
(x1) (118)

In cases (b, or 8) and (c, or 9) the situation is different because it is necessary to
account for three facts, namely: (i) the primary Aα X-rays absorption between the
emission point x1 and the absorption volume Vf l is not homogeneous, (ii) the Bβ X-
rays path from the integration volume up to the surface of the layer where secondary
fluorescence effects are taking place has a different expression than the one defined in
eq(??) used for the case of the single homogeneous layer and case (a) of multilayered
targets, and (iii) a single more complex integral expression applies.

Table 2 Integration limits for r and θ for the integrals I8 and I9. The integral limits
are the same due to the fact that the angle θ was defined as the smallest angle to
the normal, in both cases.
* the value of L is an ad hoc cut-off taken as the value above which less than 5% of primary
X-rays exit the emision layer.

s ts
re ts

re f ts
r f

d < tbeg
f 8 (b) tend

e −d tbeg
f − tend

e r · cos(θ)− (t8
re + t8

re f )

d > tend
f 9 (c) d − tbeg

e tbeg
e − tend

f r · cos(θ)− (t9
re + t9

re f )

rs,min rs,max ζi = cosθi ζ f = cosθ f

d < tbeg
f

t8
re+t8

re f
cos(θ)

t8
re+t8

re f +t f
cos(θ) 1 L *

d > tend
f

t9
re+t9

re f
cos(θ)

t9
re+t9

re f +t f
cos(θ) 1 L *

In cases (b) and (c) eqs(??) and (??) need to be re-written. In order to simplify the
expressions both for easy reading, but also for a clear understanding of its meaning,
some definitions are presented in Table ??.

Based on these and in fig.??, eq(??) can be promptly adjusted (note that ts
re is the

fraction of emiting layer crossed by Aα X-rays, and ts
r f is the fraction of layer absorbing

the Aα X-ray, crossed by these) leading to the following results:

dQ
8,n f
B

β
Aα

(x1,r,θ) =
µ

η

ρB
β
(Aα )

4π
· e

−µne,Aα
· t8re

cos(θ) ·

( n f −1

∏
i=ne+1

e
−µi,Aα

· ti
cos(θ)

)
·

· e
−µn f ,Aα

·
t8r f

cos(θ) ·T
n f

8,B
β
(r,θ)sin(θ) dr dθ dφ (119)

dQ
9,n f
B

β
Aα

(x1,r,θ) =
µ

η

ρB
β
(Aα )

4π
· e

−µne,Aα
· t9re

cos(θ) ·

( n f +1

∏
i=ne−1

e
−µi,Aα

· ti
cos(θ)

)
·

· e
−µn f ,Aα

·
t9r f

cos(θ) ·T
n f

9,B
β
(r,θ)sin(θ) dr dθ dφ (120)

T
n f

8,B
β
(r,θ) =

( n f −1

∏
i=1

e
−µi,B

β
· ti

cos(ψdet )

)
e
−µn f ,Bβ

·
t8r f

cos(ψdet ) (121)

T
n f

9,B
β
(r,θ) =

( n f −1

∏
i=1

e
−µi,B

β
· ti

cos(ψdet)

)
e
−µn f ,Bβ

·
t f −t9r f

cos(ψdet ) (122)

The following expressions replaces eq(??):

χ
s,n f
B

β
(x1) = ∑

allAα
inducing B

β

σ
X
Aα ,Zi

(E(x1)) fA Q
s,n f
B

β
Aα

(x1) (123)

being in this case, Q
s,n f
B

β
Aα

(x1) =
∫∫∫

Vn f

dQ
s,n f
B

β
Aα

(x1,r f ,θ) (124)
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Integrating the above differential expressions having the integral limits defined in
Table(??) provides:

Q
8,n f
B

β
Aα

(x1) =
µ

η

ρB
β
(Aα )

2
· e

−
∑

n f −1
i=1

(
µi,B

β
·ti

)
−µn f ,Bβ

·(t8re+t8re f )

cos(ψdet )

·
∫

θ f

θi

∫ rs,max

rs,min
e
−µn f ,Bβ

[
r cos(θ)

cos(ψdet )

]
· e

−
µne ,Aα

t8re+∑

n f −1
i=ne+1(µi,Aα

ti)
cos(θ) ·

· e
−µn f ,Aα

r−
t8re+t8re f
cos(θ)


sin(θ) dθ dr (125)

Q
9,n f
B

β
Aα

(x1) =
µ

η

ρB
β
(Aα )

2
· e

−
∑

n f −1
i=1

(
µi,B

β
·ti

)
+µn f ,Bβ

·
[
t f +(t9re+t9re f )

]
cos(ψdet ) ·

·
∫

θ f

θi

∫ rs,max

rs,min
e

µn f ,Bβ

[
r cos(θ)

cos(ψdet )

]
· e

−
µne ,Aα

t9re+∑
ne−1
i=n f +1(µi,Aα

ti)

cos(θ) ·

· e
−µn f ,Aα

r−
t9re+t9re f
cos(θ)


sin(θ) dθ dr (126)or,

Q
8,n f
B

β
Aα

(x1) =
µ

η

ρB
β
(Aα )

2
· e

−
∑

n f −1
i=1

(
µi,B

β
·ti

)
−µn f ,Bβ

·
(

tbeg
f −d

)
cos(ψdet ) ·

∫
θ f

θi

∫ rs,max

rs,min
e
−

µn f ,Aα
+

µn f ,Bβ
cos(θ)

cos(ψdet )

r

·

· e
−

µne ,Aα
t8re+∑

n f −1
i=ne+1(µi,Aα

ti)−µn f ,Aα

(
tbeg
f −d

)
cos(θ) sin(θ) dθ dr (127)

Q
9,n f
B

β
Aα

(x1) =
µ

η

ρB
β
(Aα )

2
· e

−
∑

n f −1
i=1

(
µi,B

β
·ti

)
+µn f ,Bβ

·
[
t f +

(
d−tend

f

)]
cos(ψdet ) ·

·
∫

θ f

θi

∫ rs,max

rs,min
e
−

µn f ,Aα
−

µn f ,Bβ
cos(θ)

cos(ψdet )

r

·

· e
−

µne ,Aα
t9re+∑

ne−1
i=n f +1(µi,Aα

ti)−µn f ,Aα

(
d−tend

f

)
cos(θ) sin(θ) dθ dr (128)

Further simplification will result from applying the following change of variables
to the integration eqs(??) and (??):

ζ = cos(θ) ; dζ =−sin(θ)dθ ; (129)

ℵ
8(ζ ) = µn f ,Aα +

µn f ,Bβ

cos(ψdet )
ζ ; ℵ

9(ζ ) = µn f ,Aα −
µn f ,Bβ

cos(ψdet )
ζ (130)

Which using the changes of variable mentioned results in:

B8
ne ,n f

=

n f −1

∑
i=1

(
µi,B

β
· ti
)
−µn f ,Bβ

· (tbeg
f −d)

B9
ne ,n f

=

n f −1

∑
i=1

(
µi,B

β
· ti
)
+µn f ,Bβ

·
[
t f +(d − tend

f )
]

C 8
ne ,n f

= µne ,Aα · t8
re +

n f −1

∑
i=ne+1

(µi,Aα · ti)−µn f ,Aα (t
beg
f −d)

C 9
ne ,n f

= µne ,Aα · t9
re +

ne−1

∑
i=n f +1

(µi,Aα · ti)−µn f ,Aα (d − tend
f )

Q
s,n f
B

β
Aα

(x1) =
µ

η

ρB
β
(Aα )

2
· e

−
Bs

ne ,n f
cos(ψdet ) ·

·
∫

ζ f

ζi

∫ rs,max

rs,min
−e−ℵs(ζ )·r · e−

C s
ne ,n f

ζ dr dζ ; d = x1 · cos(ψdet )

therefore:

Q
s,n f
B

β
Aα

(x1) =
µ

η

ρB
β
(Aα )

2
· e

−
Bs

ne ,n f
cos(ψdet) ·

∫
ζ f

ζi

(
e−ℵs(ζ )·r

ℵs(ζ )

)∣∣∣∣rs,max

rs,min

· e−
C s

ne ,n f
ζ dζ (131)

which leads to the following integrals that are solved numerically using gaussian
methods.

Q
s,n f
B

β
Aα

(x1) =
µ

η

ρB
β
(Aα )

2

∫
ζ s

f

ζ s
i

−

[
e
− ℵs(ζ )

ζ

(
tsre+tsre f

)
ℵs(ζ )

− e
− ℵs(ζ )

ζ

(
tsre+tsre f +t f

)
ℵs(ζ )

]
·

· e
−

(
C s

ne ,n f
ζ

+
Bs

ne ,n f
cos(ψdet)

)
dζ =

=
µ

η

ρB
β
(Aα )

2

∫ 1

L ∗

1− e
−

ℵs(ζ )·t f
ζ

ℵs(ζ )
· e

−

(
ℵs(ζ )

(
tsre+tsre f

)
+C s

ne ,n f
ζ

+
Bs

ne ,n f
cos(ψdet)

)
dζ (132)

All terms in the exponential having been grouped together to avoid numerical inte-
gration problems.

The final expression for the number of Bβ X-rays emitted by a layered target, which
structure may be simulated by a set of layers parallel to the surface, and infinite in
the directions perpendicular to the sample normal, becomes:

Nml
B

β
(Ep) =

Ω

4π
εdet,B

β
Tsis,B

β
Np Cpp(Ep)bcs Y tot,ml

B
β

(133)

being

Y tot,ml
B

β
(Ep) =

Cpart

Mat,B
σ

X
B

β
(Ep)ξ

sc f ,ml
eq,B

β
(Ep) (134)

ξ
sc f ,ml
eq,B

β
(Ep) =

All layers

∑
m=1

(m−1

∏
k=1

T k
B

β

)σ X
B

β

(
Em

p (x
m
0 )

)
σ X

B
β
(Ep)

· fB,m·

·
∫ xm

(Eout )

xm
0

σ X
B

β

(
Ep(x)

)
T m

B
β
,Zi
(x)

σ X
B

β
,Zi

(
Em

p (x
m
0 )

) dx +
∫ xm

(Eout )

xm
0

χ
s,m
B

β
,ml(x)

σ X
B

β
,Zi

(
Em

p (x
m
0 )

) dx (135)

where, with Qs,ne
B

β
Aα

(x1) provided by eq(??), χ
s,ne
B

β
,ml (x) is:

χ
s,ne
B

β
,ml (x) =

all B
β

emitting layers

∑
n f =1

[
fB,n f ·

all Aα,ne
inducing B

β

∑
Aα,ne =1

σ
X
Aα

(
Ene

p (x)
)

fA,ne Qs,ne
B

β
Aα

(x)

]
(136)

It is important to realise that solving eqs.(??) numerically, adds an extra set of
sums to the ones already originated from eq(??), combined with eq(??), which must
be carefully implemented.

Notice that now, because the mass fraction term must be included in the definition
of the equivalent thickness, it cannot be just put in evidence as was done in eq(??).

This is not a problem for simulations, but is a complex situation to address if the
problem in question is the exact fitting of spectra of unknown samples. In the present
work, this issue is not addressed beyond this statement, still it is a subject that will be
addressed in the frame of the applications part of the present trilogy.

5 The general case expression
Summing up all previous results, it is possible to write a global expression for the

most general case possible, namely for the PIXE yield of a wide spot or wide detector
that requires a generalized sum over a set of (ya,zb) pairs.

It is nevertheless important to assure that homogeneous conditions are respected
within each partial spot (ya,zb), as otherwise the expression cannot be used without
detailed adaptations that have not been presented in this paper, even if they may
eventually be derived from the results presented here.

Starting from eqs(??) to (??) and adding up the secondary fluorescence terms the
final result is:

N j,Zi (Ep) =
All (ya ,zb) pairs

∑
(ya ,zb)=1

Ω(ya ,zb)

4π
ε
(ya ,zb)
det, j T

(ya ,zb)
sis, j N

(ya ,zb)
p Cpp(Ep)bcs Y

ml,(ya ,zb)
j,Zi

(137)

being
Y

ml,(ya ,zb)
j,Zi

(Ep) =
Cpart

Mat,Zi
σ

X
j,Zi

(Ep)ξ
ml,(ya ,zb)
eq, j,Zi

(Ep) (138)

and

ξ
ml,(ya ,zb)
eq, j,Zi

(Ep) =
All layers

∑
m(ya ,zb)

=1

{(m(ya ,zb)
−1

∏
n(ya ,zb)

=1
T

n(ya ,zb)
j,Zi

)
σ X

j,Zi

(
E

m(ya ,zb)
p

)
σ X

j,Zi
(Ep)

f
m(ya ,zb)
Zi

·

·

[∫ x
m(ya ,zb)
(Eout )

x
m(ya ,zb)
0

σ X
j,Zi

(E(x)) ·T
m(ya ,zb)
j,Zi

(x)+χ
h,m(ya ,zb)
j,Zi ;(B

β
) (x)

σ X
j,Zi

(
E

m(ya ,zb)
p

) dx

]
+

+

All layers
̸=m(ya ,zb)

∑
n f (yA ,zb)

=1
∑

allAα
inducingB

β

χ
n f ,m(ya ,zb)
j,Zi ;(B

β
) (x)

}
(139)

In this equations, χ
h,m(ya ,zb)
j,Zi ;(B

β
) (x) refers to the homogeneous cases and case a (or 7)

of eq.(??) and χ
n f ,m(ya ,zb)
j,Zi ;(B

β
) (x) refers inter layers secondary fluorescence, cases b and c

(or 8 and 9) described by eq(??).

6 Implementation and analysis

6.1 Homogeneous targets
Once obtained these results, its computational implementation is reasonably

straightforward, the single item needing some attention being the cases where vari-
ables present very small values so that limit expressions must be used.
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The implementation was made as additional code to the previous DT2 code ? ? ,
which was designed from the start to allow the handling of multilayered targets ? .

6.1.1 The infinite target case

In the infinite target case, eqs.(??) and (??) are used as long as the following
expression is true:

d > 10−5 ∧ g− > 10−5 ∧ µAα > 10−5 (140)

If this expression is not true, than each condition must be taken into account in-
dividually. Table ?? lists the conditions, equations and limit cases replacement when
dealing with infinite (thick) targets.

Table 3 Equations selection table for the case of infinite targets.

d |g−| |g−| ·d µAα
·d g− equation

> 10−5

> 10−5 –
> 10−5 g− > 0 eq(??)

g− < 0 eq(??)

≤ 10−5 g− < 0 eq(??)

≤ 10−5

> 10−5
> 10−5 – eq(??) ≡ (??)

≤ 10−5 – ln(2)

≤ 10−5
> 10−5 eq(??)

≤ 10−5 – ln(2)

≤ 10−5
> 10−5

> 10−5
> 10−5 – ln

(
g+

µAα

)
≤ 10−5 g− < 0 eq(??)

≤ 10−5 ln(2)– –

≤ 10−5 – – – ln(2)

Figure 3 Overlap of spectra simulation of 1.65 MeV proton irradiation of
BCS_SS387 reference material taking into account secondary fluorescence correc-
tions (w/ SFC) and not considering these (No SFC). It can be seen that differences
are observable in the most intense peaks, but not so much in the others. In this case,
the most intense SFC effect is observed in Cr at 5.4 keV, which presents an effect of
11.6% , while Fe at 6.4 keV presents a SFC effect of 7.4%.

The simulations corresponding to one of the alloy cases presented in the 1992 pa-
per ? is shown in fig.(??). In this case the BCS S387 iron nickel standard was consid-
ered. Spectra shown correspond to simulations assuming a proton beam irradiation
using an energy of 1.65 MeV, which were the conditions used in the experimental data
collected for the 1992 paper. Simulations were also carried out for proton beams of
1.1 MeV and 2.5 MeV. In fig.(??) the changes in percentage correction determined as
function of beam energy are presented for the five elements regarding which effects
are more significant. It can be seen that as ion beam energy increases, also the nec-
essary correction increases. Results are different from those presented in the 1992 ?

paper because the present work uses a penetration function method and gaussian in-
tegration, which accounts for the whole sample, as used in the 1996 paper ? and not
a Simpson integration over pairs of irradiated numerical layers (similar to Ahlberg et
al. method ? ) used in 1992. The present results for this homogeneous thick target
are, therefore, identical to those found in the 1996 paper. Applying the corrections
factors presented in fig.(??) for 1.65MeV, to the experimental data published in ta-
ble 3 of ref. ? , relative differences of 1.7%, 0.78%, 5.0% and 1.33% are found now
between secondary fluorescence corrected data and reference values for Ti, Cr, Mn
and Fe respectively. Taking into account that the reference values have uncertainties
of 4%, 0.64%, 5.0% and 0.55% respectively, it can be concluded that the results ob-
tained after secondary fluorescence correction fully agree with the standard reference
data.

Secondary fluorescence correction situations may, nevertheless, be significantly dif-
ferent from this. Testing as examples some potentially complex cases such as MoP,
PbCrO4, Ti82.5-Mo10-Mn2.5 and Co10-Cu90, for 1.65 MeV proton irradiations, dif-
ferent cases can be observed.

In the case of low energy X-rays, namely P-K, Mo-L and Pb-M, no meaningful sec-
ondary fluorescence corrections are observed, the most intense case being Mo-Lβ1
that showns an 1.86% increase for an irradiation of a bulk Ti82.5-Mo10-Mn2.5. The
difference in energy between Pb L lines and Cr-K absorption edge results also in the
fact that photo-electric absorption cross section is too low for a significant effect to be
observable in PbCrO4.

Figure 4 Change of the percentage of secondary fluorescence correction (% SFC)
counts on the total counts in the area of the X-ray peaks simulated for five different
chemical elements, as function of the proton beam energy. It can be seen that for
all these cases, the %SFC increases as ion beam energy increases.

Figure 5 Simulation of 10wt% cobalt alloy in copper overlap of SFC corrected and
not corrected spectra (left) and change of the percentage of secondary fluorescence
correction (% SFC) counts on the total counts in the area of the Co X-ray peaks
simulated as function of the proton and He beam energy. It can be seen that the
%SFC increases as function of ion beam energy is stronger for proton beams than
for the He beams.

In the Co10-Cu90 case, a different situation applies and secondary fluorescence
corrections for Co Kα lines from 18% to 30% are found. The effect visible in the Co
Kα peak height, for a proton irradiation at 1.65MeV, is shown in fig.(??).

6.1.2 The half-thick target case

In the case of the half-thick targets, as shown in section 3.3, calculations are a bit
more complex, and therefore so is the implementation. The equations selection for
this case is resumed in Tables ?? and ??, since two different sets of sums of integrals
must be dealt with.

Table 4 Equations selection table for the sum I1 + I2 + I3 (primary emission point
located before the layer half-thickness) for the case of homogeneous half-thick layer
targets.

d <= t/2 |g−| |g−| ·d µAα
·d g− equation

> 10−5

> 10−5 –
> 10−5 g− > 0 eq(??)

g− < 0 eq(??)

≤ 10−5 g− < 0 eq(??)

≤ 10−5 –
> 10−5 – eq(??)

≤ 10−5 – 0

≤ 10−5
> 10−5

> 10−5
> 10−5 – eq(??)

≤ 10−5 g− < 0 eq(??)

≤ 10−5 0– –

≤ 10−5 – – – 0

Applying these to the simulation of the most intense case shown in the previous
section, namely the cobalt copper alloy, it can be seen that the secondary fluorescence
correction in thin targets is not zero, but it decreases significantly with thickness as
well as with ion beam energy.

In fig.(??) it can be seen that the secondary fluorescence correction increases as
function of the beam energy (as was already seen for thick targets) as well as the
target thickness.

Although not shown in the graph, He 2500keV are fully stopped in 3.2 and 6.4
mg/cm2 targets, and the same happens to He 5000keV and proton 1100keV beems
in the 6.4 mg/cm2 target. Still, out of these four cases, only for the He 2500keV in
the 6.4 mg/cm2 target is the secondary fluorescence correction identical to that of the
thick target.

This results from the fact that secondary fluorescence effects that take place beyond
the ion beam range, still affect the overall spectra.

9

Page 10 of 12Journal of Analytical Atomic Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Jo
ur

na
lo

fA
na

ly
tic

al
A

to
m

ic
S

pe
ct

ro
m

et
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/6
/2

02
5 

3:
16

:4
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4JA00463A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ja00463a


Table 5 Equations selection table for the sum I4 + I5 + I6 (primary emission point
located beyond the layer half-thickness) for the case of homogeneous half-thick layer
targets.

t −d <= t/2 |g−| |g−|(t −d) µAα
(t −d) g− equation

> 10−5

> 10−5 –
> 10−5 g− > 0 eq(??)

g− < 0 eq(??)

≤ 10−5 g− < 0 eq(??)

≤ 10−5 –
> 10−5 – eq(??)

≤ 10−5 – 0

≤ 10−5
> 10−5 –

> 10−5 g− > 0 eq(??)
g− < 0 eq(??)

≤ 10−5 g− < 0 eq(??)

≤ 10−5 – – – eq(??)

Figure 6 Simulation of 10wt% cobalt alloy in copper change of the percentage of
secondary fluorescence correction (% SFC) counts of the total counts in the area of
the Co X-ray peaks as function of the beam energy and target tickness.

6.2 Layered targets
If the target is not thick enough but composed of more than a single homoge-

neous layer, secondary fluorescence may be induced in the same region or in regions
different from the one where the primary X-rays are emitted.

As presented in the previous section, the complexity of the case makes that in the
second case, the integrals involved must be solved numerically.

The first of these cases, which involves calculating secondary fluorescence effects
taking place in the same physical layer as the primary X-rays emission, is handled
using eq(??) and appart the absorption term and the shift of the penetration value by
the layer surface reference, nothing is changed relative to the homogeneous half-thick
layer target case.

The second of these two conditions involves the emission of secondary fluorescence
X-rays from layers different from that emitting the primary X-rays.

In this case, two conditions can be faced, namely that the layer emitting secondary
X-rays is deeper than that emitting the primary X-rays, or the other way around.

In each of these situations, eq(??) applies and the single numerical extreme issue
that must be overcome is the vanishing value of the cossines, which is dealt with by
setting an ad-hoc cut-off as mentioned in Table ??.

The extreme values problem being a minor one in this case, it is still necessary
to take into account and overcome a large list of embedded sums that needs to be
managed for the proper implementation of the geral case calculation.

Figure 7 Simulation of a 1.6 mg/cm2 film of 10wt% cobalt alloy in copper placed
on top of a bulk MoP substrate.

In order to illustrate these type of conditions, simulations were run for a combina-
tion of layers and subtrate materials of MoP and Co10-Cu90 alloy. As shown, in the
case of MoP bulk, secondary fluorescence induced on P by Mo-L lines is small relative
to the direct primary induction of X-rays in P. If a film of Co10-Cu90 alloy is set on
top of it, no much difference is observed even though the secondary fluorescence in P

raises to roughly 11 %. In fig.?? the effect of a 1.6 mg/cm2 film of Co10-Cu90 placed
on top of a bulk MoP substrate is shown.

Still, if the order of the materials is exchanged, a different image can be found. In
fig.?? the change of effect observable as function of the top layer thickness is presented
for both the MoP layer on top as well as the other way around, aside of the comparison
of the simulation of spectra of a sequence of MoP and Co10-Cu90 0.8 mg/cm2 films
multilayer starting by MoP, and three times less charge.

It can be seen that important differences are observed. A systematic validation of
these results is necessary to assure that both theoretical work and software imple-
mentation are working properly, before systematic use of the results here present are
possible. Still, the report of this validation will be presented in part II.

Figure 8 Spectra of 0.8mg/cm2 MoP film on top of an 0.8mg/cm2 Co10-Cu90
film a Co10-Cu90 film on top of a MoP film and a multilayer sequence of 3 pairs
of MoP/Co10-Cu90 films. The differences can be seen to be very significative, as
expected.

7 Conclusions
Simulation of PIXE spectra is a useful tool for various purposes, from the simplest

one of lecturing PIXE without access to an accelerator to its unavoidable use for anal-
ysis of data from Total-IBA ? experiments.

PIXE spectra reproduction is available from a few computer codes described in
the literature, such as GUPIX ? , GeoPIXE ? or LibCPIXE ? but as far as the author is
aware of, up until the present paper, no computer code available was able to deal
with simulation and secondary fluorescence corrections of multilayer samples where
the same chemical element may be present in more than one layer.

As far as the author is also aware, a general and global theory here presented
to deal with X-ray induced secondary X-ray fluorescence in PIXE experiments in so
general conditions was also not available in standard and easy accessible literature
before this work.

The present algorithms are implemented in the new version of the DT2 code
(DT2F_0v9_98), corresponding therefore to a major upgrade of its prior versions ? ? .
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